
The case for serverless mobile networking
Marco Gramaglia

University Carlos III of Madrid
Madrid, Spain

mgramagl@it.uc3m.es

Pablo Serrano
University Carlos III of Madrid

Madrid, Spain
pablo@it.uc3m.es

Albert Banchs
University Carlos III of Madrid

IMDEA Networks Institute
Madrid, Spain

banchs@it.uc3m.es
Gines Garcia-Aviles

University Carlos III of Madrid
Madrid, Spain

gigarcia@it.uc3m.es

Andres Garcia-Saavedra
NEC Laboratories Europe

Heidelberg, Germany
andres.garcia.saavedra@neclab.eu

Ramon Perez
Telcaria Ideas S.L.

University Carlos III of Madrid
Madrid, Spain

ramon.perez@telcaria.com

fits, another reason why softwarization and modularization
are being accepted and adopted by the mobile networking
community is the availability of solutions implementing them,
both commercial and open source. This availability of projects
is caused by the relative maturity of these technologies, which
are the enablers of the cloud computing success. In this sense,
the mobile networking community is “lagging” with respect
to computer science advances.

In this paper, we argue that, despite these recent achieve-
ments, we should “speed up” the adoption of newer devel-
opments from computer science. More specifically, we make
the case for the adoption of “serverless” operation, a novel
paradigm that appeared a few years ago supporting an ex-
tremely liquid approach to scalability and resource usage [3],
[4]. With this approach, a tenant creates “on-demand” calls to
specific functions that are then executed by an infrastructure
provider. To support this, the software has to be decomposed
down to its minimum building blocks (i.e., functions), in
such a way that the code becomes platform- and server-
independent, allowing unprecedented levels of scalability and
resource efficiency. As further discussed in Section III, re-
source efficiency is of paramount importance in the multi-
tenant scenarios envisioned in 5G.

To make the case for serverless mobile networking, in this
paper we provide the following contributions:

• First, in Section II we describe the current landscape
of network softwarization and modularization, comparing
the advances in computer science and mobile networking.

• Then, in Section III we present the need for serverless
computing as a key candidate technology for the next
generation of Network Function Virtualization (NFV).

• Finally, we discuss the challenges introduced by this
approach and propose possible solutions to address them
in Section IV.

II. EVOLUTION OF CLOUD AND MOBILE NETWORKING

There is a wide consensus among the research and industrial
communities that future mobile networks will be software
networks, due to flexibility and cost reasons (in fact, some

Abstract—The softwarization of communication networks pro-
vides notable benefits, such as flexibility, improved resource 
efficiency, and commoditization. In exchange, softwarization 
requires an increased management overhead and the need to 
re-design network operation. While the mobile networking eco-
system is currently adapting this new paradigm with other 
network-related aspects (e.g., network slicing), cloud comput-
ing already addressed such problems with the introduction of 
serverless architectures, also known as Function as a Service 
(FaaS). With this approach, the software is decomposed into its 
minimum building blocks, i.e., functions, maximizing scalability, 
resource efficiency, and flexibility. In this paper, we analyze 
the potential adoption of the FaaS paradigm by the mobile 
networking ecosystem, discussing the implicit advantages, the 
challenges to address, and some solutions to overcome them.

Index Terms—Network Slicing, Network Softwarization, 
Serverless computing

I. INTRODUCTION

The fifth-generation (5G) of mobile networks will tackle 
the current and future trends of data consumption, especially 
from mobile devices, while fulfilling stringent requirements 
on delay, reliability, and throughput, among others. To provide
customized services that efficiently meet these requirements, 
mobile networking is adopting two key technologies from 
computer science, namely, softwarization and modularization. 
In a nutshell, the first is the ability to operate fully-fledged
networks through software components, while the second 
consists of defining and instantiating re-usable and highly
focused Virtual Network Functions (VNF). Thanks to these,
network providers can move away from highly specialized 
hardware solutions and benefit from building deployments
based on general-purpose hardware architecture running re-
usable software components.

