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else, a customer may want to avoid cloud provider lock-in
and prefers to buy the same service from different providers.

Creating a Private Cloud chaining services offered in differ-
ent public clouds is a complex task involving several aspects,
namely: placing, instantiating, and connecting. As a first
building block, there is a need to actually have the means
to control the network traffic, so to drive it through the right
sequence of services. This is actually the problem we tackle
in this paper. To this end, we leverage on Segment Routing
for IPv6 [4]. This new protocol, from now on SRv6, allows
a source node to steer a packet through an ordered list of
segments, encoded as IPv6 addresses. This list is stored inside
the new Segment Routing Header (SRH), which is part of the
IPv6 header [5]. Every segment is associated with a function
placed at a specific location in the network. A function could
be for instance a VNF sitting in a different public cloud. We
decided to use this protocol especially for its similarity with
the Service Chaining’s principle.

We were the first ones in exploiting SRv6 inside a Public
Cloud Provider infrastructure in a preliminary version of
the work presented in this paper [6]. Here we provide a
more extensive evaluation inside the Amazon Web Services
Cloud infrastructure [7], comparing the IPv6 traffic vs IPv4
and adding a more complex scenarios, including connecting
three different cloud regions in a chain. The results obtained
from our measurements campaigns, show that the performance
penalties, on inserting the Segment Routing per IPv6’s Header
inside the packets, compared to a native IPV4 traffic flow, are
for the majority of the cases irrelevant, thus making the new
Segment Routing protocol a perfect candidate to bring Service
Chaining inside public clouds. We also evaluated throughput
and latency as a function of the geographical distance among
different AWS cloud instances.

One of our paper’s novelty is to bring Service Chaining
in a real Cloud infrastructure. Most of the previous works
in the related field instead focus on a more theoretical ap-
proach ([8][9][10][11]), with some exceptions such as in [12],
where the authors build an experimental platform, [13], [14],
and [15]. Even though the idea of using Segment Routing
for Service Chaining is not entirely new ([16][17] [18][19]),
we are the first ones in deploying and measuring the SRv6
performance using VPP inside a Multi-Cloud configuration).

The remaining of the paper is organized as follows. In
Sec. II, we describe how we setup SRv6 service chaining in the
Amazon Cloud. Then in Sec. III we introduce the methodology
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I. INTRODUCTION

Nowadays, the implementation of Software Defined Net-
works (SDN) and Network Function Virtualization (NFV) in
real infrastructures, together with Cloud Computing, allows 
to explore both new scenarios and new paradigms such as 
Multi-Cloud usage and Service Chaining [1], [2]. We refer 
to Multi-Cloud as the use of multiple cloud computing and 
storage services in a single heterogeneous architecture. This 
is also known as a Polynimbus [3] cloud strategy. This also
refers to the distribution of cloud assets, software, applications, 
etc. across several cloud-hosting environments. With a typical
multi-cloud architecture utilizing two or more public clouds 
as well as multiple private clouds, a multi-cloud environment
aims to eliminate the reliance on any single cloud provider.
There are a number of reasons for deploying a multi-cloud 
architecture, including reducing reliance on any single vendor,
cost-efficiencies, increasing flexibility through choice, adher-
ence to local policies that require certain data to be physically
present within the area/country, geographical distribution of
processing requests from physically closer cloud unit which
in turn reduces latency, and mitigating against disasters. A
customer may want to chain services from different cloud
providers because they are different or complementary. Or
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used to evaluate our proposal, while in Sec. IV we provide the
results we obtained. Sec. V concludes the paper.

II. AWS ENVIRONMENT SET-UP

Taking a look among all the Public Cloud Providers, we
have decided to perform our deployment and experiments
inside Amazon Web Services (AWS) Cloud environment [7]
for two main reasons. The first reason is because AWS
implements a feature called Virtual Private Clouds (VPC) [20],
which allows the user to define a virtual network logically
isolated from the others, with benefits on security, easiness
of deployment, flexibility, and scalability [20]. Besides, when
creating a VPC, the user could specify a whole set of character-
istics such as, for example, the IP addresses range to allocate,
subnets, firewalls and routing tables. The second reason is
that AWS offers the possibility to allocate more than one
IPv6 address per Network Interface Card (NIC), giving us the
opportunity to use the SRv6 implementation of Vector Packet
Processing (VPP [21]), which is at the moment constrained
on using at least two IPv6 address per NIC.

