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Abstract—Network traffic identification plays an important
role in traffic engineering, anomaly detection and traffic billing.
Recently, the machine learning and deep learning based algo-
rithms have made a great success in identifying the known
applications, where the training set and the test set are supposed
to contain the same traffic classes. However, in a realistic scenario,
the network traffic classifier may suffer from a low identification
accuracy due to the substantial zero-day (unknown) traffic.
The essential to solve this problem is to find the boundary
between the known and zero-day traffic, which has not been
well studied before. In this paper, based on the fact that for
an Auto Encoder (AE) machine, the reconstruction error of a
zero-day class is generally larger than that of a known class,
we propose a zero-day traffic identification method using one-
Dimension Convolutional Neural Networks (1D-CNN) and AE
machine. In order to further improve the identification accuracy,
we propose an algorithm to estimate the confidence possibility of
the identification results based on the Extreme Value Theory. The
experiments conducted on realistic traffic datasets demonstrate
that our method has a great improvement in identification
accuracy than the benchmarks.

I. INTRODUCTION

As an essential part of network management, traffic iden-
tification plays an important role in: 1) traffic engineering:
optimize the bandwidth allocation and routing strategy among
applications for differentiated quality of service requirements;
2) anomaly detection: prevent malware and avoid network
intrusion; 3) traffic billing: charge separately by the class of
applications. Recently, motivated by the advents in machine
learning (ML) and deep learning (DL), lots of works have
been done to classify the network traffic using a well trained
model. These methods have been proved to be effective when
the training set and the test set contain the same traffic classes.
However, in a realistic scenario, it’s intractable for a pre-
trained traffic classifier to deal with unknown traffic, and thus
may suffer from a low identification accuracy. The underlying
problem is that the realistic network traffic may contain
substantial zero-day traffic classes, which are unknown for the
training model. This problem is made even worse, especially
when new classes of applications keep popping up. According
to the report from China Internet Network Information Center
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(CNNIC) [1], the number of network applications in China
is up to 4.49 million by December 2018, which has a 10.3%
increase compared to 2017.

Recent advents in traffic identification focus on ML or DL
[2]. ML based methods leverage the statistical features of
network flows, such as time series, protocol types and dynam-
ics of packet size. Jonas et al. [3] adopted an unsupervised
traffic flow classification using time interval based features.
Furat et al. [4] classified encrypted traffic using different ML
algorithms including Support Vector Machine (SVM), Naive
Bayesian, C4.5 and Multilayer Perceptron (MLP). However,
the accuracy of ML based methods is affected by the features
which are empirically selected. To address this problem, the
DL based methods can extract latent features from raw data
packets using a neural network [5]. Zhou et al. [6] applied an
improved CNN suitable for indefinite length dataset to traffic
identification. Lotfollahi et al. [7] used Stacked Auto Encoder
machine (SAE) and CNN to classify network traffic. Wang et
al. [8] utilized a 1D-CNN model to identify encrypted traffic.
Although these methods achieve a high accuracy, most of them
are applied to a closed test scenario. As a result, the zero-day
traffic is misclassified as known categories.

The key to identify zero-day traffic is to find the boundary
between zero-day and known classes. Este et al. [9] modified a
one-class SVM to identify zero-day traffic, which established
different boundaries for every known class in the training set.
If a test flow was not within any boundary of known classes, it
would be identified as a zero-day class. However, this method
was very complex and had to establish boundaries between
each known class with substantial labeled samples. In [10],
in order to label the unknown traffics in the training set, the
features of the traffic were clustered. Then, with the labeled
data, a supervised identification model was well trained for
testing. However, the traffic class used for training should be
the same as that for testing. Without any prior knowledge,
it is intractable to identify the zero-day traffic for an open-
set scenario, where the zero-day traffic do not appear in the
training set, which has not been well studied yet.

To address this problem, in this paper, we propose a novel
zero-day traffic identification (ZTI) method using 1D-CNN
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and AE machine. The convolutional layer of 1D-CNN is
employed to extract the discriminative latent features for
different traffic classes. Due to the fact that for an AE machine,
reconstruction errors of zero-day classes are generally larger
than those of known classes. Then, an AE machine is used
to reconstruct these latent features. To further improve the
identification accuracy, we propose an algorithm to estimate
the confidence possibility of the identification results based on
the Extreme Value Theory. The experiments conducted on re-
alistic traffic datasets demonstrate that our method has a great
improvement in identification accuracy than the benchmarks.