While the adoption of softwarization and modularization 
requires a non-negligible cost, e.g., the management overhead
or the re-design of certain functions that now run as software
components instead of as hardware implementations [1], in
exchange it provides significant benefits, such as enabling
the network slicing paradigm [2]. Apart from these bene-

Annex to ISBN 978-3-903176-28-7 c©2020 IFIP

779



Architecture

Re-Configuration
Re-Orchestration

Frequency

Orchestration
Complexity

Single Server 
PNF

Years

Low

Multi-tier
VNF

Months

Moderate

Microservices 
Highly Modular VNFs

100x times per day

Very High

VM / NFV Cloud 

Native

Serverless

Continuous

Lambda

Extreme

A B C

Cloud computing

Mobile Networking

Fig. 1. Major transitions in the adoption of softwarization.

functionality such as the Evolved Packet Core is already
provided in specialized software running over general-purpose
hardware). However, we still lack the ability to match the
network demand at any point in time, i.e., a technology that is
i) re-configurable over very fast periods, and ii) very granular,
to reduce the cost of inaccuracies in the re-configurations in
e.g. the access network [5].

A similar problem has already been tackled by the cloud
computing community, which has continuously provided faster
and more scalable solutions over the last decade. Additionally,
these solutions have also made the system more flexible and
open, enabling the appearance of new business models. In what
follows, we first provide a quick overview of the evolution
of cloud computing technologies and then review the current
status of network softwarization.

A. Evolution of Cloud Computing

One major achievement in cloud computing took place
in the early 2000s, with the appearance of new virtualiza-
tion solutions such as Xen, VMWare or KVM. With these
technologies, that efficiently exploited the novel virtualization
extensions supported by the hardware, a new way of providing
services “conquered” the cloud computing environment. It
consisted of a more modular architecture that supported a
higher re-configuration frequency but also required a higher
management complexity. This achievement is marked with
an ‘A’ in Fig. 1, where we illustrate the different transitions
that we considered along three dimensions: architecture, re-
configuration frequency, and complexity. For this first transi-
tion, the figure illustrates how the architecture evolved from
monolithic functions to modular ones, supporting a change of
operational timescales from years to months, but also increased
complexity in the operation.

The second transition that we identify is marked with a ‘B’
in Fig. 1 and happened in the early 2010s. It was caused by the
arrival of the so-called microservices paradigm [6], introduced
by software architects to support a much finer granularity. This
paradigm supports, for instance, that a database server can be
split into many tailored microservices, each one fulfilling a
specific functionality such as e.g., an account manager or the
data storage system. This transition is driven by the avail-
ability of new virtualization technologies, such as Docker and
LXC Containers, which allow the deployment and scaling of
small virtual applications in a much more lightweight fashion,
enabling also new coding practices such as DevOps [6].

Finally, the last transition that we can identify is the one
marked with a ‘C’ in Fig. 1, namely, serverless architec-
tures [3]. This recent paradigm, also known as Function as a
Service (FaaS), is an extremely liquid approach to scalability
and resource usage. With this approach, a tenant creates calls
to functions, i.e., the minimum building block of a software
component, which are served by the infrastructure provider.
In this way, the software component becomes both platform-
and server-independent, as the different functions of the same
program could be served by different providers.

B. Evolution of Mobile Networking

There is currently a huge research effort on the softwariza-
tion of the mobile network. Among other efforts, 5G mobile
communications are working towards the introduction of a
fully softwarized architecture [7]. However, as compared to
the cloud evolution, the telecommunications world is still half-
way in this transition, despite the adoption of technologies
such as Software Defined Networking (SDN) and Network
Function Virtualization (NFV) which have helped towards the
“softwarization” of network architectures, and the architectural
trend towards their “modularization,” with a clean separation
between the control and the user planes. That is, the trend
is to split, already at the architectural level, the formerly
monolithic nodes into several smaller logical entities. Thus,
the 5G Next Generation NodeBs (gNBs) can be split into
centralized and distributed units, denoted as gNB-CU and
gNB-DU, respectively [8], while core network components
grow both in number and in functionality.

