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Abstract—Website fingerprinting aims to identify the web
page visited by a victim through the analysis of metadata
generated by the encrypted flow between web server and victim.
A fingerprinting attack can be performed at several locations
and scales, ranging from local adversaries such as employers
monitoring their employees browsing behavior to state sponsored
actors monitoring civilians to uncover their political views. In
this paper we show the feasibility of an attacker performing web
page fingerprinting at a large scale by introducing a new two-
stage fingerprinting method. We evaluate our proposed method
using a Wikipedia clone consisting of 828,907 pages, allowing
us to show that attackers are not only able to fingerprint pages
from different websites but are also able to fingerprint similar
pages belonging to the same website. More so, we show that,
even though HTTP2 reduces the available metadata compared
to HTTP, attackers using our method can achieve an accuracy
of 62.21% when fingerprinting pages from our Wikipedia clone.
Finally, we show that an attacker can, when taking browsing
behavior into consideration, identify victims searching for specific
information with an accuracy of 87.4%.

Index Terms—Website fingerprinting, large scale, MinHash,
LSH

I. INTRODUCTION

According to a survey conducted by Censys [1] in March
2019 over 91% of the websites in the Alexa top 1 million pro-
vide the option to encrypt data using TLS. A common assump-
tion is that the widespread adoption of encryption protects
users browsing the Internet against attackers eavesdropping
and gathering information about the exchanged information.
Unfortunately the opposite is quite true: as shown by [2] [3],
attackers can use the metadata generated by the exchanged
traffic, such as timing and packet sizes, to identify the page
requested by the victim.

The feasibility of an attacker uncovering the content of the
exchanged information between user and server is a serious
breach of the victim’s privacy. An attacker can monitor pages
visited by the victim to uncover sensitive information. A
person suffering from a health condition might browse the
Internet for additional information about his or her condition.
An attacker sitting between the victim and server can inter-
cept the traffic and fingerprint which pages were requested,
thereby uncovering the medical condition of the victim. Hence,
employers or medical insurance companies could use website
fingerprinting to monitor their employees / clients to determine

their health. At a different scale, oppressing regimes can
use website fingerprinting to monitor citizens profiling their
political views. Therefore, website fingerprinting can have
severe consequences for web users.

Previous work has investigated the effectiveness of website
fingerprinting, using metadata extracted from the information
exchanged between the victim and web server. Good results
are achieved by using the Jaccard similarity of object sizes
exchanged between parties. More complex methods have also
been employed such a machine learning using packet timings
and data flows to identify the requested pages.

Although several methods have been proposed to improve
the fingerprinting accuracy, little research has been done
to investigate the feasibility of fingerprinting at scale. As
mentioned earlier, some attackers, such regimes monitoring
civilians, might want to deploy web page fingerprinting at
scale. Such attackers would need an efficient fingerprinting
method to process the vast amount of generated data. In this
work we show that fingerprinting can be scaled up by using
an efficient algorithm approximating the Jaccard similarity.

Beside increasing the effectiveness of fingerprinting, most
proposed methods in previous works are evaluated using
web pages from different websites. Although an attacker can
extract information from the identified website, we argue that
identifying individual pages from a website provides more
information. An attacker will gather more knowledge from
identifying which Wikipedia article a victim has visited then
knowing the victim has visited the Wikipedia index page.
Pages from the same website are likely to share common
features such as styling, script files, and objects in general.
The overlap in shared features between pages results in similar
metadata, hence increasing the difficulty of fingerprinting. We
show that, an attacker can still discern which page a victim
has visited from a website containing 828,907 pages.

Previous work has shown that pages served using the HTTP
protocol can be fingerprinted, however no work has been done
investigating the fingerprinting of web pages being served
using the HTTP2 protocol. The HTTP2 protocol introduces
two new features, with the first feature reducing the number
of connections established between the client and server. The
second feature reduces the data transmitted between the client
and server. Both features reduces the amount of metadata
which can be used for fingerprinting. According to research
conducted by Zimmermann et al. [4] 5.38M domains haveISBN 978-3-903176-28-7© 2020 IFIP

199



served their websites using the HTTP2 protocol indicating that
the adoption of the HTTP2 protocol has started. Therefore, in
this paper we show that while HTTP2 reduces the amount of
metadata fingerprinting web pages is still possible.

The contributions of this paper are as follows:
• We demonstrate that web page fingerprinting can be

performed at scale achieving sub linear fingerprinting
time, processing 900,000 page visits in 2.18 hours.

• We show that although HTTP2 reduces the available
metadata fingerprinting is still possible.

• We demonstrate that fingerprinting pages from the same
website is possible with an accuracy of 62.21%.

• We show that an attacker can with 87.4% accuracy,
identify victims visiting 3 consecutive pages.

