
LoRaWAN Class B Multicast Scalability
Yonatan Shiferaw

Delft University of Technology
Delft, the Netherlands

Apoorva Arora
Delft University of Technology

Delft, the Netherlands

Fernando Kuipers
Delft University of Technology

Delft, the Netherlands

Abstract—LoRaWAN has emerged as a popular IoT commu-

nications technology. It comes with three classes of operation:

A, B, and C. Although many IoT use-cases, like Firmware-over-

the-Air updates, require multicast, Class A cannot be used for

that purpose. Class C can, but consumes a lot of energy. This

leaves Class B. In this paper, we investigate Class B multicast and

its scalability properties. Issues like multicast member capacity,

beacon blocking, and beacon collisions are highlighted, and

several approaches to mitigate them are proposed: (1) “Ping-Slot

Relaying,” to allow for more multicast members, (2) a scheduling

approach indicating when to best send multicast packets, and

(3) “Dynamic Region Formation” to coordinate the sending of

beacons over multiple gateways. The proposed solutions do not

require any modifications to the LoRaWAN protocol.

Index Terms—LoRaWAN Class B, Multicast, IoT.

I. INTRODUCTION

Typical Internet-of-Things (IoT) applications involve the
deployment of and data collection from many IoT devices.
These IoT devices might receive the same control instructions
or Firmware-over-the-Air (FotA) updates from a controlling
entity. Transmitting identical information separately (via uni-
cast) to each individual IoT device would be highly inefficient
in terms of energy/load and can be done more efficiently, via
multicast, in a single transmission. LoRaWAN [1] has emerged
as a popular IoT communications technology. It is a Medium
Access Control (MAC) protocol built on top of LoRa, a long-
range radio technology, and it offers three modes of operation
– Class A, Class B, and Class C – of which only classes B &
C support multicast. Class C, however, is quite power hungry,
as devices continuously listen for possible messages. In Class
B they only do so periodically, making that class better suited
for battery-operated or energy-harvesting devices, which IoT
end-devices typically are. Although LoRaWAN Class B does
support multicast transmissions, that particular feature is fairly
novel and its performance has not yet been carefully studied. In
this paper, we fill that gap and also offer several improvements.

II. LORAWAN CLASS B

network server and the end-devices, which is achieved via
downlink packets called beacons.

1) Beacon: Beacons are transmitted every beacon-period of
128 seconds by gateways. A node is allowed to switch from
Class A to Class B only after it locks onto a beacon. In order
to avoid a conflict at the end-device between a ping downlink
reception and a beacon reception, a beacon is preceded by
a guard time of 3 seconds, during which a ping-slot cannot
be placed [1]. Further, 2.12 seconds are reserved for beacon
transmission. Thus 122.88 seconds are available for ping-slots
in a beacon-period. This is referred to as the beacon-window.

2) Ping-slots: Once a node has successfully locked onto a
beacon, it switches to Class B and starts opening periodic
reception windows – ping-slots – for 8 symbols1 for each
locked beacon and goes back to sleep if no preamble is
detected. If a preamble is detected in a ping-slot, the end-
device(s) will continue to receive the entire downlink packet.

The duration between two consecutive ping-slots – the
pingPeriod := 212/pingNb – is computed as the beacon-
window in terms of 212 slots (where each slot is slotLen =
30ms long) divided by the number of pings (pingNb) in a
beacon period. pingNb := 27�Periodicity in turn is derived
from the ping-slot periodicity (Periodicity).

3) Slot-randomization: The LoRaWAN specification pro-
poses a technique called slot-randomization: a random offset,
called pingOffset, is calculated as a function of both the
beacon time and the end-device devAddr address and added
to the start of the first ping for each beacon period.

A. LoRaWAN Class B Multicast

All the nodes in a multicast group should be able to listen
and decode the multicast transmissions for that group. This is
realized by configuring the nodes in a multicast group with
the same SF2, channel, bandwidth, and ping-slot periodicity.
In addition, the nodes should have a common multicast device
address (McAddr) [3]) and security keys [3].