VPP has been chosen because one of the goals we are
also interested in is achieving the best possible performance.
Indeed, VPP is a framework for building high-speed data
plane functionalities in software, taking advantages of general-
purpose CPU architectures. It is written in C and it is com-
pletely defined in user space. It exploits kernel-bypass tech-
niques, leveraging for instance on DPDK [22], and its main
feature is the effective processing of batch of packets using
techniques such as Multi-Loop, Data prefetching and Direct
Cache Access, among the others [21]. In our configuration
and experiments we used VPP version 18.07. AWS gives the
possibility to allocate a range of different hardware, depending
on the user’s goal. In our case, we decided to use the general
purposes m5.2x large type for all of our VMs, hence, having
nominally available maximum network bandwidth of 10 Gbps.

To automate the deployment of VPP and all of the resources
necessary to successfully build our configuration inside AWS,
we have decided to use Terraform, a Cloud Orchestrator
tool ([23], [24]). It exploits the paradigm of Infrastructure as
Code, allowing to describe the components of a cloud provider,
such as VPCs, subnets, instances and route tables through a
proprietary programming language called HashiCorp Config-
uration Language. Moreover, Terraform is Cloud Agnostic,
which means that the same script, slightly modified, can be
reused also with other Cloud Providers, enabling the possibil-
ity to bring our configuration in different Cloud environments.

Fig. 1 shows, at high-level, what exactly has been deployed
in each AWS Virtual Private Cloud (VPC):
VPP instance: The VPP instance was used as SRv6 end-

point, hence, providing SRv6 encapsulation/decapsulation
operations, as well as simple forwarding when needed.

Client/Server: The Client and Server virtual machines just
represented the services to be chained.

Fig. 1 shows the high level view of the topology we created
in our experiments, connecting together three different Public
Cloud Regions. In this case the packets, before reaching their

Fig. 1. High level view of topology used in our evaluation.

final destination, are steered towards another in-the-middle
Public Cloud Region. We used two different setups: in the
first one, all regions are inside one continent (namely North
America), in the second one, every region is in a different
Continent (North America, Europe, Asia). We also used a
simplified scenario where composed of only two public cloud
instances, lacking the instance in the middle, creating a point
to point topology, in which we connected a maximum of two
Public Cloud Regions belonging to the same Cloud Provider
(AWS). The AWS Regions explored are Paris, London, Ire-
land, Oregon, Sao Paolo, Tokyo, Sidney.

III. EVALUATION METHODOLOGY

We performed several measurement campaigns, deploying
our configuration inside several Amazon‘s Regions, comparing
the impact of using VPP and SRv6 with respect to the native
AWS network stack.

We focused on two metrics: namely throughput for both
TCP Reno and UDP, measured using Iperf3 [25], and the
Round-Trip Time (RTT), measured using Ping. Unless dif-
ferently stated, measurements consist of 30 runs lasting 20
seconds, performed on the client side and their average comes
with a 95% of confidence interval, therefore gathering relevant
statistical accuracy. In our configuration, the IP traffic flows
from the client to the first VPP machine. Here the packets
are processed by the software router and encapsulated with a
Segment Routing Header. Afterwards, packets go as normal
IPv6 packets through the Internet, towards the next public
Cloud instance, if it is the final destination, packets are
decapsulated and sent to the Server machine, otherwise the
SRv6 header is updated so to forward the packet on the next
segment. As already stated, as a baseline to measure the impact
of using VPP and SRv6, we take also into account the case
without the VPP, therefore sending the traffic directly among
public cloud instances.

The regions’ choice is driven by both the distance and age
of construction of the corresponding data-center. We deployed
VPP and our configuration inside seven different Amazon‘s
region (Paris, London, Ireland, Oregon, Sao Paolo, Tokyo,
Sidney) obtaining nine different combinations, since we also
perform several Intra-Cloud measurements where the two
VPCs are inside the same Region.