II. ZERO-DAY TRAFFIC IDENTIFICATION USING
ONE-DIMENSION CONVOLUTIONAL NEURAL NETWORKS

AND AUTO ENCODER MACHINE

For the classifier in a realistic network traffic identification
scenario, suppose that the training set SR contains K known
traffic classes {c1,c2,· · · ,cK}, the test set ST also contains
several zero-day traffic classes other than K known classes.
Given a flow in the test set, our purpose is to identify if it
belongs to a zero-day class. If not, we want to identify which
known class it belongs to.
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Fig. 1. Framework of the zero-day traffic identification

We propose a ZTI method using 1D-CNN and AE machine.
As shown in Fig. 1, it contains five models, which are the
feature extractor, the known class classifier, the reconstruction
model, the EVT model and the decision model. The feature
extractor and the known class classifier are composed of
the convolutional layer and the fully connected layer of a
1D-CNN, the reconstruction model is composed of an AE
machine. We use the first n bytes of each flow data packets as
input. The feature extractor extracts more discriminative latent
features from raw flow data for an accurate identification. The
known class classifier utilizes the latent features to predict
which known class it belongs to. And the reconstruction model
produces reconstructed features using latent features. Due to
the fact that the reconstruction errors of the zero-day classes

are larger than those of known classes, the EVT model obtains
the confidence possibility reflecting the likelihood of the input
belonging to a zero-day class. Finally, the decision model will
output the final prediction class. In the following parts, we
will explain each model and how to obtain its parameters.

A. Feature extractor and known class classifier

An accurate identification for known classes is an impor-
tant basis for ZTI. 1D-CNNs perform very well in feature
extraction for network traffic identification [7], since 1D-
CNNs can capture latent features between adjacent bytes in
raw flow packets through training, which aims to find more
discriminative patterns for different traffic classes, and finally
achieves an accurate identification. Therefore, we utilize the
convolutional layer and the fully connected layer of a 1D-CNN
as the feature extractor and the known class classifier.

Then we introduce how to learn the parameters of
the feature extractor and the known class classifier. The
training set SR can be denoted as pairs (x,y) =
{(x1, y1), (x2, y2), · · · , (xN , yN )}, where xi denotes the ith

raw input data and yi ∈ {1, 2, · · · ,K} is its label. The feature
extractor maps the input xi to the corresponding latent feature
zi, which is used to produce the normalized output vector
P̂ (y|xi) = (P̂ (1|xi), P̂ (2|xi), · · · , P̂ (K|xi)) by the known
class classifier. Where P̂ (j|xi) reflects the possibility of xi

belonging to known class j. So the feature extractor and
the known class classifier can be described as the function
F : x → z and C:z → P̂ (y|x). And we denote the parameters
of F and C as θF and θC . Obviously, P̂ (y|xi) can be obtained
from C(F(xi)), the accuracy of the known classifier is also
affected by the feature extractor. We jointly train parameters
θF and θC with the cross-entropy loss function LC , which can
be defined as follows:

LC = − 1

M

M∑
i=1

K∑
j=1

Iyi(j) log
[
P̂ (y = j|xi)

]
(1)

where M denotes the batch size and Iyi is the one-hot label
vector of yi.

B. Reconstruction model

As mentioned before, the key for ZTI is to find the boundary
between the known and zero-day traffic. However, we don’t
have access to zero-day classes in the training set. Hence, the
boundary must rely on the known classes. AE machine as an
unsupervised deep learning method is used to reconstruct its
input so that the network learns the latent pattern of the input.
Since zero-day classes don’t appear in the training procedure,
the AE machine has poor performance in reconstructing zero-
day classes compared to the known classes. Reconstruction
errors of zero-day classes are generally larger than those
of known classes, which can be a good boundary between
zero-day and known classes. Thus, we utilize AE machine
composed of a fully connected network as the reconstruction
model.

After training the feature extractor, we can get a correspond-
ing latent feature zi for each raw flow xi with learned F . The
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reconstruction model produces the reconstructed features z̃i
based on the latent features zi. Then we train the reconstruc-
tion model R with the L2-norm loss function LR, which is
defined as follows:

LR =
1

M

M∑
i=1

∥zi − z̃i∥22 (2)

C. EVT model

Although reconstruction errors of known classes are larger
than those of zero-day classes, we only have a knowledge of
reconstruction errors of known class samples. So the decision
threshold between zero-day classes and known classes must
rely on the known class samples with large reconstruction
errors.

