
PPAD: Privacy Preserving Group-Based
ADvertising in Online Social Networks

Sanaz Taheri Boshrooyeh
Koç University, İstanbul, Turkey

staheri14@ku.edu.tr

Alptekin Küpçü
Koç University, İstanbul, Turkey

akupcu@ku.edu.tr

Öznur Özkasap
Koç University, İstanbul, Turkey

oozkasap@ku.edu.tr

Abstract—Services provided as free by Online Social Networks
(OSN) come with privacy concerns. Users’ information kept by
OSN providers are vulnerable to the risk of being sold to the
advertising firms. To protect user privacy, existing proposals
utilize data encryption, which prevents the providers from mon-
etizing users’ information. Therefore, the providers would not be
financially motivated to establish secure OSN designs based on
users’ data encryption. Addressing these problems, we propose
the first Privacy Preserving Group-Based Advertising (PPAD)
system that gives monetizing ability for the OSN providers. PPAD
performs profile and advertisement matching without requiring
the users or advertisers to be online, and is shown to be secure
in the presence of honest but curious servers that are allowed to
create fake users or advertisers. We also present advertisement
accuracy metrics under various system parameters providing a
range of security-accuracy trade-offs.

I. INTRODUCTION

Online Social Networks (OSN) such as Facebook, Twitter,
and Google+ are in the center of people’s attention due to the
functionality and networking opportunities they offer. OSNs
consist of three main entities: Server, user, and advertiser.
Server supports the OSN’s functions using its storage and
computational resources. Users are able to share their personal
information with each other and establish new friendships
via OSN. Advertisers ask Server’s help to detect their target
customers out of OSN’s users. Despite the attractive services
that OSNs offer to the users, sharing personal information
with these networks raises privacy problems where servers
monetize users’ information by selling them to the advertising
companies [24], [27]. To prohibit the accessibility of OSN
providers to the plain information of users, secure OSN
designs that employ data encryption are proposed [12], [11],
[31], [33], [3], [4]. While these solutions provide tangible
benefits to the users’ privacy, they neglect the role of advertiser
as part of the OSN, which results in monetizing inability for
the server [32]. Thus, OSN servers are left with no financial
motivation to establish such secure OSN services.

The lack of a convincing commercial model for secure
OSNs is our main motivation to propose a Privacy Preserving
ADvertising (PPAD) system for OSNs. PPAD can be incorpo-
rated into secure OSN designs (where the OSN’s functionality
meet data confidentiality) to provide advertising service. Yet,
achieving the best of both worlds is impossible: we provide a
trade-off between personalized advertising accuracy and user
profile privacy. We first define these terms, explain why it is

impossible to achieve some goals simultaneously, and show
how we achieve a solution whose parameters can be tweaked
for various settings.

In PPAD, we introduce the notion of group-based adver-
tising on the encrypted data. By group-based advertising, we
aim to cope with the security issues raised by the personalized
counterparts [36], [21]. In fact, performing personalized adver-
tising on the encrypted data will ultimately violate user pri-
vacy. The reason is that knowing that a particular advertising
request (which is a set of attributes) is matched to an encrypted
profile implies that the profile entails the attributes listed in that
request. Therefore, although the matching is performed on the
encrypted data, the server is able to learn the profile content
i.e., user’s attributes. This cannot be prevented using any
(cryptographic) method unless one (unrealistically) assumes
that the adversarial server cannot create fake advertisement
requests targeting known attributes.

One remedy of this problem is that the final matching result
must be computed in the encrypted format (server does not
learn the result) and then the results are sent to the user to
open and read. However, this approach is cumbersome as the
user has to open (decrypt) all the matching results (which is
linear in the total number of advertising requests) and retrieve
the matched advertisements from the server in an oblivious
way (which again incurs a high load).

Due to this privacy concern, we define a new advertis-
ing paradigm called group-based advertising. In short, we
(randomly) partition users into groups of equal size at the
registration phase. Then, each advertising request is compared
to the profiles of a group of users and not a single user. The
matching result indicates whether there exist some threshold-
many target users among the group members. If it happens,
then the advertising is shown to all the group members. Note
that the matching result reveals neither the identity of the
matched user nor the number of matched users but only the
existence of at least threshold-many matches. By this method,
the matching result is unlikable to an individual profile. We
propose a formal security definition to capture this notion of
unlinkability.

Another property of PPAD is to keep the advertising pro-
cedure transparent to the users/advertisers, similar to the
insecure counterparts. That is, users and advertisers carry no
overhead except uploading their data to the social network.
Henceforth, the matching process is operated only by theISBN 978-3-903176-08-9 c© 2018 IFIP

server and needless to any constant online connection of the
user or the advertiser. Prior solutions [34], [15], [6], [17], [29],
[22] fail to provide the transparency feature. User’s involve-
ment in the matching procedure adds an overhead to the user
that grows linearly with the number of advertising requests.
This overhead demotivates the user from participating in the
PPAD protocol as the user is obliged to stay online until the
server matches user’s profile to the advertising requests. It
also negatively affects the system’s efficiency as the servers’
working-time depends on the users’ online time. In PPAD,
users receive relevant advertisements, which are found by the
server during the users’ and advertisers’ off-time. We enable
this by utilizing a privacy service provider (PSP) that assists
OSN providers to protect the privacy of their users. A PSP
can be a non-profit or governmental entity that can help users
and multiple providers achieve privacy-preserving advertising
and can be implemented with low cost. Due to their fame and
reputation, PSPs are assumed to be non-colluding parties and
hence are used in similar privacy-concerned applications [35].

Our contributions in this paper are as follows.
• We propose PPAD advertising system that preserves user

privacy and is applicable on the secure OSNs where
users’ information are encrypted.
• In contrast to the existing solutions where secure match-

ing requires both user and advertiser to be permanently or
simultaneously online, PPAD allows users and advertisers
to be offline after the registration. Once the matching
is performed offline by the server, the advertisement is
shown to relevant users the next time they appear online
(or via push notifications, etc.).
• We present a formal security definition for user privacy.