The remainder of the paper is structured as follows: Sec-
tion II gives an overview of the related work. Section III
describes the data collection process and the generation of
web page fingerprints. Section IV presents our fingerprinting
algorithm. Subsequently, in section V the performance of our
algorithm is analyzed after which in section VI we analyze
the accuracy an attacker can achieve using our fingerprinting
method. Finally, section VII concludes our findings.

II. RELATED WORK

In this section we present the related work and briefly
summarize their key contributions.

Wagner and Schneider [5] were the first to introduce the
concept of encrypted traffic analysis. The authors state that
the length of encrypted HTTP GET requests can be used to
fingerprint web pages. Using the length of the GET request an
attacker can infer the length of the URL of the requested page.
Having the length of the URL the attacker can match pages
with the same URL length hence identify the page requested
by the victim.

Cheng and Avnur [6] continue the analysis of website
fingerprinting and introduce the concept of fingerprinting web
pages using the page and total object sizes exchanged between
the server and client. The authors calculate the HTML page
size using the first data stream sent from the server to the
client. The total object sizes is calculated using the total traffic
sent from the server after the first data stream. The authors
fingerprint web pages by matching (page size, object size)
tuples. Hintz [2] and Sun et al. [3] expand the definition
of object sizes introduced by Cheng and Avnur. Both [2]
and [3] argue that when a user connects to a web page all files
which need to be loaded are sent through separate connections.
Therefore, the authors treat each separate connection as a
data stream representing an object of a web page. Hintz
fingerprints pages by comparing the object sizes and finding
the page with the most matching sizes. Sun et al. calculate
the Jaccard similarity using the object sizes to find matching
pages. By using the Jaccard similarity Sun et al. [3] achieve
a fingerprinting accuracy of 75% when matching pages from
a data set consisting of 2,191 pages.

Liberatore and Levine [7] also use the Jaccard similarity
to match web pages. However, the authors use the sizes and

directions of the IPv4 packets instead of using only the object
sizes. In addition, the authors fingerprint web page which have
been tunneled through an SSH proxy. The authors achieve an
accuracy of 88% when using a data set containing 2,000 web
pages. Lu et al. [8] also fingerprint web pages sent through
a SSH tunnel. Similar to Liberatore and Levine they use the
IPv4 packet sizes and directions but add the order in which
the packets have been sent. The IPv4 packet sizes, directions
and order are represented as a string allowing the authors to
use the Levenshtein distance to find matching pages. Testing
their method on the same data set as Liberatore and Levin,
Lu et al. achieve an accuracy of 81%. Herrmann et al. [9]
also analyze the feasibility of website fingerprinting when the
victim uses an SSH tunnel. In addition, the authors analyze the
influence of using Tor and JonDonym, two privacy enhancing
technologies (PET), on website fingerprinting. Herrmann et
al. use a multinomial naı̈ve bayes classifier to fingerprint
web pages. The authors compare their approach to using the
Jaccard similarity for website fingerprinting and achieve an
accuracy of respectively 86.66% and 91.63% for a data set
consisting of 777 pages loaded through and SSH tunnel.

Panchenko et al. [10] perform website fingerprinting us-
ing machine learning. By using support vector machine
(SVM) classification they increase the fingerprinting accuracy
achieved by [9] on the Tor and JonDonym data sets from
respectively 2.95 to 55% and from 20% to 80%. Cai et al. [11]
also use support vector machine learning but use Damerau-
Levenshtein edit distance as kernel for the SVM achieving
similar accuracy to [10]. Wang and Goldberg [12] improve on
the research performed by Cai et al. by optimizing the string
alignment method. The optimization improves the accuracy
rate to 91% on both the data set provided by Cai et al. and
their own generated data set consisting of 1000 web pages.

Wang et al. [13] continue to study website fingerprinting on
data gathered from browsing to websites using Tor. However,
they increase the data set size to 5,000 pages. The authors
use a fingerprinting technique based on k-Nearest Neighbor
and achieved an accuracy of 85%. Panchenko et al. [14]
also increase their data set size and include 111,884 pages.
The authors use SVM to perform website fingerprinting and
achieve an accuracy of 80%. Hayes et al. [15] achieve similar
performance on a data set of comparable size to the one used
in [14]. The authors achieve an accuracy of 85% by using
random forests as their fingerprinting method.

Previous works have shown that fingerprinting websites
using the sizes of the objects exchanged between the server
and client is possible and that using the Jaccard similarity as a
fingerprinting method can achieve a good accuracy. More so,
previous works show that fingerprinting website is possible
when different encryption mechanisms are used. Furthermore,
recent works have increase the number of pages in the data
sets suggesting that fingerprinting at scale is possible.