Compared to Class B unicast, Class B multicast has some
restrictions. To avoid collisions, the specification [1] restricts
the use of MAC commands and acknowledgments that require
all the receiving nodes in a multicast group to respond at the
same time. Further, [1] does not offer support for multicast
groups creation and securely distributing keys and addresses.

1This is not stated in [1], but extracted from the LoRaMac firmware [2].
2Spreading Factor is a LoRa parameter. The higher SF, the longer a trans-

mission takes, but the more resilient the signal is to noise and interference.

In Class B, in addition to the two receive windows opened
after an uplink (as with Class A), the end-device opens
periodic reception windows called ping-slots [1]. These ping-
slots allow the network server to send downlinks called pings
to the end-device without having to wait for an uplink. Such
a communication requires time synchronization between the

Part of this work has been supported by SURFnet.

Annex to ISBN 978-3-903176-28-7 ©2020 IFIP

609

Input: Received packet in ping-slot i
if Packet hop-count < hop-count limit then

Configure ping-slot i+ 1 for transmission;
Randomly select transmission power Tx in range [0, 14]
dB based on no. of end-devices N as
Tx = 14

a random integer from [1,bN
2]c dB;

Transmit packet in ping-slot i+ 1;
end if

Fig. 1: Ping-slot relaying algorithm.

This is deferred to the application layer, for which two
specifications were released: [3] and [4].

III. MULTICAST MEMBER SCALABILITY

In a LoRaWAN multicast session, after the transmission of
all data fragments, the network server sends an application-
layer command to the member end-devices asking them to
report their reception status within a BlockAckDelay time
[4]. The end-devices, with a too low Packet Reception Ratio
(PRR), randomly select a time between 0 and BlockAckDelay
time to send their response (asking for a retransmission). The
more responses, the more potential collisions at the gateway,
which affects the multicast capacity (i.e., the number of end-
devices that can be accommodated in a multicast group).

That multicast capacity can be improved in two ways:
by relaxing the PRR requirement and/or by improving the
PRR distribution. The first is accomplished by using coding
techniques, such as the one provided in [4]. The second can
be accomplished by using any technique that improves the
reception of multicast packets for all member end-devices. We
propose one such technique, called Ping-slot relaying.

A. Ping-slot relaying
The main idea behind ping-slot relaying is to use the end-

devices themselves, instead of the duty-cycle limited gateways,
in the re-transmission of multicast packets.

Fig. 1 presents our ping-slot relaying algorithm. The number
of member end-devices (N) is provided via the application
layer to those end-devices during the creation of their multicast
group. A hop-count is set in the payload of the packet to
limit the number of ping-slots that could be used for ping-
slot relaying after a multicast packet is received. Else, if
left unlimited, it might interfere with subsequent ping-slot
transmissions from the gateway. Furthermore, the transmission
power is selected randomly based on the number of multicast
members to allow (with higher probability) the capture effect3
[5] to take place. This also allows higher energy savings as
the number of members can increase.

IV. MULTICAST GROUP SCALABILITY

This section presents a discussion and simulative analysis
of beacon blocking in LoRaWAN Class B multicast as the

3The capture effect is usually seen in frequency modulated signals, where
the strongest signal can still be demodulated successfully from colliding
packets.

number of groups increases. Because beacon blocking – as
explained in Sec. IV-A – happens independently for each
gateway that transmits both Class B downlinks (unicast and/or
multicast) and beacons, we take the perspective of a single
gateway. Beacon planning over multiple gateways is discussed
in Sec. V.

A. Beacon Blocking

Beacons, as well as the downlinks on ping-slots (pings),
are by default sent on the 869.525 MHz channel falling in
the G3 sub-band having a 10% duty-cycle restriction. Thus,
the gateways enter an “off-period” for 9⇥(Time-on-air4) after
every beacon or ping transmission. Hence, ping transmissions
have the capacity to block a scheduled beacon transmission
by pushing the gateway into the off-period.