We argue that a meaningful security definition in this
setting must allow the adversarial server to control some
advertisers and users. Our system is formally proven to
be secure against the privacy service provider as well as
the server that may additionally employ a number of fake
users or advertisers.

• We define two performance metrics of Target accuracy
and Non-Target accuracy to be used in group-based
advertising systems. Using empirical analysis, we capture
the effect of group size and threshold value on the system
performance and discuss their security implications.

II. SYSTEM OVERVIEW
Model: An overview of PPAD is shown in Figure 1. The
participants are users, advertisers, and the OSN provider
(Server) who gets help from a third party that is a privacy
service provider (PSP). In PPAD, the advertiser specifies
the attributes of its target users, and uploads an advertising
request to the Server as a Bloom filter. We define an adver-
tising request to be a conjunction of several attributes e.g.,
{Artist,Player,Scientist}. Users are (randomly) partitioned
into groups of size k at the registration phase. As discussed,
this grouping is necessary for user privacy, and must not be
done based on similar interests. To preserve confidentiality,
users encrypt their Bloom filters using additive homomorphic
encryption and secret sharing techniques before submission to

Social	Network	Provider
(Server)

Advertiser	Registers	an	
Advertising	Request

User

Stores	Advertising	
Requests	and	

Encrypted	Profiles

Privacy	Service	Provider	(PSP)

Secret Key User	Receives	Group	
Information

Advertiser

• User	Registers	or	Updates	the	
Encrypted	Profile

• User	Receives	Advertisements

PSP	and	Server	Find	
the	Matching	Results

Fig. 1: PPAD system overview

Server. To provide provable security, PPAD requires users to
encrypt their data using two different public keys PK1 and
PK2. The decryption power i.e. the corresponding secret keys
SK1 and SK2 are given only to PSP, but PSP never receives
these individual profiles.

For each group, if at least threshold-many group members’
profiles entail the same attributes listed in the advertising
request, the group is marked as a target group. The adver-
tisement is then presented to all members of the target groups
(since advertising to a subset would require violating privacy).
Afterwards, the social network provider charges the advertiser
based on the number of target groups (hence users) found
for its advertising requests. The group size and threshold are
parameters that affect both advertisement accuracy and user
privacy. We analyze this trade-off in Section V.
Security Goals: In PPAD, our security goal is to protect the
link-ability of a successful match to a specific member. That
is, when a group is marked as a target group, the server should
not be able to say which members of that group exhibit the
attributes in the advertising request.

However, it is important to realize that there is always
an implicit and inherent privacy leakage in any advertising
system, regardless of how secure it is designed. This leakage
is that as soon as the server obtains the matching result,
it understands the inclusion or exclusion of some specific
attributes among the group members, although the matching
is performed entirely on the encrypted profiles. In group-
based advertising, the inclusion or exclusion of attributes in
the group is unlinkable to a particular group member, while in
the personalized counterpart, the matching result immediately
breaks user privacy.
Security Assumptions: What we presume in PPAD is that
the main adversary of user privacy is the social network
provider, i.e., Server, (or an attacker controlling it) who may
be curious to link the matching results of each group to the
individual members. In this regard, the server may employ
polynomially-many advertisers and take control of some of
the users in each group. If the Server manages to control
all but one member of some group, the same arguments
against the impossibility of providing privacy in a personalized
advertisement system apply. Therefore, we necessarily assume
that at least two users per group are honest.

Moreover, the Server is assumed not to be able to collude
with the privacy service provider, i.e., PSP. We believe that
such a non-profit or governmental organization would not
cooperate with the social network provider against user privacy

515

due to the fame and reputation concerns. Hence, privacy
service providers are assumed to be non-colluding parties and
are used in similar privacy-concerned applications [35]. In
Section VI-B, we formally prove that neither PSP nor the
Server would be able to violate user privacy.

Since we employ PSP as an external entity, it is important
that it can be implemented with low cost, requiring minimal
change in the OSN system. In PPAD, users contact PSP
only during registration to receive some anonymous, non-
personalized group parameters. Advertisers never need to
contact PSP. Moreover, when PSP helps Server during the
matching process, it performs two decryptions and some arith-
metic operations per matching (6 milliseconds per matching).
Section V-B presents more details on performance.
Preventing Compound Group Matching Although group
matching preserves user privacy, the social network provider
may learn the identity of the target users by arbitrarily com-
bining profiles of users from different groups and analyzing
the changes in the matching results. To avoid this misbehavior,
users of each group are given zero-sum secret shares by PSP.
They embed their secret shares in their encrypted profiles.
Decryption of individual profiles with different embedded
secret shares results in garbage values. Thus, any attempt
by Server toward grouping arbitrarily chosen users’ profiles
fails. The only way to cancel out the secret sharing is to
aggregate the profiles of users of the same group, as then
the secret shares’ summation would be zero. Thus, Server
has to aggregate profiles of each group separately and sends
the aggregated data to PSP. Finally, PSP decrypts and de-
aggregates the data to find the number of matching users
in the group. We enable aggregation and de-aggregation of
profiles using super increasing sets (more details are presented
in sections III and IV-A4).
Profile Update Insecurity Performing profile update in
secure group-based advertising systems comes with a serious
privacy issue, whose solution hugely degrades system effi-
ciency. Essentially, when a member of group modifies her
profile (by adding or removing some attributes), Server can
analyze the changes in the matching results of that group
(against advertising requests) before and after user’s profile
update and realize which attributes the user has modified in
her profile. Also, the group-mates are vulnerable to the same
security risk. Due to this security problem, if a user wants to
modify her profile, she has to join a new group (similarly her
group-mates), and the old group is now disfunctional. This is
regardless of the underlying (cryptographic) tools employed.