In the following we continue the analysis of website fin-
gerprinting by evaluating the performance of an two-stage al-
gorithm combining an approximation of the Jaccard similarity
and the real Jaccard similarity as our fingerprinting method.
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Fig. 1. Key differences between HTTP and HTTP2.

We also show that fingerprinting is possible on a larger data set
than previously used in research. More so, we evaluate website
fingerprinting for pages served using the HTTP2 protocol,
which has not been analyzed by previous research.

III. EXTRACTING FINGERPRINTING FEATURES

In this paper we show the feasibility of an attacker perform-
ing web page fingerprinting on a large set of similar pages
belonging to the same website. More so we show that the in-
novations introduced by the HTTP2 protocol are inadequate to
mitigate web page fingerprinting. Therefore, in this section we
first analyze the HTTP2 protocol highlighting the innovations
which may affect fingerprinting accuracy. Second, we present
the features used for fingerprinting web pages. Following we
present the methodology used for collecting the required data
representing a large number of similar web pages. Finally,
we show that pages belonging to the same website are more
similar than pages belonging to different websites.

A. HTTP2 fingerprinting challenges

According to a survey conducted by Censys [1] 91% of the
web pages in the Alexa top million are served using HTTP2.
Although related work has shown that fingerprinting pages
served using the HTTP protocol is possible, no work has
investigated the feasibility of fingerprinting pages which are
served using HTTP2. The HTTP2 protocol introduces two new
mechanics which influence the data transfer between client
and server. Therefore, we analyze the HTTP2 protocol and
compare it to HTTP, highlighting the key differences and
present their potential impact on fingerprinting.

Figure 1 illustrates the main differences between HTTP and
HTTP2. The top part of the figure shows a client loading a
web page consisting of a page, a styling sheet and an image
using the HTTP protocol. While the bottom part shows the
client loading the same web page using the HTTP2 protocol.

The most notable innovation introduced by HTTP2 is the
use of a single TCP connection (RFC7540) [16] as shown
in figure 1. When loading a page using HTTP, a new TCP
connection is established each time the client demands a new

Page.html

Client Server

Secure Connection setup

Style.css Image.jpg part 1

HTTP2 TLS

Page.html

Image.jpg part 2

Fig. 2. Data exchange between client and server using HTTP2 and TLS.

resource from the server. New connections are established for
exchanging the page.html, style.css and image.jpg files. When
using HTTP2, the client reuses the same TCP connection
to demand new resources from the server. HTTP2 reduces
the number of connection established between the client and
server reducing the metadata which can be extracted from
the communication between client and server. Fingerprinting
web pages is relies on metadata, therefore HTTP2 reduce the
amount of information that can be used for fingerprinting.

In addition to using a single connection RFC7540 [16]
also specifies the use of a new technique named server push.
Server push allows a server to send resources to the client
without the client having to request them. The server push
technique is implemented to enable a server to send data ahead
of time effectively reducing the number of queries sent by the
client, and speeding up the loading time of the web page.
Figure 1 illustrates a server push, after receiving the request
for the page, the server using HTTP2 sends the style sheet
and the image without the client requesting it. In contrast, the
server using HTTP waits for the client to first establish a new
connection and then request the style sheet and image prior to
sending the resources. Again, the HTTP2 protocol reduces the
amount of metadata which can be extracted from the exchange
between client and server. By removing the necessity for a
client to request data, the number of transaction made by the
client is reduced, in this case from three to one request. HTTP2
reduces the amount of exchanged data and thus the amount of
metadata which can be used for fingerprinting.

Previous work studying HTTP has used data flows to
fingerprint websites, however in HTTP2 the data is effectively
tunneled through a single connection removing the possibility
to deduce different flows. More so the introduction of the
server push mechanism reduces the exchanged data and can
potentially alter the order of in which the data is sent as
the server may push resources at any given time effectively
reducing the amount of metadata. These two properties of
HTTP2 should increase the difficulty of website fingerprinting,
however we show in the following that fingerprinting is still
possible.
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B. Fingerprinting features

In the previous section we have shown that HTTP2 reduces
the available metadata which can be used to fingerprint web
pages. Therefore, we have opted to base our fingerprinting
method on the sizes of the objects exchanged between client
and server. The transferred object sizes are not be affected by
the server push, nor by the tunneling performed by HTTP2.

HTTP2 can be used in combination with TLS to encrypt
the traffic. More so common browsers such as Firefox and
Chrome have expressed their intent to only allow the encrypted
use of HTTP2. Therefore, we investigate how the objects are
encrypted using HTTP2 in combination with TLS. Figure 2
shows a client requesting a web page from a server using
HTTP2 and TLS. First a secure TLS connection is established,
after which the client sends a packet containing a TLS record
consisting of the encrypted request for a web page. The server
responds by sending a packet containing a TLS record with the
encrypted page data. Following, the server pushes additional
resources to the client by sending two more packets containing
records for the style sheet and image.