One of the contributions of this work has been the devel-
opment of an ns-3 module to enable a detailed analysis of
LoRaWAN Class B [6]. For each combination of periodicity,
number of multicast groups, data-rate and packet size we
simulated for 2 hours during which we transmitted the maxi-
mum number of Class B multicast downlink packets possible
(which differs per setting). This resulted in a heatmap, see
Fig. 2, for the number of beacons blocked out of 56 beacons
generated, where the maximum packet size was used for all
the data-rates (DR0 to DR5, where low data-rates have lower
throughput compared to high data-rates) for Class B ping
downlink transmissions. The heatmap shows that there is no
clear relationship between the number of multicast groups and
beacon blocking. This is because beacon blocking happens if
two conditions are fulfilled: (1) if the combination of ping-
slot periodicity, ping offset, packet size, and data-rate results
in ping-slots whose transmission will follow an off-period that
includes the beacon reserved time, and (2) if the gateway did
not have a previous transmission that blocked it from using
these ping-slots.

It is interesting to note that the second condition is also
affected by the combination of ping-slot periodicity, ping
offset, packet size, and data-rate. Thus, at the outlook, a
random beacon blocking behaviour is expected, which is
indeed what our simulations show.

Fortunately, beacon-blocking behavior is not completely
random and several observations can be made from Fig. 2:

1) Even low ping-slot periodicity gives rise to systematic
beacon blocking. This ranges to 90% beacon blocking
for DR0, DR1, DR2, DR3 and DR4. Even for DR5, the
fastest data-rate, more than 50% of the beacons could
be blocked.

2) As the number of groups increases, there is a high
probability of having at least one group that opens a
ping-slot on each slot throughout the beacon-window.
This starts a pattern in the network server where it starts
sending out ping downlinks always as soon as the off-
period ends. This continues regardless of the number of

4Time-on-air or airtime of a transmission is the time needed for transmitting
a packet from node to gateway, or vice versa.