Prior studies with the profile update functionality are not
applicable to the context of advertising in social networks since
they assume that the user does not share its profile with the
server [34] or they employ an IP Proxy server [13] so that users
anonymously add new preferences to their profiles. The former
contradicts with the advertising transparency and degrades the
performance. The latter is not applicable to OSNs since users
access the social network via a particular account and hence
the server observes that the update operation is done under a
particular account.

III. PRELIMINARIES

Bloom Filters: Bloom filters [8] are used to represent sets, and
efficiently check whether an element belongs to a set. A Bloom
filter is constructed with an array of p bits, initially zero, and d
hash functions, H1(.),...,Hd(.). p is called the size of the Bloom
filter. To insert an element x1 into the Bloom filter, all the hash
functions are applied on x1 (i.e. i1 = H1(x1),..., id = Hd(x1))
and the array cells at indices corresponding to the hash outputs
are set to 1. Testing the membership of an element is done by
applying all the hash functions on it (similar to the insertion),
and checking that whether all the corresponding indices are
equal to 1. If one of them is not equal to 1, then that element
does not belong to the set. Otherwise, with the false positive

probability of 1− (1− ((1− 1
p)

d
)

e
)

d
the element belongs to

the set, where e is the number of elements inserted into the
Bloom filter. In the rest of the paper, BFCreate(inSet) creates
a Bloom filter with inSet being the set of input elements.
Super Increasing Set: A super increasing set [9] of length
g is a series of g positive real numbers, {s1,s2, ...,sg}, where
each element is greater than the sum of its preceding elements
i.e., (∀ j ∈ {2, ...,g} : s j > ∑

j−1
i=1 si).

Additive Homomorphic encryption scheme: A public key
encryption scheme (KeyGen,Enc,Dec) is called additive ho-
momorphic [19] if for all m0,m1 from the message space
C0�C1 = Enc(m0)�Enc(m1) = Enc(m0 +m1) where � is
an operation defined over ciphertexts. Example is Paillier
encryption [28] where� corresponds to the multiplication over
ciphertexts.
Negligible Function: A function f is called negligible if ∀
positive polynomials p(.) ∃I s.t. ∀i > I (where i is a real
number): f (i)< 1

p(i) .
Secret Sharing Secret sharing [5] is a method to disseminate
a secret among a set of parties. Consider zero as the secret,
one way to create k shares of zero is to generate k−1 shares
randomly (SSi, i ∈ {1, ...,k−1}) and then set the last share to
SSk = 0−∑

k−1
i=1 SSi mod q where q indicates the modulus. The

length of the secret shares must be long enough to hide the
data content (longer than the maximum data size). We define
SSGen(k,q) as a function which generates k zero-sum secret
shares out of the given message space (i.e., modulus) q.

IV. PPAD
A. Full Construction

This section presents our full construction, explaining which
party runs which algorithm at which stage. Throughout the
explanations, x← X demonstrates picking an element x uni-
formly at random from set X , and || represents concatenation.

The OSN initialization is launched by PSP to generate
system parameters. Users register their encrypted profiles in
User Registration. A profile is a modified variant of a
Bloom filter whose elements are separately encrypted under an
additive homomorphic encryption scheme. Advertisers engage
in Advertiser Registration protocol to submit an advertising
request as a Bloom filter. The Server cooperates with PSP in
the Advertisement protocol to find the target groups for each
advertising request. In short, for every group and advertising

516

request pair, the Server aggregates encrypted profiles of users
in that group and sends the aggregate as well as the adver-
tising request to PSP. Consequently, PSP checks if the group
matches to the request and responds to Server accordingly.

1) OSN initialization (OSNInit)
Server: The Server initializes a database as DB.
PSP: PSP determines the security parameter 1λ and the thresh-
old value. It establishes an additive homomorphic encryption
π=(KeyGen,Enc,Dec) scheme with message space MSpace,
and generates (PK1, SK1) and (PK2, SK2) as two pairs of public
and private keys. We need two sets of key pairs for the security
proof to work. The reason will be apparent in Section VI-B.

2) User Registration (UReg)
UReg protocol is shown by Figure 2.

PSP: User connects to PSP via a secure and server authenti-
cated channel to receive its group related information. Initially,
PSP determines the group identifier GID of the user. GIDs
can be assigned according to the users’ arrival i.e., the first k
users are assigned to the first group and the second k users
to the second group, etc. Note that a group needs to be full
to be advertised to, since the secret shares will not sum up to
zero otherwise. PSP generates a fresh set of k secret shares
as GSS = {SS1, ...,SSk} per group and assigns shares to the
users.

Also, PSP assigns a delimiter, D, to each user such that D
is unique among group-mates. Each user embeds its delimiter
in the profile. The structure of delimiters is given in Equation
1. Delimiters exhibit the property of a superincreasing set and
help in aggregation and de-aggregation of members’ profiles
during the advertisement protocol. PSP generates a set of k
delimiters denoted by DSet once and uses them for every
group.

∀ j ∈ {1, ...,k},D j >
j−1

∑
i=1

Di ∗ p (1)

User: To make a profile, users may enter their preferences into
a well-structured form like a Facebook profile. However, the
presentation of profile form to the users is an orthogonal issue
to the PPAD. Ultimately, all the collected attributes (denoted
by AttSet) are transformed to a modified version of a Bloom
filter at the user side. In Algorithm 1, first a Bloom filter,
P f , is generated out of AttSet. Then, each bit i of Bloom
filter i.e., P fi is updated to P fi ∗D+SS. In words, we replace
the 0-bit values of Bloom filter with user’s secret share and
the set bit values with the summation of the user’s secret
share and delimiter. This modification helps in two regards,
first, to enable aggregation and de-aggregation by the help of
delimiters, and second, to prevent compound group matching
using secret shares (see the advertisement protocol). Finally,
each modified element of Bloom filter is encrypted under the
public encryption key PK given as input to the Algorithm 1.