We are interested in the record sizes exchange between
the server and client as they offer a representation of the
exchanged object sizes. Extracting the records sizes can be
achieved by inspecting the record header which contains a
field with the record length (RFC5246) [17]. Even though
extracting the record size is a simple task, some precaution
is required. Figure 2 illustrates the segmentation of records
across different packets, with the record containing the image
being split across two packets. Ignoring record segmentation
can lead to processing the seconds part of the image as a
new record providing a fictive record size. Therefore, prior to
processing the records we reconstruct the IPv4 packet stream
reassembling the segmented records eliminating the potential
of false header information.

Using the record sizes we can infer the sizes of the objects
exchanged between the server and client. However not all
information exchanged between client and server are objects.
During a TLS connection management information is ex-
changed between server and client. These management records
do not represent exchanged objects, and should therefore be
ignored when fingerprinting. Management records, and other
record types not related to the actual objects exchanged, are
filtered out by processing the TLS header and consulting
the type field. All non data type records are removed from
the collected data resulting in record sizes representing the
exchanged objects between client and server. In section IV
we present our algorithm which uses the record sizes sent by
the client and the server separately to fingerprint web pages.

C. Data collection

In order to test the scalability of our proposed fingerprinting
method we require a data set containing a large amount of web
pages. Further, the pages in the data set must originate from
the same website as we show that an attacker is capable of
identifying pages from the same website. Finally, the pages
should be served using HTTP2 as we show that an attacker

can fingerprint pages being served using the aforementioned
protocol.

To ensure we have a large number of pages belonging
to the same website we selected to use Wikipedia as a
base for our data set. Furthermore, we hosted a mirror of
Wikipedia in order to circumvent scraping limits imposed by
the Wikimedia Foundation managing the Wikipedia websites.
Besides circumventing scraping limits, a self hosted solution
offers the ability to select the HTTP2 protocol for serving web
pages.

Textual dumps of different languages of Wikipedia websites
are offered by Wikimedia [18]. While the dumps of the corre-
sponding media files are available on the Internet Archive [19].
Searching for a matching textual dump and media dump
resulted in us using a Spanish version of Wikipedia with the
textual dump and media dump dating from respectively 2011
and 2012. The time difference between both dumps caused
some articles, which we excluded, to have missing media files
resulting in a data set containing 828,907 articles.

With the website selected, we need to generate a data set
enabling us to test the feasibility of website fingerprinting
at scale. An attacker performing website fingerprinting will
record the data transferred between a victim loading a web
page and the server serving that page and store it into a
trace, with a trace being a raw representation of captured
data. Following, the attacker extracts metadata from the trace
and finds the closest match in a database containing traces
of earlier loaded pages. To generate the traces of the victims
visiting the web pages, and to generate a trace database of
the attacker we need to crawl the entire Wikipedia website
generating the traffic for the traces. In order to crawl all the
articles on the Wikipedia clone, we extract a list of pages
using Wikicrush [20] allowing us to visit the articles using
a browser. We automate the browsing process by feeding
the article URLs to Selenium [21] which calls the Chrome
driver [22] in incognito mode. The traces are generated using
the tcpdump [23] capturing the raw data. For each page we
generated three traces, one representing the victims browsing
to the page and two for the database of the attacker. Having
captured 2,486,721 traces representing the 828,907 pages from
our data, we proceed by extracting the record sizes for each
trace representing the objects exchanged between server and
client.

D. Web page similarity

Related work has shown that fingerprinting web pages is
possible, however all work achieved high accuracy using pages
from different websites or only a couple of pages from the
same website. We claim that although pages from the same
website are more similar fingerprinting is still possible.

Pages originating from the same website are more likely to
have similar fingerprints as pages from the same site are likely
to share resources. These shared resource can be logos, style
sheets, scripts and other content. As fingerprinting is based on
the metadata of the exchanged information between client and
server these shared resources will cause web pages sharing
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Fig. 3. The cumulative distribution function of number of record sizes for
the traces in the Wikipedia and Alexa top 100,000 data sets. A distinction is
made between number of records sent by the server and sent by the client.

those resources to have similar fingerprints. For instance a
shared script file will not change in size depending on the
loaded page hence result in the same record size leading to a
similar page fingerprint.

In order to investigate the similarity of pages originating
from the same website compared to those originating from
different websites we need a data set of pages from different
websites. Using the same methodology as for creating the
Wikipedia data set, we created a data set for the Alexa top
100,000. After sanitizing the data set and removing web pages
not loaded using the HTTP2 protocol, the data set contains
55,212 pages with three traces per page.