As depicted in Fig. 1, the telco world is lagging in the
adoption of novel software paradigms. We are approx. at mark
‘B’ of cloud computing, with achievements such as:

• The standardization of 3GPP Release 15 [9], which
specifies the Service Based Architecture (SBA). This
represents a new paradigm for the 5G Core Network and
is driven by the trend towards the modularization of the
network. With this approach, the formerly static interface
between different elements has evolved into a flexible bus,
which hosts HTTP REST primitives between modules.

• The concept of Cloud-Native Network Functions (CNF),
which is making its way into the current technology. In
fact, there are already proposals for the design of cloud-
native VNFs. However, they are in a very early stage
and mostly involve Core Network VNFs only. We believe
that the softwarization paradigm change shall involve all
domains, including the most challenging one such as the
RAN (as exemplified in Section IV).

Despite these achievements, we are still in the middle of
this transition as the cloud-native paradigm has not been fully
adopted into operational networks. This is caused by the poor
agility of the current state-of-the-art solutions, and the fact that
current VNFs are not truly agnostic to the underlying NFV
infrastructure. While dynamic cloud resources orchestration
algorithms are currently under study [10], the VNFs that will
be running on such resources are still not optimized for this
type of operation.

780



Application

Core

Access

Terminal

Distributed Access

(u-plane)

Centralized Access

(c-plane)

PHY

Decoding

MAC

Flow 

Control

Scheduler

decode_64_QAM()

decode_16_QAM()

decode_4_QAM()

decode_64_QAM()

decode_16_QAM()

decode_4_QAM()

decode_pusch()

encode_pdsch()

decode_prach()

Monolithic Modular Microservices Serverless

Fig. 2. Mobile network architecture evolution.

So even if the efforts towards the cloud-native transition
of the NFV are still ongoing, the research community shall
prepare for the next transition. This will introduce a com-
plete re-design of the whole mobile protocol stack, which
will certainly facilitate a dynamic resource orchestration and
assignment, allowing hence higher efficiency. In this paper, we
advocate for a mobile protocol stack that is (i) more efficient
in terms of both resource and time granularity scalability, and
(ii) capable to elastically adapt to the instantaneous demand.
We claim that with such a protocol stack, the deployment
and operational costs of the network will be reduced to their
minimum. Given that this flexible and on-demand operation of
the network closely resembles the current operation of cloud
computing platforms, it should also follow similar principles,
hence the name Serverless Mobile Architectures. We next
formally introduce this concept and its potential advantages.

III. SERVERLESS MOBILE ARCHITECTURES

In this section, we analyze the transition towards a serverless
mobile network architecture. We first introduce the concept
and then discuss the advantages, while we present the chal-
lenges to address along with some potential solutions next.

A. Concept

We start by describing what we mean by serverless mobile
network architectures. To this aim, we illustrate in Fig. 2 the
evolution of the different architectures to support a mobile ser-
vice. Note that throughout this section, we use Radio Access
Network (RAN) functions as examples, as they provide the
most difficult scenario for serverless architecture given their
tight execution constraints. The leftmost subfigure depicts the
traditional monolithic paradigm (e.g., 4G networks), where
functions are implemented in specialized pieces of equipment.
In this case, software and hardware are tightly coupled, and
it is not uncommon that different functions are indissolubility
associated to the same piece of equipment, e.g., the Serving
Gateway (S-GW) and Packet data network Gateway (P-GW).

The next subfigure illustrates a modular network archi-
tecture, represented by the Cloud-RAN (C-RAN) paradigm,
where some control functionality traditionally associated with
the antenna (i.e., the scheduling algorithm) is re-located to
a central server. This change constitutes a shift from the
monolithic approach, with some functions “freed” from their
traditional association to monolithic pieces of hardware. These
functions are now logically different pieces of software, whose
execution can be placed in different parts of the network.