The user selects its username UName, and generates two
encrypted profiles EP f and ˆEP f by running Algorithm 1
under two public keys PK1 and PK2, respectively. Then it
uploads its encrypted profiles EP f , ˆEP f alongside UName
and GID to Server.

Algorithm 1 PCreate(AttSet, D, SS, PK)

1: P f = BFCreate(AttSet)
2: EP f = {EncPK(P fi ∗D+SS)}1≤i≤p
3: return EP f

Server: Server receives the encrypted profiles and inserts
them into the database DB.

Fig. 2: User Registration protocol (UReg)

Fig. 3: Advertiser registration protocol (AdReg)

Fig. 4: Advertisement protocol (Ad)

3) Advertiser Registration (AdReg)
AdReg is shown in Figure 3. During AdReg, the advertiser

registers its advertisement request under its name i.e. PName
into the OSN. Advertiser specifies a set of attributes denoted
by TAud for its target audience. The advertiser creates a
request as a Bloom filter out of TAud. Then, it submits
the Bloom filter, its name and the product to be advertised
to Server. Advertising request preserves the AND operation
between the targeted attributes. For example, a single request
may target users with both attributes X AND Y. However, an
advertising request which targets X OR Y must be split and
submitted as two separate requests: one for X and the other
for Y. Server registers the request, assigns a unique request
identifier RID, and sends RID to the advertiser.
4) Advertisement (Ad)

Figure 4 represents the Ad protocol. During the Ad
protocol, Server first retrieves an advertising request i.e.,
(RID,PName,Product,Req) from DB. Next, to find the match-
ing between the request and each group of users, Server and
PSP interact as follows (both users and advertisers are
offline during this procedure, which is one of our main
contributions):
Server Aggregate: Server checks whether the advertising
request is already matched against the group or not. If it is not
matched, then Server retrieves profiles of group members and
proceeds to the aggregation phase. As we already mentioned,

517

the aggregation helps cancel out the secret shares embedded
in users’ profiles (as discussed in Section II, the purpose of
secret shares is to prevent compound group matching).
To aggregate profiles, we utilize the fact that a profile P f
(which is a Bloom filter according to Algorithm 1) matches
the advertising request Req if for every set bit position of Req
the corresponding bit in P f equals to 1. More formally, P f is
a target for Req if

∀1≤ i≤ p s.t. Reqi = 1 → P fi = 1 (2)
Stated differently, P f matches Req if the sum of set bit
values of Req (we denote it by |Req|) equals to the sum of
corresponding bit values in P f . Due to this reason, we are
only interested in the elements of a profile corresponding to
the set bit positions of Req. As the first step of aggregation, we
take out and sum up the encrypted elements of each profile in
accordance with the set bit positions of Req. More formally,

A = ∏
1≤i≤p|Reqi=1

EP fi = EncPK(∑
1≤i≤p|Reqi=1

P fi ∗D+SS) (3)

The second part of equality in Equation 3 holds due to
utilization of an additively homomorphic encryption scheme.
The Server performs this procedure for each profile of the
group and obtains A1, ...,Ak. Finally, the Server sums up A j
values and obtains

EAggGP f =
k

∏
j=1

A j = EncPK(
k

∑
j=1

∑
1≤i≤p|Reqi=1

P f j,i ∗D j +SS j)

= EncPK(
k

∑
j=1

∑
1≤i≤p|Reqi=1

P f j,i ∗D j +
k

∑
j=1

∑
1≤i≤p|Reqi=1

SS j)

= EncPK(
k

∑
j=1

∑
1≤i≤p|Reqi=1

P f j,i ∗D j + ∑
1≤i≤p|Reqi=1

k

∑
j=1

SS j︸ ︷︷ ︸
=0

)

= EncPK(
k

∑
j=1

∑
1≤i≤p|Reqi=1

P f j,i ∗D j)

= EncPK(
k

∑
j=1

D j ∗ ∑
1≤i≤p|Reqi=1

P f j,i) (4)

As it can be easily verified from Equation 4, EAggGP f is
the encryption of sum of bit values of profiles (Bloom filters)
multiplied by their corresponding delimiters (D j). PSP will
employ delimiters to extract individual matching results. The
aggregation procedure is summarized in Algorithm 2.

Algorithm 2 Aggregate(EP f1, ...,EP fk,Req)

1: for 1≤ j ≤ k do
2: A = ∏1≤i≤p|Reqi=1 EP f j,i
3: end for
4: EAggGP f = ∏

k
j=1 A j

5: return EAggGP f

PSP: PSP decrypts the aggregated data (PSP possesses two
secret keys SK1 and SK2. It may use one or both of the keys
to obtain the plaintext data. Since Server is assumed to be
honest but curious, the encryption under PK1 is consistent with
the encryption under PK2). Then, PSP counts the number of
profiles matched to the request by proceeding as follows. We

denote the decryption of EAggGP f by AggGP f , that is

AggGP f =
k

∑
j=1

D j ∗ ∑
1≤i≤p|Reqi=1

P f j,i (5)

Let us reformulate AggGP f by extracting the first term of the
outer summation as

AggGP f = Dk ∗ ∑
1≤i≤p|Reqi=1

P fk,i +
k−1

∑
j=1

D j ∗ ∑
1≤i≤p|Reqi=1

P f j,i

(6)
Using Equation1, we know that

Dk >
k−1

∑
j=1

D j ∗ p >
k−1

∑
j=1

D j ∗ ∑
1≤i≤p|Reqi=1

P f j,i (7)

Therefore, if we divide AggGP f by Dk we obtain the quotient
and the remainder as indicated in Equation 8:

AggGP f = Dk ∗ ∑
1≤i≤p|Reqi=1

P fk,i︸ ︷︷ ︸
Quotient

+
k−1

∑
j=1

D j ∗ ∑
1≤i≤p|Reqi=1

P f j,i︸ ︷︷ ︸
Remainder

(8)
The Quotient is the summation of bit values of P fk in
accordance with the set bit positions of Req. Thus, if the
Quotient equals to |Req|, then P fk is a match. PSP continues
the iteratively on the Remainder, using Dk−1 for the next
division. At any step that the number of target users exceeds
the threshold, PSP sends Yes to the Server and stops. If it was
not the case, PSP responds No. The process of matching is
presented in Algorithm 3. Note that, the delimiters enabled us
to extract the matching result of individual members from the
aggregate, but PSP does not have any information regarding
the individual profiles and usernames.
Algorithm 3 Match(AggGP f , |Req|)

1: count = 0
2: for D j ∈ DSet, j ∈ {k, ...,1} do
3: if AggGP f

D j
== |Req| then

4: count = count +1
5: if count == T hreshold then return Yes
6: end if
7: end if
8: AggGPf= AggGPf mod D j
9: end for

10: return No

Server Show: Based on the PSP’s response, Server either
advertises the Product for all the members of the group, or
skips that group. The total number of target groups is counted
and stored for monetizing purposes.

For each advertisement request, the protocol above is re-
peated for each group that is not yet matched with the request.
Since we prevent group compounding, matchings can be
performed in parallel. This means, while the computational
complexity scales, communication rounds do not need to
increase with the number of yet unmatched groups.

V. PERFORMANCE
A. Asymptotic Performance

Table Ia shows the computational overhead of each entity
in PPAD based on the number of homomorphic operations. n
corresponds to the total number of users in the OSN, and m

518

Overhead\Entity User Advertiser Server PSP
User registration O(p) - - -

Advertiser registration - O(1) - -
Advertisement - - O(k.|Req|) O(1)

(a) Running Time (per matching)

Overhead\Entity User Advertiser Server PSP
User registration O(p) - O(p) -

Advertiser registration - O(p) O(p)
Advertisement - - O(1) O(1)

(b) Communication Complexity (per matching)

TABLE I (a) Running time based on the homomorphic operations.
(b) Communication complexities (number of message transmis-
sions). k: number of users per group. p: size of Bloom filter. |Req|:
number of set bits in each advertising request, which is O(e.d)
where e is the number of attributes in each request and d is the
number of hash functions used in the Bloom filter construction.

corresponds to the total number of advertising requests.
Users The user carries O(p) computational overhead, only
once, to element-wise encrypt its Bloom filter under PSP’s
public keys where p is Bloom filter’s size.
Advertisers The advertiser does not perform any crypto-
graphic operation.
Server The running time complexity of Server to aggregate
users’ profiles within their corresponding groups is O(k.|Req|)
where |Req| is the number of set bits in the Bloom filter of
the advertising request. Server carries this overhead per group
and advertising request pair. In total, there are n

k groups and m
advertising requests, hence the total overhead of Server yields
to O(m. n

k .k.|Req|) = O(m.n.|Req|).
PSP: For a single matching, PSP has the running time com-
plexity of O(1) (to decrypt the group aggregated profiles). PSP
performs the matching procedure per group and advertising
request pair, which in total leads to the complexity of O(m. n

k)
for its lifetime.

Table Ib demonstrates the communication complexity of
each entity during the execution of each protocol. Users and
advertisers need to share their Bloom filters with Server.
Thus, O(p) message transmission is required. Server and PSP
communicate O(1) messages to check the matching between a
single group and an advertising request. For n users (n

k groups)
the total communication overhead of Server and PSP is O(n

k).

B. Concrete Performance

The running times are computed by executing PPAD over
1000 randomly generated profiles of 400 attributes (based
on our personal experience of Facebook advertising, 400
attributes is approximately the maximum number) under the
group size of 5. The advertising request is presumed to have 30
attributes (for randomly generated profiles, almost no match is
found for an advertisement with more than 30 attributes). The
results are taken on an Intel i5 2.60 GHz CPU, using 2048 bit
keys for Paillier encryption scheme. Under this configuration,
Server matches a single advertising request to a single group
in 50 ms whereas running time of PSP is 6 ms, which is
almost an order of magnitude better than that of Server. Profile
creation time is 750 ms (done once per user) and creating an
advertising request takes 0.5 ms.

C. Advertisement Accuracy Metrics
In order to analyze the effect of different group sizes and

threshold values on the advertising performance, we define
two performance metrics, namely Target accuracy and Non-
Target accuracy.

Target accuracy indicates the fraction of target users who
are served by the advertisement, as formulated in Equation 9

Target accuracy =
Number of target users served by the
advertisement
Total number of target users

(9)
This metric is in compliance with the advertiser desire who
wants to reach as many target users as possible. Due to the
nature of group-based advertising, the Target accuracy is not
always 100% since the target users in groups with fewer than
threshold-many target users are not shown the advertisement.

Non-Target accuracy as shown in Equation 10 is the
fraction of non-target users that are not served an (irrelevant)
advertisement.

Non-Target accuracy=

Number of non-target users not
served by the advertisement
Total number of non-target users

(10)
The higher value of this metric indicates that users are less
likely to be shown irrelevant advertisement (hence more ac-
curate is the advertising and less disturbing).

Note that the Target accuracy and Non-Target accuracy are
meaningful only in the group-based advertising paradigm and
not in personalized counterparts (where both measures are
perfectly satisfied with the cost of privacy loss).