EVT [11] is a statistical theory that deals with situations
far away from the median of the probability distribution, and
is often used to analyze situations that rarely occur. EVT has
been successfully applied to the field of open-set recognition
[12], which mainly investigates how to identify the images
that don’t belong to any class of the training set. Inspired by
these studies, we apply EVT to identify zero-day traffic. We
calculate the reconstruction errors for all training samples with
trained reconstruction model using the following equation.

ei = ∥zi − ẑi∥22 , i = 1, 2, · · · ,N (3)

Then we sort all reconstruction errors in an ascending order,
we utilize EVT to model the last η (η << N ) reconstruction
errors, where η is a hyper parameter. Weibull distribution
is a statistical distribution that follows EVT, its cumulative
distribution function is defined as follows:

PEV T (x) = 1− e−(
x−τ
σ )

m

(4)

where τ (τ < x) is the location parameter, m (m > 0) and
σ (σ > 0) are the shape parameter and the scale parameter.
After modeling with a maximum likelihood method, we get
our EVT model’s Weibull distribution parameters (m, τ, σ).
Then for a given reconstruction error e, The value of PEV T (e)
reflects the confidence possibility that the corresponding raw
flow belongs to a zero-day class. And as you can see from Eq.
(4), the larger value of the reconstruction error e is, the larger
value of PEV T (e) is.

D. Decision model

In this part, we will explain how our method classifies a test
flow. As is seen from Fig. 1, the feature extractor maps the
test flow x to the latent feature z. On the one hand, the known
class classifier uses this latent feature z as input to produce the
normalized output vector P̂ (y|x), where y ∈ {1, 2, · · · ,K}.
Then we obtain the known class which the test flow may
belong to as follows:

y∗ = argmax
j

P̂ (y = j|x), j = 1, 2, · · · ,K (5)

Py∗ = P̂ (y = y∗|x) (6)

where y∗ is the predicted known class, and Py∗ reflects the
confidence for this prediction. On the other hand, the recon-
struction model produces the reconstructed feature z̃ based on
the latent feature z. The EVT model uses the reconstruction
error e to obtain PEV T (e). According to PEV T (e) and Py∗ ,
then we obtain the final possibility Pz as Eq. (7), which reflects
the likelihood of the test flow belonging to a zero-day class.

Pz = (1− Py∗) + αPEV T (e) (7)

where α is a hyper parameter and its value can be designed
from experiments. Finally, according to Py∗ and Pz , we have
the identified traffic class as:

ŷ =

{
y∗, if Py∗ > Pz

0 (Zero-day), otherwise, (8)

where ŷ = 0 denotes a zero-day class.

III. EXPERIMENT

A. Experiment implementation

1) Dataset: We select three public datasets containing raw
flow data. They are ISCX VPN dataset [13], USTC Malware
data and USTC Benign data [14]. The traffic classes of three
datasets are shown as TABLE I.

TABLE I
THE TRAFFIC CLASSES OF DATASETS

USTC Malware USTC Benign ISCX VPN
Htbot Facetime FileGeodo Gmail
Cridex FTP EmailShifu BitTorrent
Neris Outlook ChatZeus MySQL

Miuref Skype P2PTinba SMB
Virut Weibo Streaming

Nsis-ay Warcraft VoIP

Every dataset is divided into known classes, validation
classes and zero-day classes. 85% of known class samples
are used to train our network models (1D-CNN and AE
machine). The remaining 15% of known class samples form
the validation set with validation classes to determine the value
of the hyper parameter η and α, and finally form the test set
with zero-day classes. To obtain enough features of each flow,
we utilize the first 784 bytes of each flow packets as input.
Hence, truncation and zero-padding are required inevitably.

2) Evaluation metrics: To evaluate our proposed method,
we use accuracy (ACC), precision (PR), recall (RC) and f1
score (F1) as evaluation metrics. ACC is defined as the ratio
of the samples classified correctly and all test samples. PR,
RC and F1 are evaluation metrics for a single class.

B. Experiment Results

1) 1D-CNN’s performance in feature extraction for traffic
identification task: Our feature extractor is designed to map
the raw input data to the 1100-dimension (1100D) latent
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Fig. 2. Latent features in 2D space
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Fig. 3. The distribution of reconstruction errors of known and zero-day
classes in USTC Malware dataset

features. we set Htbot, Nsis, Shifu, Tinba, and Zeus as the
known classes, and set Cridex as the zero-day class in the
USTC Malware dataset. As is shown in Fig. 2, we present the
2D latent features for visualization using the t-SNE dimension
reduction method. We can find that latent features of different
classes hardly overlap even in 2D space, which leads to an
accurate identification.