As discussed before, this approach is also tackled by the
architectural work, with the definition of standard interfaces
among well-defined elements (e.g., the F1 interface between
the gNB-CU and gNB-CUs).

The microservices architecture pushes the modular
paradigm further, by decomposing the building blocks into
sub-modules. Note that this is a logical division and that the
actual implementation of the architecture needs to accom-
modate e.g. specific use-case requirements, this eventually
resulting in fewer or more pieces of software. For the case
of the RAN, this results in the protocol stack now being
logically divided into physical layer processing, decoding,
encoding, MAC, flow control, etc., each of them running in
an independent execution environment and connected through
synchronization APIs. This allows an easier scaling over a
finer resource assignment strategy, which eventually leads
to better resource utilization. Furthermore, some very recent
proposals are pushing for microservice-based core network
functions [11], showing that this increased modularity in the
VNF design is catching momentum.

In this paper, we advocate for a serverless mobile architec-
ture composed by atomic functions that can run independently
on a cloud infrastructure. This independence contrasts with
the tight coupling across functions in the other architec-
tures, with strict timing considerations between modules. In
a serverless approach, functions are dis-aggregated from the
main scheduling logic and executed in the most appropriate
server available. As Fig. 2 illustrates, for the case of User
Plane Functions we envision, for instance, that the decoding
of different Modulation and Coding Scheme could be made
by different functions that could run in different executors,
provided that some “loose synchronization” is guaranteed.

B. Advantages

Introducing the serverless operation as explained above
brings several advantages to the network operation. Next, we
build and extend the reasoning introduced in [3] to motivate
the advantages of serverless mobile networking.
No server management: in the serverless paradigm, the func-
tionality carried out by a VNF is broken into very fine execu-
tion environments (i.e., functions) that do not need to directly
undergo into the classic lifecycle management (instantiation,
run-time and decommissioning), but rather be scaled according
to the real load and with a very fast pace in a “message
broker” fashion. By moving this complexity to the network
orchestration, this allows increasing the commodification of
the network with a clear separation between the infrastructure
and the services orchestrated therein.
No idling: operators usually provision the network based on
the peak load. This is very inefficient at all network layers: at
the access level, needless to say, but also at more centralized
levels in which VMs or containers may be underused or even
idling in trough loads. With the serverless paradigm, execution
engines are spawned and operated just when and where they
are needed. This is key for minimizing resource wastage in
the network operation.

781



Demand

Co
st

Monolithic
VNF
Modular VNF
Serverless

1 Mbps

100 Mbps

200 Mbps

500 Mbps
1 Gbps

Load

0

20

40

60

80

100

CP
U 

[%
]

Mean
5 to 95 percentile

0

20

40

60

80

100

Lo
ad

 [%
]

Fig. 3. The liquid scalability (top) and an empirical evaluation (bottom)

Liquid scalability: this is achieved by providing the highest
modularization level. That is, specific functions of a VNF can
be scaled according to the real demand, avoiding the scaling
of the full VNF instead, and achieving the liquid scalability
depicted in Figure 3 (top). We believe that this will be one of
the fundamental pillars for the sustainable operation of the
next-generation networks. In [5], we quantified the cost in
terms of resource overhead of deploying and operating the
infrastructure needed to support multi-service networks. This
study showed that the efficiency (i.e., the number of resources
used by a not multi-tenant network compared to a multi-
tenant one) is very low, and just with a very dynamic network
reconfiguration (such as the ones envisioned here) it is possible
to improve these figures.