Having generated both data sets, we now need to establish
comparison metrics to measure the similarity of pages belong-
ing to the same set. Our fingerprinting method relies on the
sizes of the records sent by the server and those sent by the
client. The record sizes provide an indication of the exchanged
object sizes which is used to determine page similarity. If
pages are similar, they will most likely share objects, thus
having the same record sizes in their fingerprints. Analogue
to the diversity in record sizes, the similarity of pages can also
be measured in terms of objects loaded per page. Similar pages
will have the same amount of objects, therefore the number of
records in a page traces is also an indication of similarity. We
will use these two metrics to analyze the similarity between
pages in the two data sets.

Figure 3 shows the cumulative distribution function (CDF)
of the number of records contained in each trace for both the
Alexa and Wikipedia data sets. A distinction is made between
the number of records sent by the client and server as our
proposed algorithm uses both separately to fingerprint web
pages. A steep incline in the CDF curves of both Wikipedia
client and server records shows that the majority of traces
have the same amount of records. On average the client sends
16 records while the server sends 159 records with respective
standard deviations of 5.6 and 24.7. The steep incline in the
CDF curve shows that most of the trace contains a similar
amount of records indicating that pages are similar in terms
of objects. The contrary is true for the pages in the Alexa
data set, where the CDF plot shows that for both the number
of records sent by the server and by the client have more
variation. On average the server sending 451 records and the

Get client records

Get server records Jaccard Fingerprinted
page

Filter candidate
pages using 

MinHash & LSH
Trace to be

 fingerprinted

1 2

3 4

Fig. 4. Proposed fingerprinting method

client sending 121 records with respective standard deviations
of 685.36 and 118.39.

Inspecting the number of records exchanged in both data
sets shows that pages from Wikipedia are more similar than
pages from the Alexa top 100,000 in terms of exchanged
records. The similarity of pages in the Wikipedia data set is
further strengthened by the number of unique record sizes in
both data sets. In the Wikipedia data set we observe 990 and
18,690 distinct record sizes exchange by respectively the client
and server. For the Alexa data set we observe 7,736 and 28,987
distinct record sizes exchanged by respectively the client and
server. The larger number of unique record sizes in the Alexa
data set is an indication that the object sent between client and
server are more varied than in the Wikipedia data set.

Both in terms of number of records and number of unique
record sizes the pages loaded from the Wikipedia website
exhibit less variation than the ones loaded from the Alexa
top 100,000. This lack of variation confirms that pages
loaded from Wikipedia have more similar fingerprints than the
pages in the Alexa data set. Although pages originating from
Wikipedia are more similar in terms of objects sent and the
sizes of sent object, we show in section V that fingerprinting
is still possible.

IV. FINGERPRINTING METHOD

In this section we introduce our fingerprinting method. First,
we analyze the Jaccard similarity, a method used in several
related works achieving 88% accuracy, and show that it does
not scale. Second, we propose a two-stage algorithm using
using MinHash and locality sensitive hashing in combination
with the Jaccard similarity improving scalability. Third, we
analyze the influence of varying the settings required by
MinHash and locality sensitive hashing on the fingerprinting
results and space requirements.

A. Established fingerprinting method

Website fingerprinting is performed by comparing metadata
extracted from a trace and finding the closest matching trace
in a database containing other traces. Related work has shown
that using the Jaccard similarity to fingerprint web pages is
effective, with Sun et al. [3] achieving an accuracy rate of 75%
and later Liberatore and Levine [7] achieving an accuracy rate
of 88%. The Jaccard similarity between two pages is calculated
using the record sizes sent by the client and those sent by
the server. The number of common record sizes between both
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pages is divided by the number of unique record sizes shared
by both pages, resulting in a number between [0, 1] indicating
the similarity between both pages. Although intuitive, using
the Jaccard similarity to identify pages is computationally
expensive. Each time a trace needs to be fingerprinted the
Jaccard similarity needs to be calculated for each trace in the
data set. Hence increasing the number of traces to fingerprint
and the number of traces in the data set results in a quadratic
time increase.

In order to investigate whether the method scales on larger
data sets we implement the Jaccard similarity calculation
for the traces in C++ using the standard library’s library
implementation of the multi set and its intersection and union
methods. Figure 5 shows the computing time in seconds of
running full comparison for the client record of a number
of traces in a data set, meaning all traces in the data set
are compared to each other using the client records in order
to find candidate matches. Computing all Jaccard similarities
between the traces in a data set of 900,000 traces took 7.8
days to complete. This long processing time translates into an
attacker monitoring a million victims at the same time visiting
one page would finish processing the data after one week.