2) Reconstruction errors of known and zero-day classes:
As you can see from Fig. 3, we compute reconstruction
errors of test flows in USTC Malware dataset containing 1240
known samples and 1246 zero-day samples. Then we obtain
the distribution of reconstruction errors of known and zero-
day classes. We can see all reconstruction errors from 0 to
0.06 are generated from known classes, and all reconstruction
errors of zero-day classes are from 0.08 to 0.18. In addition,
reconstruction errors of the known classes from 0.08 to 0.18
account for less than 3% of all test flows. So we can get the
conclusion that reconstruction errors of the zero-day classes
are generally larger than those of the known classes.

3) Identification performance on different dataset: We
compute the average F1 score and the accuracy in three
datasets with three different methods. We set 5 known classes
and 1 zero-day class in each dataset, and zero-day samples
account for 38%, 24% and 37% in three test sets. As you can
see from Fig. 4 and Fig. 5, Since 1D-CNN misclassifies zero-
day samples into known classes, it has a poor identification
performance in ZTI task. Our proposed method (CNNAE)
achieves the average F1 scores of 0.886, 0.922 and 0.830
for USTC Malware, USTC Benign and ISCX VPN datasets,

and they are obviously higher than the average F1 scores of
Oneclass svm [9]. Similarly, the accuracies of Oneclass svm
are all less than 0.8 in three datasets. The accuracies of our
method are 0.921, 0.920 and 0.848.
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4) The effect of the number of zero-day classes: To evaluate
the effect of the number of zero-day classes on our proposed
method’s performance, as is seen from TABLE II, we set
Outlook, Skype, SMB, Weibo and Warcraft as the known
classes in the USTC Benign dataset, and set 1 to 4 other
classes (Bittorrent, Facetime, FTP and Gmail) as zero-day
classes. We only change the number of the zero-day classes
in this experiment. We can find that all the average values
of three evaluation metrics (PC,RC and F1) are over 0.85,
and they are all over 0.90 when the number of zero-day
classes is 1. On the other hand, the F1 scores of zero-day
class generally decrease as the number of zero-day classes
increases. However, it is over 0.80 even there are 4 zero-day
classes. When the number of zero-day classes increases from
1 to 2, the F1 of zero-day classes has a serious decline. The
possible reason is that the reconstruction errors of newly added
zero-day class (Facetime) are relatively small, which make our
proposed method misclassify some zero-day samples into a
known class.

For 1 zero-day class, we make a normalized confusion
matrix to have a further study for our proposed method’s
performance. As is seen from Fig. 6, we can find about 20%
of Skype and SMB samples are misclassified to the zero-day
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TABLE II
THE EFFECT OF THE NUMBER OF ZERO-DAY CLASSES ON CNNAE’S PERFORMANCE

Number of zero-day classes 1 2 3 4
Traffic class PR PC F1 PR PC F1 PR PC F1 PR PC F1

Outlook 0.998 0.917 0.956 0.785 0.891 0.835 0.695 0.908 0.788 0.579 0.905 0.707
Skype 1.00 0.818 0.900 1.000 0.820 0.901 1.000 0.962 0.981 1.000 0.962 0.981
SMB 0.944 0.781 0.855 0.822 0.788 0.805 0.806 0.880 0.842 0.794 0.889 0.839
Weibo 0.930 0.990 0.959 0.888 0.990 0.936 0.853 0.990 0.916 0.800 0.990 0.885

Warcraft 1.000 0.970 0.997 1.000 0.995 0.997 1.000 0.996 0.998 1.000 0.996 0.998
Zero-day 0.784 0.970 0.867 0.816 0.806 0.811 0.923 0.775 0.842 0.935 0.729 0.819
Average 0.943 0.912 0.922 0.885 0.882 0.881 0.879 0.919 0.894 0.851 0.912 0.871
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Fig. 6. Normalized confusion matrix of USTC Benign dataset.

class due to the relatively large reconstruction errors from
Skype and SMB. On the other hand, almost few (less than
3%) zero-day class samples are misclassified to the known
classes. So the zero-day class has a small PR value and a
large PC value in TABLE II for 1 zero-day class. It is worth
mentioning that this result can be seen from Fig. 3, a few
known class samples have large reconstruction errors, but few
zero-day class samples have small reconstruction errors.

IV. CONCLUSION

We proposed a novel zero-day traffic identification method
based on two deep learning algorithms (1D-CNN and AE
machine). We utilized the convolutional layer and the fully
connected layer of 1D-CNN as the feature extractor and
the known classifier. And due to the fact that for an AE
machine, the reconstruction errors of zero-day classes were
generally larger than those of known classes, the zero-day
traffic were identified. We proposed an algorithm to estimate
the confidence possibility of the identification results based
on the Extreme Value Theory. The experiments conducted
on realistic traffic datasets demonstrated that our method
had a great improvement in identification accuracy than the
benchmarks.
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