Figure 3 (bottom) depicts an empirical evaluation of the
liquid scalability concept, by evaluating the CPU footprint of
a state-of-the-art VNF (OpenVSwitch [12]), running inside a
KVM Virtual Machine in Linux. This setup summarizes the
“VNF” approach sketched in the upper part of Figure 3 as
it can be scaled on a VM-basis (new VMs can be added or
removed according to the load), this being the only way of
scaling up or down according to the load. We can observe that
this way of softwarizing clearly falls short when the objective
is finer scalability. We can observe that while growing the of-
fered load (in our experiments we span 4 orders of magnitude,
from 100 Kbps to 1 Gbps) the resource footprint utilization has
a clear “on-off” behavior. Indeed, the CPU utilization shortly
hits close to 100 % utilization with offered loads that barely
reach the 10% of the total. This means that there is still a lot
of room for improvement in the software design of VNF with
respect to IT resources consumption.
Pay-per-use network: although the pricing model behind the
network slicing paradigm is not clear yet, it is to be expected
that, at least for the software part, it will follow a classic
approach in which tenants are charged on the number of CPUs,
the amount of memory and bandwidth used. With a serverless
approach, instead, tenants can be charged on a specific usage
basis (i.e., number of times and duration of each function),
allowing for a richer pricing model.

Customization: current mobile network technology provides
only limited customization. For example, the currently envi-
sioned resource models in 3GPP [13] target the Network Slice
as a Service (NSaaS) paradigm, which is the telecommuni-
cation counterpart of the well-known Software as a Service
(SaaS) paradigm employed in the cloud computing world.
Under this model, service providers (or tenants) are allowed
to select from an operator Network Slice portfolio one of
the available templates (e.g., Enhanced Mobile Broadband).
However, this provides limited customizability to tenants: the
network provider still handles most of the management part.

IV. CHALLENGES TO ADDRESS

To achieve the above advantages, the serverless paradigm
needs to provide: (i) new VNFs that allow for the wire speed
execution VNFs while minimizing the number of resources
needed for their operation, (ii) a new environment for the
execution of such challenging VNFs, with minimal overhead,
and (iii) a new Management and Orchestration framework that
is capable to manage the rocketed complexity of the paradigm.

A. Challenge #1: New VNFs

The current way of implementing VNF is still very bound to
the traditional way of implementing network functions. Cur-
rent solutions do not embrace modularization: many commer-
cial products are softwarized but very bounded to the hardware
platform, while open source initiatives are practically mere
translations of hardware functionality into software modules.
To adopt the serverless approach, we need to change how
VNFs are designed. To illustrate our point, in the previous
section we focus on the user plane part of the RAN, but
the same paradigm could be easily applied to other network
functions. Our motivation is that, as the radio functions are
the most resource-consuming ones (considering resources of
all kinds: spectrum, transport network, and computational
resources [14]), we expect that the transition towards high
modularity will be especially beneficial for such functions.

We take as exemplary case study a well-known open source
implementation of a 4G-LTE RAN stack, namely, srsLTE
[15].We illustrate on the left part of Fig. 4 its threading ar-
chitecture [16], which follows a classical layered architecture
for a great extent and has remarkable modularity, in particular
considering that the software has been designed for stand-
alone operation. Still, the division is quite coarse, and there
are additional issues that would prevent the use of a serverless
approach, e.g., the physical layer does not distinguish between
control and data channels, which are processed sequentially.

In this way, while the srsLTE design is perfectly valid for the
working conditions initially considered by its developers, the
architecture would benefit from a different design such as the
one suggested in the right-hand part of Fig. 4. Here, the control
and data plane processing are placed in different modules:
while the control plane functionality on the L1 is “fixed” and
has to be performed independently of the load, the user plane
could be placed and executed in different threads (or even
containers) to scale them according to the load. Alternatively,

782



ADC / DAC

RX
c-

p
la

n
e 

w
o

rk
er

u
-p

la
n

e 
W

o
rk

er
 #

0

u
-p

la
n

e 
W

o
rk

er
 #

N

MAC MUX / DEMUX

R
LC

/P
D

C
P/

S1
-U

S1-U 
procedures

PDCP 
Procedures

RLC 
Procedures

ADC / DAC

RX

D
SP

 W
o

rk
er

 #
0

D
SP

 W
o

rk
er

 #
1

D
SP

 W
o

rk
er

 #
N

MAC MUX / DEMUX

RLC/PDCP/S1-U
L2

 –
L3

H
W

L1

Fig. 4. The simplified threading architecture of the srsLTE software (left) and
a possible serverless design of the software stack (right).

the software can be modified to support intelligent resource
assignment schemes [17].