Clearly using the Jaccard similarity for website fingerprint-
ing is not feasible when dealing with large amount of traces.
Therefore, in the following subsection, we propose an alter-
native which allows for large scale web page fingerprinting.

B. Trading off look-up speed with space

In the previous subsection we have shown that using the
Jaccard similarity as proposed in related work is not feasible
for fingerprinting at scale. Therefore, we propose an alternative
eliminating the necessity to compare all traces in the database
to find the closest matching trace, trading in the quadratic time
complexity for space complexity.

Using MinHash [24], an approximation algorithm for the
Jaccard similarity, allows us to use locality sensitive hashing
(LSH) [25] to look up similar traces. LSH is designed to
find similar sets of items in a large data set achieving sub
linear matching times. Therefore, combining MinHash and
LSH should result in a faster web page fingerprinting as not
all traces in the data set need to be compared.

In order to test the scalability of the MinHash and LSH
combination, a fingerprinting algorithm is built using the
datasketch library [26] following the example implementation

for MinHash and LSH. Figure 5 shows the computing time in
seconds of running full comparison for the client records of
a number of traces in a data set. The performance is depicted
by two lines, the dotted line indicates the time taken to build
the lookup database which should be performed only once
by the adversary prior to the attack. The solid line indicates
the lookup time that would be performed in real time during
the attack. Making the LSH database is linear in time, and
takes 1.5 hours to complete for a data set containing 900,000
traces. More important is the lookup time as it dictates how
fast a trace can be fingerprinted. Figure 5 shows that the lookup
times are sub linear, fingerprinting 900,000 traces in a data set
of 900,000 traces only took 18.8 minutes.

Although using MinHash and LSH we achieve sub linear
fingerprinting times using the client records, using MinHash
for fingerprinting web pages using the server records is not
possible. The LSH database for the client records took 20GB
of space while the LSH database for the server records
exceeded 148GB, exhausting the available memory on our
server. The MinHash and LSH algorithm make a trade off
between speed and memory consumption. For each trace,
MinHash requires to store a number of vectors of the length of
the total number of unique record sizes in memory. As shown
in previous section the number of unique server record sizes is
18690 compared to 990 unique client record sizes. Therefore,
the MinHash algorithm is not suitable for fingerprinting traces
using the server records as it grows with the number of unique
record sizes.

We therefore use a two-stage approach to fingerprint traces
as depicted in figure 4. First the candidate pages are filtered
using the MinHash and LSH approach using the client records.
Then the server records of the trace are compared using the
Jaccard similarity with the traces of the candidate pages. The
page or pages with the highest Jaccard similarity is then
selected and proposed as the identified page. Applying our
two-stage approach resulted in fingerprinting a single trace in
0.00872 seconds, and processing the entire 900,000 traces took
2.18 hours.

C. Accuracy vs. space requirements

Using MinHash and LSH algorithms requires setting two
parameters. Namely, the number of permutations used by
MinHash and the Jaccard similarity threshold used by LSH.
In order to measure the influence of the parameters we created
a subset of 30,000 traces and ran our fingerprinting algorithm
with different parameters.

Table I shows the fingerprinting accuracy and space re-
quirements for different permutation and threshold values. The
table shows the sizes of the LSH database, the percentage of
correctly and incorrectly identified pages. The table also shows
the percentage of pages for which no definite match was found,
and the average number of candidate pages.

First, we analyze the effect of changing the number of
permutation used by the MinHash algorithm as it should affect
the space requirement. We select 4 values 64, 128, 256, and
512, and set the minimum Jaccard similarity threshold to 0.8
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TABLE I
RESULTS FOR VARYING THE THRESHOLD VALUE AND NUMBER OF PERMUTATIONS USED IN THE MINHASH AND LSH ALGORITHM.

Threshold 0.8 0.6 0.7 0.8 0.9
Permutations 64 128 256 512 512

LSH database size (MB) 29 59 127 248 259 253 248 245
Correct (%) 29.35 27.93 28.35 30.86 8.10 16.70 30.86 48.67
Inconclusive (%) 70.49 71.90 71.51 68.99 91.82 83.21 68.99 51.10
Candidate pages 26.03 29.62 26.01 28.04 42.21 37.13 28.04 30.05
Incorrect (%) 0.14 0.15 0.13 0.14 0.06 0.07 0.14 0.22

for the LSH algorithm. From the value in table I we can see
a clear linear increase in terms of space required for the LSH
database, while the accuracy of the algorithm remains stable.

Second, we analyze the effect of changing the threshold
value as it should affect the accuracy of the algorithm. We
select 4 threshold values 0.6, 0.7, 0.8, 0.9 and fix the number
of permutation to 512. From the value in table I we can see
a clear increase in the percentage of correctly fingerprinted
pages when the threshold value increases. The overall trend is
that increasing the threshold value results in higher accuracy
for the algorithm. More so, increasing the threshold value also
reduces the number of candidate pages which increases the
speed of our two-stage fingerprinting algorithm.