610

0 1 2 3 4 5 6 7
Ping-slot periodicity

1
2
4
8

16
32
64

128
256
512

1024Nu
m

be
r o

f m
ul

tic
as

t g
ro

up
s

DR = 0 PacketSize=51

6
0
0
0
0
0
0
0

15
0
0
0
0
0
0

32
37

29
2
0
0
0
0
0

40

13
0
0
0
0
0

6
27
39

25
0
0
0
0

37
28
29
37

16
0
0
0

19
19
27
31
27

19
0
0

13
14
17
32
35

39

15
2

55
55
42

55
55
55
43

52
51

43

43
50
53

41
51
48

43
48
51

42
50
52

42

49
48

0

10

20

30

40

50

0 1 2 3 4 5 6 7
Ping-slot periodicity

1
2
4
8

16
32
64

128
256
512

1024Nu
m

be
r o

f m
ul

tic
as

t g
ro

up
s

DR = 1 PacketSize=51

35
9

40 34 34
15
40

1
12
38

19
5

38

23
14
15
28
32

10
4

39

12
13
25
23
35
34

2
8

38

8
9

20
20
22
30
39

2
10
39

7
5

11
12
18
31
36
35

4
10

55
55

55
55
55
55
55
55

55
55
55
41

42
55
55
55
55
55

53
55
55
53

55
55
55
55

52
51

55
55
55

48

55
55

45

55

42
51

10

20

30

40

50

0 1 2 3 4 5 6 7
Ping-slot periodicity

1
2
4
8

16
32
64

128
256
512

1024Nu
m

be
r o

f m
ul

tic
as

t g
ro

up
s

DR = 2 PacketSize=51
0

28
0

10
18

22
12
7

20
25
25

9
8

13
17
22
19
5

3
4
9

15
19
25
26
12

3
2
6

14
14
25
23
23
8

3
1
6
8

11
27
22
23
30
8

55
55
55
54
55
55
55
55
55
55
55

48
52
55
55
55
55
55
55
55

42
42
53
55
55
55
55
55

53
55
55
55
55

47
55
55
55

50
55
55

48
55 49

0

10

20

30

40

50

0 1 2 3 4 5 6 7
Ping-slot periodicity

1
2
4
8

16
32
64

128
256
512

1024Nu
m

be
r o

f m
ul

tic
as

t g
ro

up
s

DR = 3 PacketSize=115

15
38

8
0
0
0
0
0
0

0

39
19
39
1
0
0
0
0
0

0
16
28

28
35
1
0
0
0
0

19
8

13
26
20
14
30
1
0
0
0

8
6

12
18
19
8

17

0
0
0

3
2
7

10
18
17
13
21
38
0
0

3
1
6

14
15
20
31
30
26
40
0

3
0
6
8

11
23
18
24
36
24

55

45

48

41

42

47
0

10

20

30

40

50

0 1 2 3 4 5 6 7
Ping-slot periodicity

1
2
4
8

16
32
64

128
256
512

1024Nu
m

be
r o

f m
ul

tic
as

t g
ro

up
s

DR = 4 PacketSize=222

8

0
6

30

0

19

2
0

30

0
16
31
29
37
0
2

28

18
7

13
26
15
21
2
3

29

7
6

11
18
18
11
25
0
3

32

2
2
7

10
18
16
11
35
3
5

28

2
1
6

13
13
19
31
24
40
2
2

2
0
6
8

10
21
18
24
24
36
1

55

41

44
50
51
51
51

51

50

43
50
51
51

45
50
51

44
50 44

0

10

20

30

40

50

0 1 2 3 4 5 6 7
Ping-slot periodicity

1
2
4
8

16
32
64

128
256
512

1024Nu
m

be
r o

f m
ul

tic
as

t g
ro

up
s

DR = 5 PacketSize=222
0

12
4
2
0
6
0
0
0
0
0

0
4
8
7
2
4

3
0
0
0

4
1
4

10
6
7
0

24
0
0
0

1
1
5
3
9
6
8
1

30
0
0

1
0
1
1
6
5
3
7
0

0

0
0
1
1
4
5
7
1
8
1

28

0
0
1
1
2
4
7
2
6
6
0

0
0
1
1
2
4
6
6
5
5
7

43

37

0

5

10

15

20

25

30

35

40

0 1 2 3 4 5 6 7
Ping-slot periodicity

1
2
4
8

16
32
64

128
256
512

1024Nu
m

be
r o

f m
ul

tic
as

t g
ro

up
s

DR = 0 PacketSize=27
0

26
39
35
28
28
28
28
28
28
28

0
12
30

28
28
28
28
28
28

4
3

18
30
36

28
28
28
28
28

31
17
11
8

32
39

28
28
28
28

37
21
10
24
27
38

28
28
28

25
17
23
30
33
19
34

28
28

16
14
30
28
21

33
38

28

12
9

16
19
27
34
39
32
30

40
49

46
48

41

47 50
45

45

45
41 54

49
0

10

20

30

40

50

0 1 2 3 4 5 6 7
Ping-slot periodicity

1
2
4
8

16
32
64

128
256
512

1024Nu
m

be
r o

f m
ul

tic
as

t g
ro

up
s

DR = 2 PacketSize=27
0
0
0
1
2
0
0
0
0
0
0

20
4
0
8
2
0
0
0
0
0

0
28
12
8
1

14
32
1
0
0
0

9
5

10
6

16
5
1

2
0
0

4
6
4

12
10
18
11
9

4
0

1
1
6
8

13
11
17
26
7

0

1
0
5

10
7

14
16
16
25
5

1
0
4
5
7

12
15
13
14
27
5

42

50
54

51
54

0

10

20

30

40

50

Fig. 2: Heatmaps for the number of blocked beacons out of 56 beacons generated.

groups added further, hence saturation. Because lower
ping-slot periodicities have more ping-slots per beacon
period, saturation for them begins with fewer groups
compared to higher ping-slot periodicities. The yellow
triangle in Fig. 2 illustrates the above.