We additionally define the notion of target coverage, which
is the fraction of target users, as follows:

Target Coverage =
Number of target users
Total number of users

(11)
The coverage value depends on the attribute distribution in
profiles as well as the content of the advertisement. In our
experiments, we target various levels of coverage and analyze
the effect of our system parameters.
D. Advertisement Accuracy Results

We explore the effect of group size and threshold value
on the Target accuracy and Non-Target accuracy. The results
are taken over 100,000 profiles with three different target
coverage values (10%, 50% and 90%) as demonstrated in
Figure 5. The results present that under a specific group
size, increasing the threshold value improves the Non-Target
accuracy. This behavior is expected since having a higher
threshold guarantees that more target customers are in the
target groups (compared to the lower thresholds). Hence in
such settings, the higher percentage of target group members
are real target customers i.e., the Non-Target accuracy is
higher. On the contrary, the Target accuracy has the inverse
relation with the threshold value. Indeed, higher threshold
imposes more constraint on the group for being selected as
a target. Consequently, the advertiser loses some of his target
customers in the groups which do not have enough target users.

On the other hand, with a fixed threshold, as the group size
increases, Target accuracy increases but Non-Target accuracy

519

decreases. This happens for all target coverages, since in a
larger group with the same threshold, it is easier to find
matching groups, but it also means that potentially more non-
target users are shown an irrelevant advertisement.

By inspecting the behavior of Target accuracy and Non-
Target accuracy, we find out that a perfect balance between
these two metrics is met when the ratio of the threshold to
the group size i.e., T hr

Group Size is close to the target coverage. We
refer to this threshold value as "balanced threshold". For
instance, under the target coverage 50% and group size 19, the
balanced threshold is 10 with 10

19 = 0.52≈ 0.5. At this balance
threshold, Target accuracy and Non-Target accuracy are 58%
and 60%, respectively. We refer to the accuracy achieved at
the balance threshold by balanced accuracy. In Figure 5, the
x coordinate of the point where two curves of the same color
(i.e., same group size) collide indicates the balanced threshold
and the accuracy at that point (y coordinate) is the balanced
accuracy. After the balanced threshold, the Target accuracy
drops while the Non-Target accuracy increases. The inverse
occurs for values less than the balanced threshold.

The simulation results demonstrate that as the group size
increases, the balanced accuracy degrades. For example, under
the target coverage of 50%, the balanced accuracy of group
size 7 (at balanced threshold 4) is 65% whereas in group size
19 (at balanced threshold 10) it drops to 58%. The correctness
of this fact can be verified by coverage 10 and 90 as well. This
implies that smaller group sizes are better for accuracy at their
respective balanced thresholds.

In general, threshold being equal to group size k would
mean that all users in a matched group have the same attributes
in the advertisement in common. Similarly, threshold of 1
where the advertisement is not matched would reveal that
no user in that group contains all the attributes in the ad-
vertisement. Such leakages are independent of the underlying
methodology, and hence are not analyzed, but should be
considered when selecting the parameters.

VI. SECURITY
A. Security Definition

PPAD preserves user privacy if no adversary can link a
successful group-matching result to a particular group member.
In another word, the advertising result should not help an ad-
versary to identify which user possesses (or does not possess)
which attributes. The adversary controls either Server or PSP
(since they are non-colluding), together with some users and
advertisers. The adversary is challenged to break the user’s
privacy in a single group. This challenge is modeled as a game
played between a challenger and the adversary A. Since the
groups are independent of each other and the protocol is the
same for every group, the failure of the adversary in this game
implies that PPAD preserves privacy of all the users.

In this game, the adversary is allowed to control k− t
users where k is the group size and t is the number of
honest users in that group. Adversary registers k− t users
of the group into the system and receives all of their secret
information. Assume UName1, ..., UNamet are the usernames
of the honest users. Adversary is asked to select t sets of

Fig. 5: Target accuracy and Non-Target accuracy
vs threshold for group sizes 2-20. Dashed curves
represent Non-Target accuracy and solid ones the

Target accuracy. X axis: threshold. Y axis: accuracy

attributes, AttSet1,...,AttSett . The challenger randomly and pri-
vately assigns the attribute sets to the usernames and registers
them into the OSN. Then, the adversary is allowed to register
polynomially-many advertising requests and obtain the results
of matching between the requests and the group. Finally, the
adversary is challenged to guess which attribute set is assigned
to which username. To win the game and break security, the
adversary needs to perform noticeably better than the random
guessing probability of 1

t .
Observe that as t gets smaller, the adversary has more

control over the group, and hence has more power. But, for
t = 1, the adversary wins the game with the probability of 1;
therefore t = 2 is the minimum feasible value.

UPrivacyA(λ): In this game, the challenger acts as the
honest users and honest advertisers. One of the Server or
PSP is run by the challenger while the other one is controlled
by the adversary A. Adversary A is honest but curious, and
may control polynomially-many advertisers and k-2 users per
group. The game is played within one group.

1) A runs OSNInit with the challenger.
2) Query phase 1:

520

a) A runs UReg protocol, acting as a user, with the
challenger.

b) A specifies user’s inputs UName,AttSet and asks the
challenger to run UReg protocol over the given inputs.
Challenger acts as user.

Part (a) allows the adversary register users fully under her
control. Part (b) allows the adversary to register honest
users whose usernames and profiles are known to the
adversary.

3) Challenge phase:
a) A sends two usernames i.e. Uname0 and UName1 and

two different sets of attributes, AttSet0 and AttSet1.
UName0 and UName1 are never registered in any
query phase.

b) Challenger picks a bit randomly, b←{0,1}, and ex-
ecutes the UReg protocol for (Uname0, AttSetb) and
(UName1, AttSet b̂) on behalf of users. b̂ is the com-
plement of b.

4) A repeats the query phase 1 until all the k users of the
group are registered into the OSN.

5) Query phase 2:
a) A creates and registers an advertising request by exe-

cuting AdReg protocol acting as the advertiser.
b) A selects the inputs of the advertiser for AdReg protocol

and asks the challenger to execute AdReg protocol as
an advertiser.

Similar to query phase 1, part (a) allows the adversary
register advertisement requests fully under her control.
Part (b) allows the adversary to register honest advertising
requests of which are known to the adversary.