After analyzing the different parameters values we decided
to use 512 as number of permutation and 0.8 as a threshold
value. We use 512 as number of permutations as in theory it
should perform better when the number of pages in the data
set increases, and the LSH database for all 828,907 pages is
only 20GB and fits into memory. Furthermore, we select 0.8
as threshold value as it reduces the number of candidate pages
while still offering good accuracy.

V. FINGERPRINTING RESULTS

In this section we present the results of fingerprinting all
2,486,721 traces in our data set showing the accuracy of our
algorithm on a large set of similar web pages. For each trace
in the data set we used our two-stage fingerprinting method to
determine the corresponding page of the trace. Our proposed
method first matches the corresponding candidate pages of the
fingerprinted trace using the client record sizes. In the second
step the server record sizes of the trace are compared to the
server record sizes of the candidate pages using the Jaccard
similarity. Pages with the highest Jaccard similarity are then
considered to be the ones corresponding to the trace.

Figure 7 shows the results of the fingerprinting process
in the form of a Sankey diagram. The diagram is split up
into three steps: Start, MinHash & LSH, and Jaccard, each
step representing a phase in the fingerprinting process. The
Start step represents the beginning of the fingerprinting, in this
step all the traces are not identified as a particular page. The
MinHash LSH step shows the results after fingerprinting the
traces using the MinHash LSH approach. After fingerprinting,
we see that 7.25% of the traces are correctly matched to
their corresponding page meaning the MinHash and LSH stage
of the algorithm has reduced the number of candidate pages

to one. However, for 1.16% of the trace the MinHash LSH
algorithm did not provide any output, and 4.46% of the traces
are identified as the wrong page. Leaving 87.13% of the traces
being matched with the correct page and one or more incorrect
ones. Although the number of traces with an inconclusive
result is high after the first stage of the fingerprinting method,
the number of candidate pages is significantly reduced. On
average the Minhash and LSH algorithm reduced the number
of candidate pages from 828,907 to 2,885 pages reducing the
computing time in the second stage of the algorithm.

After having fingerprinting the traces using the MinHash
and LSH approach we use the Jaccard similarity to fingerprint
traces for which no conclusive result is provided. The results of
fingerprinting the remaining traces using the Jaccard similarity
is shown in the Jaccard step of figure 7. After fingerprinting
21.82% of all the traces is identified as the wrong pages, and
15.97% of the traces have been matched with both a correct
and one or more incorrect pages. However 62.21% of all traces
have been matched with the correct page.

Applying our two-stage fingerprinting method to a data set
consisting of 828,907 pages we are able to fingerprint pages
with a probability of 62.21%. In the following section we
show that an attacker leveraging our method is able to monitor
victims browsing the web.

VI. INCORPORATING BROWSING BEHAVIOR

In this section we show the feasibility of an attacker
fingerprinting at scale by evaluating the accuracy achieved by
an attacker applying our proposed fingerprinting method. Two
attack scenarios are taken into consideration, one in which the
attacker monitors victims browsing the web randomly visiting
pages. The second scenario evaluates the attacker monitoring
victims consecutively visiting forbidden pages.

A. Attacker monitoring browsing behavior

An attacker deploying website fingerprinting is interested
in identifying victims with a certain preference for a topic.
In the case of an oppressing regime, the attacker is interested
in identifying civilians which have deviating political views.
To do so the regime will compose a fingerprinting database
consisting of pages related to unwanted political views. Then
the regime will start collecting the traces of civilians visiting
web pages and fingerprint them using the composed database.
When one or more traces of a civilian matches a fingerprint in
the database the regime knows that the civilian shows interest
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Fig. 6. Accuracy of fingerprinting attacks under different circumstances.

in a political view and can, by the number of matches, estimate
the level interest.

To evaluate the success rate of an attacker we simulate
a fingerprinting attack. In this attack we simulate 10,000
victims visiting a 200 random pages from our entire data set.
Randomizing the selected pages ensures that the simulation is
a general representation of an attack with the victims visiting
a varied collection of pages. From those 200 visited pages, 20
belong to the database of the attacker, with the attacker having
constructed a database of 500 web pages.