3) DR0 has the highest airtime, but the lowest beacon
blocking at saturation. This is because DR0, due to
longer airtime, prevents the use of beacon blocking
ping-slots. This behaviour changes if the packet size is
decreased.
When the packet size is reduced to 27 bytes, DR0 has
increased beacon blocking at saturation, while DR2 has
decreased beacon blocking at saturation. Therefore, the
saturation value of beacon blocking depends not only
on the data-rate and the ping-slot periodicity, but also
on the length of the packets.

4) For higher ping-slot periodicities, the number of beacons
blocked increases with the number of groups (irrespec-
tive of their sizes), before saturation is reached. This
pattern is highlighted in red in Fig. 2.

Hence, a more sophisticated beacon guard mechanism, other
than the beacon guard from the specification, is needed. In Sec.

IV-B, we propose our solution to prevent beacon blocking.

B. Prevention of Beacon Blocking

First, we propose an intuitive approach to prevent beacon
blocking and then refine it to address it drawbacks.

1) Limiting the maximum payload size for each data-rate:
The beacon guard is fixed to 3 seconds and the maximum
payload size given in the specification [7] is capped. The
maximum packet size that will not lead to beacon blocking
satisfies:

Tp + 9Tp 6 BG (1)

where Tp stands for the airtime of packet p, 9Tp is the
resulting off-period, and BG stands for the beacon guard
duration. This can be solved using Eq. 2, where BW stands
for bandwidth. Eq. 2 can then be solved for maximum PL

(payload length) that would not cause beacon blocking. The
LoRaWAN application payload can then be calculated by
subtracting the LoRaWAN header (13 bytes) from the PL [1].

max

5

&
8PL� 4SF + 44

4SF

'
, 0

!
6 BG ⇥BW

10⇥ 2SF
� 20.5 (2)

611

Unfortunately, the equation reveals that, for DR0 and DR1,
it is impossible to get the combined airtime and off-period
below the beacon guard time (of 3 seconds). Hence, this
technique needs to be refined for low data-rates as follows.

2) Limiting the maximum payload size for each ping-slot
and ping-offset: By also considering the ping-offset in which
a packet will be transmitted, we allow any transmission at
any slot to be transmitted as long as it will not lead to beacon
blocking. To accommodate this modification, Eq. 1 is extended
to calculate the maximum packet size based on the location
(ping-slot index and pingOffset combination) of the ping-slot
on top of the beacon guard (BG):

Tp+9Tp 6 BG+0.03 (PP (PN � 1� PI) + (PP � 1� PO))
(3)

where PP is the pingPeriod, PN is pingNb, PI is the ping-slot
index, BW is bandwidth, PO is the pingOffset, and the 0.03
is the slotLen in seconds. Hence, Eq. 2 will also be modified
as follows:

max

5

&
8PL� 4SF + 44

4SF

'
, 0

!
6

BW (BG + 0.03 (PP (PN � PI)� (PO + 1)))

10⇥ 2SF

� 20.5

(4)

The network server solves Eq. 4 before every Class B ping
transmission, to make sure that the transmission will not lead
to beacon blocking. If such a transmission would lead to
beacon blocking, the network server postpones it to a ping-slot
after beacon transmission.

Effectively, we have created a packet scheduler that makes
sure that no beacon is blocked and all packets that do
not result in beacon blocking are transmitted. The apparent
disadvantage of this algorithm is that the network server has
to solve Eq. 4 before every transmission. Fortunately, the
values can be pre-computed and stored in a lookup table,
so that the network server can simply resolve the ping-slot
periodicity, ping-offset and data-rate into the maximum packet
size allowed in a particular slot.