IV. EVALUATION RESULTS

We present here our experimental performance measure-
ments. We first describe general results in the point-to-point
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Fig. 2. Throughput evaluated with measurements lasting 20 seconds.

topology using IPv4 traffic (cf. Sec. IV-A).1 Afterwards, we
compare IPv4 vs IPv6 traffic in the same simple scenario (cf.
Sec. IV-B), before providing the results for the more complex
scenario with three chained cloud regions (cf. Sec. IV-C).

A. Point-to-Point Topology

In Fig. 2 we portrait the throughput, for both UDP and TCP
traffic. In the x-axis we have put the distance km when the two
VPCs are in different geographical regions. Inside an Amazon
region, there could be different Availability Zones, meaning
that exist several data-centers, each one located in a different
and isolated part of the region. This gives the possibility to
deploy resources in multiple data-centers, therefore exploiting
reliability. In our figures, SameAZ means that the two VPCs
are inside the same data-center inside the same Region (Paris),
while with DiffAZ the VPCs are in two different data-centers
but located in the same Region (both data-center being in
London), as for the DiffAZ2 case, where both the data-center
are located inside the Tokyo Region. As the figure shows, in
the UDP scenario, both with and without VPP, we were able
to saturate the link at 10 Gbps. This is not the case for the
TCP scenario. Amazon uses a shaper that slows down the
TCP flow rate at maximum 5 Gbps, a behavior also noticed
by Lai et al. [26]. Moreover, the throughput has two different
behaviors, depending on the distance between source and
destination. Firstly, the more the two VPCs become distant
from each other, the more the throughput for both types of
flows decreases, however, no significant difference can be
noticed. This is explained by the TCP throughput dependency
on RTT. Secondly, when the two VPCs are closer, for instance
in the same region, we notice that the throughput evaluated
without VPP clearly outperforms the one using VPP. This is
justified by the overhead, even if very small, introduced by
the presence of the VPP module.

We further explored the VPP overhead. Fig. 3 shows the
difference between RTTs caused by the presence of the VPP
module. Actually, only a small fraction of this difference
consists in real VPP processing time (the part with vertical

1Note that SRv6 is defined only for IPv6, hence, when IPv4 traffic is
generated by the client, it is encapsulated in IPv6 with the SRv6 extension
header. However, when IPv6 traffic is generated by the Client, VPP only needs
to add the SRv6-specific extension header.

Fig. 3. VPP overhead in µs.
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Fig. 4. Packets physical path inside an Amazon Virtual Private Cloud. The
dashed lines represent the longer path due to the use of VPP.

lines), the bulk (horizontal lines) is caused by the different
path packets’ follow when flowing through VPP. In fact, in a
very deep level, Amazon imposes a specific path inside the
VPC. When packets are sent from the Client Virtual Machine,
they have to go first to the VPC’s Internet Gateway, which
will steer the packets towards the VPP machine. Here, they
are encapsulated with the SRv6 and finally they are forwarded
outside of the VPC, through the VPC’s Internet Gateway.
Mirror-like, when they arrive at the destination VPC, they first
arrive at the VPC Internet Gateway, who forwards them to the
VPP instance. The latter decapsulates the packets and sent
them back to the VPC Internet Gateway, who finally forwards
them to the Server. Instead, if we don’t put any VPP nodes
in the middle of the path, the packets sent from the Virtual
Machine goes directly to the Internet Gateway and steered
outside of the VPC. Fig. 4 shows the different path taken by
the packets depending on the VPP presence.

In few cases, when the two VPC are particularly distant
from each other, it also happens that SRv6 traffic through
Internet follows completely different and longer paths when
compared to IPv4 traffic (8200km, 9300km, 9700km cases
inside Fig. 3). Nevertheless, while we are adding two more
hops in the path (the VPP instances) and a latency penalty
due to SRv6 routing in the Internet [19], performance remains
very very close to what is possible to obtain with native IPv4
traffic, but with the additional benefit of being able to chain
services in different VPCs.
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Fig. 5. Throughput evaluated with measurements lasting 20 seconds with a
95% confidence interval. The regions are the same explored in Sec. IV-A.

