
1	

2	

3	

4	

5	

6	

7	

8	

9	

10	

11	

12	

13	

14	

15	

16	

17	

18	

19	

20	

21	

22	

23	

24	

25	

26	

27	

28	

29	

30	

31	

32	

33	

34	

35	

36	

37	

38	

39	

40	

41	

42	

43	

44	

45	

46	

47	

48	

49	

50	

51	

52	

53	

54	

55	

56	

57	

60	

61	

62	

63	

64	

65	

Towards Domain-Specific Time-Sensitive

Information-Centric Networking Architecture

Marcin Bosk∗, Jörg Ott†

TUM School of Computation, Information, and Technology, Technical University of Munich, Germany

Email: ∗bosk@in.tum.de, †ott@in.tum.de

Abstract—Due to increasing bandwidth requirements, Ethernet
is replacing traditional technologies such as CAN bus within
the industrial automation and automotive networks. To support
the deterministic communication required in these systems, it is
often combined with the IEEE 802.1Q Time-Sensitive Network-
ing (TSN) group of standards. Information-Centric Networking
(ICN) is an appealing architecture for aiding the migration
to Ethernet. It can map the content-based message identifiers
of the CAN bus and support complex network topologies in
those new systems. This work investigates ICN’s interaction
with TSN and how their combination can support real-time
systems. By extending the EnGINE framework with Named-
Data Networking (NDN) support, we provide a hardware-based
experimental environment tailored to develop ICN-based TSN
systems. We further propose an NDN-based architecture tailored
for networked systems requiring low latency deterministic com-
munication. We show that NDN on top of TSN is a promising
approach on average fulfilling the strict delay requirements of 2
ms and jitter of 125 µs in a seven-hop automotive network, with
our approach further reducing the network overhead.

Index Terms—TSN, IVN, IACS, ICN, Network Architecture

I. INTRODUCTION

Time-sensitive and real-time systems require networks sup-

porting low latency and reliable communication. As legacy

technologies, e.g., Controller Area Network (CAN) bus, can-

not meet the increasing bandwidth demands of modern sys-

tems, Ethernet is replacing previously used networks [1]. It is

usually combined with the Time Sensitive Networking (TSN)

standards [2] that enable deterministic communication, pro-

viding support for low latency, low jitter, and lossless packet

exchange. In contrast to Ethernet, many legacy systems use

signals with message identifiers defining the semantics (and

priority) of a frame, to which all interested nodes “subscribe”,

effectively creating a publish-subscribe (pub/sub) system [3].

This introduces challenges for integrating Ethernet in low

latency systems and their migration from legacy networks,

leading researchers to explore mechanisms above Layer 2 [4].

While building complete connectivity for real-time sys-

tems based on Ethernet is feasible with the industry already

adopting it, focusing on a single Layer 2 technology may be

limiting. The capability to smoothly integrate different Layer

2 technologies across larger systems is more easily provided

at Layer 3, as the Internet Protocol (IP) has proven over

decades. IP, with its host-based addressing scheme, may not be

a perfect fit for the communication based on named message

All links are valid as of 27 April 2024.
ISBN 978-3-903176-63-8 © 2024 IFIP

identifiers we find in industrial and automotive environments.

A similar argument can be made for security in such systems,

generally ensured with separate Layer 2 or above mechanisms,

e.g., MACsec, IPSec, or TLS [5]. Their integration with TSN

is challenging and often requires specialized hardware and

careful consideration of traffic shaping configurations. With

its inherently content-based addressing and native security

support, the Information-Centric Networking (ICN) concept

presents a compelling alternative to IP-based solutions [6].

ICN is a Layer 3 technology tailored for request-response

style communication in large-scale networks. It has valuable

properties for networks built upon TSN, which need interac-

tion with legacy bus systems. ICN supports naming similar

to, e.g, Vehicle Signal Specification (VSS)1, a scheme used

in Intra-Vehicular Networks (IVNs), and does not require

abstractions to end-host addresses. It further supports data

integrity with cryptographic signatures of transmitted data [6].

Finally, ICN includes packet replication methods at network

nodes, beneficial specifically for time-shifted multicast [7].

To address the challenges of real-time systems, in this work,

we outline the requirements and initial design considerations

for an ICN-based architecture tailored for TSN built upon

Named-Data Networking (NDN). We propose several protocol

extensions, among others, based on the concept akin to Persis-

tent Interests (PI) for real-time communication [8]. To enable

experimentation, we build upon our open-source2 EnGINE [9]

framework and extend it with NDN support. Using this setup,

we verify the applicability of NDN for real-time systems in a

simple network combined with TSN traffic shaping. We further

perform an initial verification of the architectural concepts,

comparing its low latency and low jitter IVN communication

requirements fulfillment against an IP-based deployment.