6) Query phase 3: A executes the Ad protocol with the
challenger for an advertising request registered as RID.

7) A may adaptively repeat the query phase 2 and 3 poly-
nomially many times.

8) A guesses a bit b
′
. If b = b

′
the output of game is 1 (A

wins), otherwise 0 (A loses).
Definition 6.1: An OSN with the (OSNInit, UReg, AdReg,

Ad) protocols preserves the user’s privacy, if for every prob-
abilistic polynomial time (PPT) adversary A, there exists a
negligible function negl(λ), where λ is the security parameter,
such that: Pr[UPrivacyA(λ) = 1]≤ 1

2 +negl(λ)
B. User Privacy Against Server

The security of our design against Server relies on the CPA-
security of the underlying encryption scheme. We show that
if a PPT adversary A can win the UPrivacy game with non-
negligible advantage, then we can construct a PPT adversary B
who runs A as a subroutine and breaks the CPA-security of the
encryption scheme. At a high level, since group matching does
not reveal the identity of the targeted users, but only provides
a Yes/No type answer, Server cannot map users’ profiles
and usernames using the result of advertising. Therefore, the
information of Server is restricted to the encrypted data. Thus,
the success of adversary A in UPrivacy game implies that B
can distinguish between the encrypted profiles of users. This
means that encryption scheme is not CPA-secure which is a
contradiction to the initial assumption. So, using a CPA-secure

encryption scheme, our design is secure against Server. The
formal proof is provided in the full version [1].
C. User Privacy Against PSP

PPAD provides information-theoretic privacy for users
against PSP. PSP never receives the usernames during the
execution of any protocol. This implies the inability of PSP
to obtain a mapping between the data contents, i.e., attributes,
and the identity of the data owners.

VII. RELATED WORKS
A. Secure Online Behavioral Advertising (SOBA)

In SOBA models, a broker is connected to a set of
publishers who are web page owners. The broker creates
a behavioral profile per user according to the user’s visits
on those pages. Broker monetizes by putting the advertiser’s
products on the publishers’ web pages according to the users’
behavioral profiles. We classify SOBA models as publisher-
subscriber and push-based designs as shown in Table II.a (also
considering PPAD applied to such a setting). In publisher-
subscriber designs [34], [15], [13], users subscribe to the
advertisers’ products. In push-based designs [6], [2] a server
receives both the users’ profiles and advertising requests, and
advertises each product for a set of target users. Some SOBA
studies require users or advertisers to be online during the
advertising procedure [34], [15], [6], while others allow them
to remain offline [2]. Some studies [15], [6] enforce direct
communication between users and advertisers. Outsourced
profiling [6] does not consider user privacy. ObliviAd [2] relies
on a trusted hardware (CPU) to protect user privacy.
B. Server Assisted Private Set Intersection (PSI)

In the PSI problem, two parties who have two different sets
of elements execute a protocol to find the intersection of their
sets. In the server assisted variant of PSI, a server helps the
parties to find the intersection of the sets, improving efficiency.
Table II.b summarizes the comparison between PPAD and
papers of the server-assisted PSI concept. In the server-assisted
PSI studies, the role of the server is to reduce the workload
of parties by carrying the main portion of the computations.
However, at least one party still needs to be involved per
protocol execution as in [17], [29], [22] and the oblivious
service provider method of [21]. Parties also need to have
direct communication for sharing some secret information be-
fore the execution of the intersection (advertisement) protocol.
The public output method of [21] and [36] support offline users
and advertisers, but they fail to protect the privacy of users. In
fact, their solution is vulnerable to the plaintext guess attack
where the server guesses some elements and checks whether
they belong to the user’s and advertiser’s sets or not.
C. Server Assisted Two-Party Computation (2PC)

In server assisted 2PC protocols, two parties, with the help
of a third party, compute a function over their respective inputs
while no party learns the other party’s input. Server-assisted
2PC solutions either employ a server to guarantee the fairness
of the protocol execution [14], [23], [25] or to ease the other
parties’ duties by delivering the main computation overhead to
the server. However, users and advertisers are required to be
online and provide some information per function evaluation

521

Type Method Offline User Offline Advertiser EDC User Privacy No IP Proxy No Trusted-Hardware Sec-Def

PS
Adnostic [34] 7 3 3 3 3 3 7

Targeted advertising [15] 7 7 7 3 3 3 3

Privad [13] 3 3 3 3 7 3 7

PB
Outsourced profiling [6] 7 7 7 7 3 3 7

ObliviAd [2] 3 3 3 3 3 7 3

PPAD 3 3 3 3 3 3 3

(a)

Method Offline User Offline Advertiser EDC PGA

Privacy aware Genome Mining [29], Scaling PSI to billion elements [17] 7 7 7 3

VDSI [36],Collision Resistant outsourcing PSI [21] public output 3 3 3 7

Collision Resistant outsourcing PSI [21] Oblivious Service Provider 7 7 3 3

Outsourced PSI using homomorphic encryption [22] 3 7 3 3

PPAD 3 3 3 3

(b)

TABLE II (a) SOBAs vs. PPAD. (b) Server Assisted PSIs vs. PPAD. PS: publisher-subscriber, PB: push-based. EDC: Elimination of
direct communication between users and advertisers. Sec-Def: Existence of formal security definition and proof. PGA: Security against
plaintext guess attack.

(advertisement in this case) [18], [20], [14], [26], [16], [10],
[7]. [30] proposed a solution which mitigates the necessity of
online users and advertisers by applying two servers, similar
to our approach. But, the number of messages transferred be-
tween two servers depends on the function definition (number
of multiplication operations), whereas PPAD supports constant
communication compexity between two servers.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we proposed the first privacy preserving
advertising system PPAD for secure OSNs with transparency
and group advertising. PPAD protects users’ privacy by em-
ploying an external non-colluding privacy service provider. We
proposed a security definition and formally proved the security
of our design under the honest-but-curious adversarial model
where the adversary is additionally allowed to control some
(fake) advertisers and users. As future work, our aim is to
extend PPAD to be secure against fully malicious adversaries,
and to efficiently support any Boolean function of the attributes
in a single advertising request. We also plan to improve our
solution to reduce the computational cost associated with
profile updates. We believe PPAD constitutes an important first
step regarding monetization for secure OSNs.