B. IPv4/IPv6 vs all-IPv6 traffic

Because of the use of SRv6, we wanted to dig a little bit
deeper about the usage of IPv6. In fact, nowadays IPv6 traffic
is steadily increasing together with the cost of maintaining
IPv4 addresses, therefore ISPs are migrating more and more
from IPv4 to IPv6 [27]. AWS gives the opportunity to create
and use an IPv6 only infrastructure. For the above reasons,
we began another measurements campaign, looking at the
difference between an all IPv6 scenario and the old IPv4/IPv6
scenario, which is shown in Fig. 5. For coherence, we explored
the same scenario of Fig. 2 but we decided to show only the
TCP throughput, since it seemed to us more relevant. From
Fig. 5 we can see that in both cases the throughput has a
similar behavior. Only in few cases the all-IPv6 throughput
is slightly smaller, noticeable for DiffAZ2, when both VPCs
are inside the Tokyo region, for 500km (when the server is in
London), and for 9300km (when the server is in Sao Paulo).

Using exactly the same settings we performed another
measurement, but in this case we inverted the flow direction.
We were interested in seeing if the throughput was symmetric
or not, since in literature it has been proven that single TCP
flows in AWS are not necessarily symmetric [26]. Fig. 6
shows the obtained result, where we cannot observe a huge
difference between the two cases, except for 500km, with the
Client machine in London and the Server machine in Paris,
where the all-IPv6 throughput reduces its gap comparing to
the IPv4/IPv6 throughput.

We went deeper, trying to find why a gap is present between
the two measurements (IPv4/IPv6 vs all-IPv6). Hence, we
measured the RTT for both flows, looking in particular if we
could find a difference between the RTT values, such as we
show in Fig. 3. In Fig. 7 we show our results. It is possible
to notice that the values are similar, expect for some parts,
namely DiffAZ2, 500km, 9300km, leading us to confirm that
in these cases the RTT difference is the reason of the gap
between the evaluated throughput.

C. Chained Topology

For our last scenario, we elaborate two more complex
topologies, in order to forward the packets through a real
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Fig. 6. Throughput obtained inverting the flow direction among the same
AWS instances.
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Fig. 7. RTT of IPv4-over-IPv6 traffic vs all-IPv6 traffic.

Service Chaining architecture. We explored two scenarios:
i) all regions belonging to a single continent (namely North
America);ii) every region is inside a different continent. In
our opinion this was the best way to see how SRv6 would
affect the network infrastructure and performance. like in the
previous sections, we performed our measurements using both
IPv4/IPv6 traffic and IPv6-only traffic.

Fig. 8 shows the results and we can see two important
points: first, again in both scenarios the throughput achieved
for both traffic type is very similar and second that when
the VPCs are in regions belonging in different continents, the
throughput dramatically decreases. However, this is a behavior
we expected since with a longer path the RTT is bigger.

In Fig. 9 we portrait the throughput with the inverted flow,
exchanging the sending machines, as we did in Fig. 6. In
this case we noticed that the traffic is not bi-directional, as
already highlighted in [26]. On the contrary, the all-IPv6 traffic
throughput in the same continent is dramatically decreased,
even more than a half (we were not able to identify the
reason of such drastic decrease in throughput). On the contrary
when the used regions belonging in different continents, the
throughput has slightly augmented.

V. CONCLUSION

In this paper we presented the initial results of our research
in bringing Service Chaining in a Multi-Cloud environment.
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Fig. 8. Throughput with three different regions. The regions exploited are:
New Vegas, CALifornia, OREgon, PARis, TOKyo.

We have deployed and tested SRv6 inside a Public Cloud
Provider, being the first ones, to the best of our knowledge, in
performing Service Chaining inside AWS. Our measurements,
show that, even with a slight penalty, SRv6 protocol performs
well inside AWS, making it a good candidate for Service
Chaining inside the Public Cloud Providers domain.

As future work we will explore possibility is bring our
solution inside other Public Cloud Provider such as Microsoft
Azure and Google Cloud, trying also to connect different Cloud
Provider together. This would lead to even more complex
Multi-Cloud topologies, therefore providing the scenario to
perform more in-depth measurements, taking into considera-
tion also how different services could impact the performance.
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