However, the current state of the art of networking (i.e.,
the Linux kernel) can hardly support this approach, as it
is heavily API-based and requires fast inter-process com-
munications. Moreover, current network functions (especially
RAN functions) exhibit two fundamental characteristics that
make them different when compared to other cloud computing
applications: i) they impose very high load on the CPU (i.e.,
encoding and decoding of wireless frames) and ii) they have
very stringent timing requirements as usually communication
protocols are time-partitioned and need time synchronization.
While there are CPU intensive services running in the cloud
(e.g., Netflix video transcoding) these are not real-time. These
timing constraints were barely a problem in the (now old) PNF
paradigm, but it is a challenge to address since the arrival of
novel technologies such as e.g. cloud C-RAN.

Making tasks aware of their execution time is usually not
conceived as a problem in general cloud computing systems,
which barely have to provide near to real-time outputs. The
Linux kernel system provides tools to address this problem, but
real-time software usually runs in rugged embedded devices
for industrial purposes (e.g. robotics) or in dedicated data
centers for fast pace trading in stock exchanges, not in the
cloud. So, VNFs shall be re-designed to also take advantage
of e.g., the real-time kernel primitives or used jointly with the
elastic network function design as investigated in [14].

B. Challenge #2: Scalable interconnections

One key requirement for novel deployments, given the
trends of mobile data consumption, is the ability to operate
at wire speed. Being extremely fast on the data plane has
been one of the main goals of research in wireless commu-
nications. However, the original virtualization platforms were
not designed with this goal in mind. To address this issue,

NIC NIC

eBPF

eBPF

eBPFTCP / IP

µVNF 
function

(Tenant A)

eBPF

µVNF
(Tenant 
shared)

eBPF

µVNF 
function

(Tenant B)

eBPF

Traditional path

eBPF fast path

Kernel

Fig. 5. eBPF-enhanced data path vs the traditional iptables-based approach.

the most common approach to achieve high performance has
been kernel bypassing, through technologies such as DPDK
and SR-IOV. These solutions skip the traditional Linux kernel
networking stack based on iptables and enable a fast data
path between the hardware and the application logic residing in
the user-space. However, while this approach indeed increases
the speed of the data processing, this hard link between the
network card (i.e. the hardware layer) and the user-space
reverts this approach to the traditional monolithic one, that
leveraged on a tight hardware-software link. This hinders
programmability as all the data traffic is offloaded from the
kernel to the user-space, thus creating a vendor-specific link
between hardware and software.

The above approach makes the management of the VNF
very machine-dependent, so it is only valid for scenarios
with a relatively small number of VNFs. Furthermore, it also
has several drawbacks that make it difficult to integrate into
a highly-dynamic scenario with a much larger number of
software components (for each tenant, slice, and service, there
might be multiple software functions). This would drastically
increase the complexity of this kernel bypassing approaches,
eventually resulting in two hardware infrastructure layers,
namely, the kernel and the networking bypass, to manage the
computing resources and the network platform, respectively.

We propose instead to integrate the data path back into the
kernel. To this aim, i.e., to avoid the limitations from building
on iptables, we propose to extend the Linux kernel net-
working stack with the adoption of enhanced Berkeley Packet
Filters (eBPFs) [18]. These are pieces of code that can be
dynamically injected into the kernel at run-time through a
programmable interface. This approach allows managing the
VNFs running on top of the kernel holistically, controlling
all the aspects such as their CPU, memory, etc. in a unified
way. eBPFs fit with a lightweight container-based approach,
enabling strong security policies among them.