V. BEACON PLANNING FOR CAPACITY EXPANSION

In Sec. IV-A, we have discussed how the duty-cycle restric-
tion on gateways can result in beacon blocking. Following the
same argument, beacon transmissions may result in delayed
ping transmissions by pushing the gateway in the off-period,
which results in increased downlink data transmission latency.
As the network scales in terms of multicast groups or unicast
end-devices, an increase in the number of pings from the
network server is expected, demanding more airtime of the
gateway. This means, to minimize the transmission latency of
the increased number of pings, beacon transmissions need to
be controlled more efficiently.

Note that not all gateways are required to participate in
a beacon broadcast round and their participation to a given
round can be randomized, as mentioned in [1]. Hence, the
gateways transmit in a given beacon round only with a certain

probability. This overcomes the problem of systematic beacon
collisions. But the random nature of the algorithm may still
result in sub-optimal beacon planning, where there are occa-
sional collisions and no beacon signals reaching an end-device.
Hence, there is a need for a more intelligent solution for
beaconing to guarantee beacon reception and enable capacity
expansion. We propose, in Sec. V-A, the Dynamic Region
Formation (DRF) algorithm to realize those objectives.

A. Dynamic Region Formation(DRF) Algorithm
The fundamental idea behind DRF is the classification or

clustering of end-devices into groups. Each group is formed
around a single unique gateway. Only the gateways around
which a group is formed are activated for beacon transmission,
while others do not participate. The process of group formation
is dynamic to ensure that all end-devices are covered for
beacon reception. For that purpose, DRF utilizes the same
information as collected for the Adaptive Data Rate (ADR)
scheme. ADR is used by the network to optimize the data-
rates of each end-device according to the changing network
conditions to minimize the airtime and energy consumption
[1]. The ADR algorithm itself is not part of the specification
and can be modified at will, but Semtech has provided an
example ADR algorithm, where the network uses 20 most
recent uplinks to measure the signal-to-noise ratio (SNR) and
number of gateways that received each uplink. The network
then uses the SNR of the best gateway to optimize the data-
rate and transmit power of the end-device [8].

In DRF, the (average) SNR information is used to associate
an end-device to its best gateways: the SNR should exceed
a certain threshold. In the absence of (recent) uplinks, the
gateway(s) might solicit uplinks. Multiple end-devices asso-
ciated to a gateway together form a group. This step, when
executed for all end-devices, results in group formation around
most gateways and also indicates the coverage overlap that
exists. Hence, the next step is to find the smallest possible
subset among the gateways that collectively still cover all
the end-devices. Essentially, we need to solve a minimum
set cover problem, which unfortunately is NP-hard [9], where
the gateway groups form the sets and the end-devices form
the elements that can be in (multiple of) those sets. We
need to select the minimum amount of sets that cover all
end-devices. There is a simple, but effective, polynomial-
time greedy algorithm for the minimum set cover problem
[9] that at each iteration chooses the set that contains the
largest number of uncovered elements. Its approximation ratio
is H(g) =

P
g

k=1
1
k

, which is the g-th harmonic number, where
g is the number of gateways. We have adopted this greedy
approach.

The final step of DRF is to set a random probability:
Pbeacon for the activated gateways to eliminate systematic

collision scenarios.
The above computations (1: associate end-devices to gate-

ways based on a minimum SNR threshold, 2: run a greedy
algorithm, and 3: set a random beacon probability) are done
periodically at the network server. By using the SNR infor-

612

mation, DRF takes into account any changes in the network
such as gateway down scenarios, or new obstacles blocking
end-devices to update the beacon transmitting gateway set.

To test DRF, we did not need the detail of our ns-3
simulator and speed was more important, which is why we
developed a high-level SimPy-based simulator [10]. Fig. 3
shows a comparative performance study of our Dynamic
Region Formation algorithm (DRF), Randomization with all
gateways transmitting beacons 50% (Pbeacon = 0.5) and
10% (Pbeacon = 0.1) of the times, and No Planning (All).