The solid line in top left plot of figure 6 shows the results of
the simulation. The graph represents the CDF of the number of
pages correctly fingerprinted. Simulation results reveal that all
victims are identified by the attacker as having visited at least
8 monitored pages, with 74.12% of the victims being identified
as having visited at least 15 pages. The simulation shows that
an attacker can identify all simulated victims using a threshold
of 8 identified pages. However, the question arises how many
people would falsely be classified as having visited monitored
pages when in fact they did not. In order to investigate the
number of falsely flagged victims we run the same analysis,
but this time with the victims not visiting monitored pages
effectively forming a control group. The dashed line in the top
left plot of figure 6 shows the CDF of incorrectly identified
pages for the control group. The simulation of the control
group results in the attacker identifying all the victims as
having visited 6 or less monitored pages with 99.33% of the
victims as having visited 3 or less monitored page.

Our simulation shows that an attacker can identify all
victims having visited 20 monitored pages without any false
positives. However increasing the number of pages visited by
the victims, or number of monitored pages by the attacker
might influence the accuracy of the attack. Therefore, we have
simulated 15 more attacks with different values for the number
of pages visited, pages monitored and pages visited monitored.
Figure 6 shows the results of the simulations. For each plot the

Start JaccardMinHash & LSH

Total 87.13%

7.25%
4.46%
1.16%

Filtered to a smaller set
of candidate pages

Correct
Incorrect
No hits

Correct

Incorrect

Inconclusive

62.21%

21.82%

15.97%

Fig. 7. Fingerprinting accuracy throughout the different phases of our
algorithm.

dashed line represents the CDF of the number of incorrectly
identified pages (control group), and the solid line representing
the CDF of the number of correctly identified pages.

The top right plot shows simulation results where the
number of monitored pages in the attacker’s database varies.
It is clear that varying the number of monitored pages does
not influence the accuracy of the attack. Similarly, varying the
number of visited pages does not influence the accuracy as
shown by the bottom left plot. The bottom right plot shows
that increasing the number of visited monitored pages does
increase the number of correctly identified pages.

The results of the different simulation show that increasing
the variables in a attack simulation do not affect the accuracy
of the fingerprinting. As a result an attacker can, using correct
thresholds, use our proposed approach to fingerprint at scale.
In the following section we show that an attacker, assuming
victims visit monitored pages successively, can avoid setting
a threshold.

B. Attacker monitoring victims following links

In the previous section we have shown that an attacker
can identify victims visiting monitored pages. However, the
attacker needs to set a threshold in order to avoid falsely
identifying victims. Typically, a person would not visit a page
out of nothing, but follow a set of links towards pages of the
same topic. An attacker can use this behavior to his advantage,
instead of counting the number of monitored pages visited by
the victims, the attacker can count the number of consecutive
pages a victim has visited. To analyze the proposed attack we
simulate an attacker monitoring victims consecutively visiting
between 2 or 5 pages as well a control group which did not
visit any monitored page.

Table II shows the result of 10,000 victims visiting between
two and five monitored pages, and the results for a control
group of 10,000 victims having visited 200 non monitored
pages. The table shows the percentage of victims being iden-
tified by the attacker as having visited a number of pages
consecutively. From the results becomes clear that victims
visiting more consecutive pages are more likely to be identified
as doing so by the attacker. For instance, the attacker is able to
identify 87,4% (39.1% + 48.3%) of the victims having visited
three pages as having visited two or more pages. Whereas the
attacker is able to identify 96,4% (18.8% + 41.5% + 36.1%)
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TABLE II
PERCENTAGE OF VICTIMS IDENTIFIED AS HAVING VISITED A NUMBER OF

CONSECUTIVE PAGES.

Pages identified by the attacker
0 1 2 3 4 5

Control group 57.2 30.8 9.8 2.1 0.1 -
Visited 2 pages 4.7 33.3 62.0 - - -
Visited 3 pages 1.1 11.5 39.1 48.3 - -
Visited 4 pages 0.3 3.3 18.8 41.5 36.1 -
Visited 5 pages - 0.8 7.0 21.9 39.6 30.7

of the victims having visited four pages as having visited two
or more pages.

The results from the control group show that an attacker
will falsely identify 12.0% (9.8% + 2.1% + 0.1%) of people
not having visited monitored pages as having visited 2 or
more. Given the results from the simulation we can say that
an attacker is able to identify victims visiting 3 or more pages
with an detection rate of 87.4% and a false positive rate of
12%. An attacker willing to increase the true positive rate or
false positive rate could change the number of consecutively
detected pages.

VII. CONCLUSION

In this paper we have presented a novel approach for
website fingerprinting based on the Jaccard similarity and an
approximation of the Jaccard similarity. Using our approach
on a data sets of 828,907 pages we are able to achieve a
fingerprinting accuracy of 62.21%. Furthermore we have show
that the new mechanics introduced by the HTTP2 protocol
does not make fingerprinting web pages impossible.

Finally we show the feasibility of an attacker performing
web page fingerprinting at scale. We show that an attacker is
able to identify victims with an accuracy of 87.4%.
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