We illustrate our proposal in Fig. 5, where the bottleneck
caused by the slow iptables-based design of the TCP-IP
stack is removed thanks to the use of eBPFs. With these,
a fast mesh of interconnected elements is created, providing
an extremely scalable network infrastructure within the same
host. Moreover, as BPFs are (i) executed in native code
(e.g., x64), (ii) if needed, placed close to the NIC to ensure
fast reaction times, and (iii) programmed with fast memory

783



mapping to the VNFs, the highest possible speed is achieved,
comparable to DPDK according to recent studies [19].

C. Challenge #3: Precise orchestration algorithms

The serverless paradigm aims at the most efficient service
provisioning, by accurately adjusting the resources deployed
at any point in time to the actual demand. To benefit from this
paradigm, it is essential to accurately estimate the demand
required by a service and to forecast its envisioned resource
consumption, to boost the multiplexing gains. To support this
type of management, two main building blocks are required:
(i) technical solutions to support flexible and fast resource
re-orchestration at the finest granularity, and (ii) Big Data
techniques that operate on historical data and anticipate future
trends. The former should be achieved with the first two
challenges (i.e., the use of functions instead of VMs and the
integration of eBPFs into the kernel), while the latter requires
the design of new techniques, as we discuss next.

We propose to use data-driven techniques to accurately
characterize the future demand trends for a given service,
this supporting a proactive and fine-grained orchestration of
the network. This proactive management contrasts the current
state of the art of resource orchestration, which is usually a
reactive process based on load thresholds to trigger the scaling
of VMs, and typical prediction algorithms that operate on
very coarse and aggregated data. Moreover, the main goal of
existing orchestration algorithms is usually fault-tolerance or
self-healing, and not a higher efficiency. An efficiency-driven
orchestration framework would provide an accurate forecast
of demand, both in time and across resources (e.g., antennae,
edge data centers, core clouds), to enable efficient provisioning
of network services. Given the complexity of this type of
operation, we believe that such orchestration is only possible
if empowered with deep learning solutions [20].

The orchestration would work as follows. By starting from
the historical demand of a given tenant/service, a deep learning
architecture would provides the intelligent back-end for the
Management and Orchestration of the network. By employing
a deep learning technique, orchestration decisions are applied
to the underlying NFV infrastructure that is used to host the
VNF. This approach is currently being investigated by ETSI
ENI [21] from the architectural point of view.

V. SUMMARY

The cloud computing technology has already identified
solutions for a more efficient service provisioning, through
the microservices and the serverless paradigms, while the
mobile networking community is lagging, implementing solu-
tions based on Network Function Virtualization. In this paper,
we advocate for the introduction of the serverless paradigm
into the mobile network stack implementation. We believe
the extreme flexibility of this approach is key to find the
best trade-off between service customization and resource
efficiency, but several research questions have to be solved
before successfully introducing it: new VNFs shall be designed
to exploit this paradigm, the underlying infrastructure needs

to be prepared, and novel orchestration frameworks, possibly
based on machine learning, are required.

ACKNOWLEDGEMENTS

This work was partially supported by the European Com-
mission in the framework of the H2020 5G-PPP 5G-EVE
5GROWTH, and 5G-TOURS projects.

REFERENCES

[1] D. M. Gutierrez-Estevez et al., “The path towards resource elasticity for
5G network architecture,” in IEEE WCNCW, April 2018, pp. 214–219.

[2] P. Rost et al., “Network Slicing to Enable Scalability and Flexibility in
5G Mobile Networks,” IEEE Communications Magazine, vol. 55, no. 5,
pp. 72–79, May 2017.

[3] P. Aditya, I. E. Akkus, A. Beck, R. Chen, V. Hilt, I. Rimac, K. Satzke,
and M. Stein, “Will Serverless Computing Revolutionize NFV?” Pro-
ceedings of the IEEE, vol. 107, no. 4, pp. 667–678, April 2019.

[4] I. Sarrigiannis, K. Ramantas, E. Kartsakli, P. Mekikis, A. Antonopoulos,
and C. Verikoukis, “Online VNF Lifecycle Management in a MEC-
enabled 5G IoT Architecture,” IEEE Internet of Things Journal, pp.
1–1, 2019.