ACKNOWLEDGEMENTS
We acknowledge the support of the Turkish Academy of

Sciences, Royal Society of UK Newton Advanced Fellowship
NA140464, and EU COST Action IC1306.

REFERENCES
[1] https://archive.org/details/staheri14_ku_PPAD.
[2] M. Backes, A. Kate, M. Maffei, and K. Pecina. Obliviad: Provably

secure and practical online behavioral advertising. In Security and
Privacy (SP). IEEE, 2012.

[3] R. Baden, A. Bender, N. Spring, B. Bhattacharjee, and D. Starin.
Persona: an online social network with user-defined privacy. In ACM
SIGCOMM, 2009.

[4] A. Barenghi, M. Beretta, A. Di Federico, and G. Pelosi. Snake: An
end-to-end encrypted online social network. In ICESS. IEEE, 2014.

[5] A. Beimel. Secret-sharing schemes: a survey. Springer, 2011.
[6] D. Biswas, S. Haller, and F. Kerschbaum. Privacy-preserving outsourced

profiling. In CEC. IEEE, 2010.
[7] M. Blanton and F. Bayatbabolghani. Efficient server-aided secure two-

party function evaluation with applications to genomic computation.
PET, 2016.

[8] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors.
1970.

[9] A. A. Bruen, M. A. Forcinito, A. G. Konheim, C. Cobb, A. Young,
M. Yung, and D. Hook. Applied cryptography: protocols, algorithms,
and source code in c. 1996.

[10] H. Carter, B. Mood, P. Traynor, and K. Butler. Outsourcing secure two-
party computation as a black box. In Cryptology and Network Security.
2015.

[11] E. De Cristofaro, C. Soriente, G. Tsudik, and A. Williams. Humming-
bird: Privacy at the time of twitter. In Security and Privacy (SP). IEEE,
2012.

[12] A. J. Feldman, A. Blankstein, M. J. Freedman, and E. W. Felten. Social
networking with frientegrity: Privacy and integrity with an untrusted
provider. In USENIX, 2012.

[13] S. Guha, B. Cheng, and P. Francis. Privad: practical privacy in online
advertising. In NSDI, 2011.

[14] A. Herzberg and H. Shulman. Oblivious and fair server-aided two-party
computation. Information Security Technical Report, 2013.

[15] A. Juels. Targeted advertising... and privacy too. In CT-RSA. 2001.
[16] S. Kamara, P. Mohassel, and M. Raykova. Outsourcing multi-party

computation. IACR Cryptology ePrint Archive, 2011.
[17] S. Kamara, P. Mohassel, M. Raykova, and S. Sadeghian. Scaling private

set intersection to billion-element sets. In FC. 2014.
[18] S. Kamara, P. Mohassel, and B. Riva. Salus: a system for server-aided

secure function evaluation. In CCS. ACM, 2012.
[19] J. Katz and Y. Lindell. Introduction to Modern Cryptography. CRC

press, 2014.
[20] F. Kerschbaum. Adapting privacy-preserving computation to the service

provider model. In CSE. IEEE, 2009.
[21] F. Kerschbaum. Collusion-resistant outsourcing of private set intersec-

tion. In Applied Computing. ACM, 2012.
[22] F. Kerschbaum. Outsourced private set intersection using homomorphic

encryption. In CCS. ACM, 2012.
[23] H. Kılınç and A. Küpçü. Efficiently making secure two-party computa-

tion fair. In FC, 2016.
[24] B. Krishnamurthy and C. E. Wills. Characterizing privacy in online

social networks. In WOSN. ACM, 2008.
[25] A. Küpçü and P. Mohassel. Fast optimistically fair cut-and-choose 2pc.

In FC, 2016.
[26] P. Mohassel, O. Orobets, and B. Riva. Efficient server-aided 2pc for

mobile phones. PET, 2015.
[27] A. Narayanan and V. Shmatikov. De-anonymizing social networks. In

Security and Privacy. IEEE, 2009.
[28] P. Paillier. Public-key cryptosystems based on composite degree resid-

uosity classes. In EUROCRYPT, 1999.
[29] C. Patsakis, A. Zigomitros, and A. Solanas. Privacy-aware genome

mining: Server-assisted protocols for private set intersection and pattern
matching. In CBMS. IEEE, 2015.

[30] A. Peter, E. Tews, and S. Katzenbeisser. Efficiently outsourcing
multiparty computation under multiple keys. IEEE T-IFS, 2013.

[31] J. Sun, X. Zhu, and Y. Fang. A privacy-preserving scheme for online
social networks with efficient revocation. In INFOCOM. IEEE, 2010.

[32] S. Taheri-Boshrooyeh, A. Küpçü, and Ö. Özkasap. Security and privacy
of distributed online social networks. In IEEE ICDCSW, 2015.

[33] A. Tootoonchian, S. Saroiu, Y. Ganjali, and A. Wolman. Lockr: better
privacy for social networks. In CoNEXT. ACM, 2009.

[34] V. Toubiana, A. Narayanan, D. Boneh, H. Nissenbaum, and S. Barocas.
Adnostic: Privacy preserving targeted advertising. In NDSS, 2010.

[35] T. Veugen, R. de Haan, R. Cramer, and F. Muller. A framework for
secure computations with two non-colluding servers and multiple clients,
applied to recommendations. IEEE T-IFS, 2015.

[36] Q. Zheng and S. Xu. Verifiable delegated set intersection operations on
outsourced encrypted data. In IC2E. IEEE, 2015.

522