The simulations were run in different experiments for 20,
50 and 100 stationary end-devices, uniformly distributed in
a region with 60 gateways for 235 beacon broadcast rounds.
The numbers are averaged over the number of end-devices
to illustrate average performance per end-device. For the
simulations, we assumed that each gateway had a coverage
ranging 7.5 km in all directions.

Fig. 3: Comparison of DRF, Randomization with p = 0.5,
p = 0.1, and No beacon planning (all gateways).

It can be inferred from Fig. 3 that our DRF algorithm
reduces both the number of beacon collisions and the number
of “no beacons,” hence maximizing the number of received
beacons per end-device. Moreover, with DRF, about 85% and
68.86% fewer beacons were transmitted as compared to no
beacon planning and randomization (Pbeacon = 0.5), respec-
tively. Thus, with DRF, a proportional amount of downlink
energy and airtime is saved.

Subsequently, to analyse how DRF performs in terms of
the number of delayed pings, as the number of downlink pings
increases, the number of ping-slots used by the network server
was increased from 10% to 50%. Note that the increase in
pings also reflects network scaling.

Fig. 4 illustrates that the percentage of delayed pings in-
creases as the network scales (percentage of ping-slots utilized
increases). DRF performs the best with minimal increase in the
delayed pings.

Hence, DRF allows scaling the number of multicast groups,
with the least effect on the downlink latency. The scalability is

Fig. 4: Comparison of DRF, Randomization with p = 0.5
and No beacon planning (all gateways) for the increase in the
number of delayed pings as the network scales.

enabled by giving less airtime of gateways to beacons, hence
allowing more pings to be accommodated.

VI. CONCLUSION

In this paper, we have presented a performance evaluation
of LoRaWAN Class B multicast. We have proposed a ping-
slot relaying technique. Furthermore, we have evaluated the
gateway beacon blocking phenomenon and proposed a packet
scheduler to allow more Class B downlink transmissions
without blocking beacons.

Finally, to increase the reliability of beacon reception at
the end-devices, we have proposed a novel DRF algorithm
for beacon planning over multiple gateways. Our simulations
confirmed that this approach yields benefits for both the end-
devices and the network operator by increasing the number of
beacons received by 66.52% per end-device on average with
85% less beacon transmissions as compared to no beacon
planning.

REFERENCES

[1] LoRa Alliance, LoRaWAN 1.1 Specification, 2017.
[2] M. Luis, G. Cristian, D. Jaeckle, and J. Bruder, “Lora-net/loramac-node,”

https://github.com/Lora-net/LoRaMac-node, 2019.
[3] LoRa Alliance, LoRaWAN Remote Multicast Setup Specification, 2018.
[4] N. Sornin, A. Yegin, J. Catalano, J.-P. Coupigny, and J. Stokking,

LoRaWAN Fragmented Data Block Transport Specification v1.0.0, 2017.
[5] A. Rahmadhani and F. Kuipers, “When lorawan frames collide,” in Proc.

of WiNTECH’18, 2018.
[6] Y. Shiferaw, “LoRaWAN Class B ns-3 simulator,”

https://github.com/yoniwt/lorawan-private, 2020.
[7] LoRa Alliance, LoRaWAN 1.1 Regional Parameters, 2017.
[8] The Things Network, “About ADR.” [Online]. Available:

https://www.thethingsnetwork.org/docs/lorawan/adaptive-data-rate.html
[9] V. Chvatal, “A greedy heuristic for the set-covering problem,” Mathe-

matics of Operations Research, vol. 4, no. 3, pp. 233–235, 1979.
[10] A. Arora, “LoRaWAN Class B SimPy simulator,”

https://github.com/Apoorva-ar/LoRaWAN DRF, 2020.

613