[5] C. Marquez et al., “How Should I Slice My Network? A Multi-Service
Empirical Evaluation of Resource Sharing Efficiency,” in Proceedings
of 24th ACM MobiCom 2018, 2018.

[6] A. Balalaie, A. Heydarnoori, and P. Jamshidi, “Microservices Architec-
ture Enables DevOps: Migration to a Cloud-Native Architecture,” IEEE
Software, vol. 33, no. 3, pp. 42–52, May 2016.

[7] M. Condoluci and T. Mahmoodi, “Softwarization and virtualization in 5g
mobile networks: Benefits, trends and challenges,” Computer Networks,
vol. 146, pp. 65–84, Dec. 2018.

[8] 3GPP, “NG-RAN; Architecture description,” TS 38.401, v15.7.0, Mar.
2020.

[9] ——, “System architecture for the 5G System,” TS 28.801, Mar. 2019.
[10] T. Taleb et al., “On Multi-Access Edge Computing: A Survey of the

Emerging 5G Network Edge Cloud Architecture and Orchestration,”
IEEE Communications Surveys Tutorials, vol. 19, no. 3, pp. 1657–1681,
Sep. 2017.

[11] V. Nagendra et al., “MMLite: A Scalable and Resource Efficient Control
Plane for Next Generation Cellular Packet Core,” in Proceedings of the
2019 ACM Symposium on SDN Research, ser. SOSR ’19, 2019, p. 69–83.

[12] B. Pfaff et al., “The design and implementation of open vswitch,” in
12th USENIX NSDI 2015.

[13] 3GPP, “Management and orchestration; provisioning,” TS 28.531,
v15.2.0, Mar. 2019.

[14] D. Bega, A. Banchs, M. Gramaglia, X. Costa-Pérez, and P. Rost,
“CARES: Computation-Aware Scheduling in Virtualized Radio Access
Networks,” IEEE Transactions on Wireless Communications, vol. 17,
no. 12, pp. 7993–8006, Dec 2018.

[15] I. Gomez-Miguelez, A. Garcia-Saavedra, P. D. Sutton, P. Serrano,
C. Cano, and D. J. Leith, “SrsLTE: An Open-Source Platform for LTE
Evolution and Experimentation,” in ACM WiNTECH 2016. New York,
NY, USA: Association for Computing Machinery, 2016.

[16] J. A. Ayala-Romero et al., “Demo: Vrain proof-of-concept – a deep
learning approach for virtualized ran resource control,” in The 25th
Annual International Conference on Mobile Computing and Networking,
ser. MobiCom ’19, 2019.

[17] J. A. Ayala-Romero, A. Garcia-Saavedra, M. Gramaglia, X. Costa-Perez,
A. Banchs, and J. J. Alcaraz, “VrAIn: A Deep Learning Approach
Tailoring Computing and Radio Resources in Virtualized RANs,” in 25th
ACM MobiCom 2019, 2019.

[18] Cilium, “BPF and XDP Reference Guide,” 2020. [Online]. Available:
https://cilium.readthedocs.io/en/latest/bpf/

[19] D. Scholz, D. Raumer, P. Emmerich, A. Kurtz, K. Lesiak, and G. Carle,
“Performance Implications of Packet Filtering with Linux eBPF,” in
2018 30th International Teletraffic Congress (ITC 30), vol. 01, Sep.
2018, pp. 209–217.

[20] D. Bega, M. Gramaglia, M. Fiore, A. Banchs, and X. Costa-Perez,
“DeepCog: Cognitive Network Management in Sliced 5G Networks with
Deep Learning,” in IEEE INFOCOM 2019, April 2019, pp. 280–288.

[21] Y. Wang et al., “Network Management and Orchestration Using Ar-
tificial Intelligence: Overview of ETSI ENI,” IEEE Communications
Standards Magazine, vol. 2, no. 4, pp. 58–65, December 2018.

784