II. BACKGROUND AND RELATED WORK

In the following, we introduce the relevant technologies and

summarize related work investigating the applicability of ICN

for low latency and real-time communication, including TSN.

A. Information-Centric Networking

ICN [10] is an alternative networking concept to the

Layer 3 IP protocol. It shifts the focus from host addressing

to exchanged information naming. Many ICN realizations

are request-response based, where consumers request named

1https://covesa.github.io/vehicle signal specification/
2https://github.com/rezabfil-sec/engine-framework

2024 IFIP Networking Conference (IFIP Networking)

978-3-903176-63-8/24/$31.00 ©2024 IEEE 720

IFIP Networking 2024 1570998388

1

information from the producers. The network devices con-

tain routing information, data services, and forwarding logic,

facilitating the exchange and enabling the network to fulfill

consumer requests directly. ICN emphasizes security, with the

network further supporting data caching on network nodes.

While several ICN implementations exist, in this work, we

focus on NDN [11] and its C++ implementation due to its ac-

cessibility and ability to run on hardware-constrained devices.

It is also well documented, has numerous supporting tools,

and is actively maintained. NDN provides receiver-driven,

data-oriented communication architecture that can run as a

Layer 2 or 3 protocol. The communication parties exchange

two types of packets. The consumer requests information

using INTERESTS, with the producer responding using DATA

packets. Each type includes a data name, with the INTEREST

packet having additional information, e.g., desired age limit.

The DATA packet includes the content itself, a digital signature

for data integrity, and metadata such as its validity period.

These packets are forwarded using forwarder modules

placed on each NDN node. Communication is enabled using

faces, which provide an abstraction for the use of underly-

ing network protocols. A content store contains data that is

available at a given node. The Pending Interest Table (PIT)

includes information on all received INTERESTS, such as name

and incoming face. A routing table is contained within the

Forwarding Information Base (FIB), including the relation

between name prefixes and faces leading to other nodes

offering DATA. The forwarder decides how to forward and

fulfill INTERESTS based on the aforementioned information,

with DATA following the reverse path of request packets.

B. Time-Sensitive Networking

The set of IEEE 802.1Q [2] TSN standards defines methods

for low latency and reliable Ethernet communication. This

work focuses on the IEEE 802.1Qav standard, supported by

the Precision Time Protocol (PTP). For TSN, PTP is used

in the form of generic Precision Time Protocol (gPTP) as

defined in the IEEE 802.1AS standard [12]. The time on each

participating node is synchronized to a grandmaster clock,

which is placed on top of a master-slave hierarchy. In this

structure, the gPTP instances exchange messages, allowing

nodes to accurately synchronize all clocks in the network.

The Multiqueue Priority (MQPRIO) queuing discipline

(qdisc) enables mapping of packets belonging to various

Traffic Classes (TCLs) and priorities into corresponding Net-

work Interface Card (NIC) hardware queues. It is usually

paired with the Credit-Based Shaper (CBS) introduced by the

IEEE 802.1Qav standard [2] and can be used for bandwidth

allocation to various TCLs. The shaper works according to a

credit system where packets are dequeued when TCL’s credit

is ≥ 0. The amount of TCL credit over time is governed by

four parameters: idleSlope, sendSlope, hiCredit, and loCredit.

These specify the rates at which credit is accumulated and

spent during transmission and its maximal and minimal levels.

All four parameters depend on, e.g., the traffic’s Physical

Layer (PHY) packet size, bitrate, and available bandwidth.

C. The EnGINE Framework

In prior work, we built the EnGINE framework [9], an

orchestration tool for hardware-based networking experiments

based on open-source software and commercial off-the-shelf

hardware. It focuses on, but is not limited to, TSN and IVN ex-

periments. The framework is written in Ansible3 and supports

automated node setup, network configuration, traffic genera-

tion, and artifact collection and evaluation. Using appropriate

hardware, e.g., the Intel I210 NICs, EnGINE supports CBS and

TAPRIO qdiscs, as well as PTP. As part of the framework,

we also provide a methodology [13] covering relevant settings,

metrics, and result expectations for TSN experimentation. In

this work, we extend EnGINE with support for NDN.

Other TSN experimentation approaches exist such as the

TSN-FlexTest [14], focusing on evaluating the performance of

a single hardware NIC. Similar evaluation can be done using,

e.g., the OMNeT++ [15] discrete-event simulator.

D. Related Work

Prior research investigated the use of ICN for TSN. Pa-

padopoulos, et al. [6] outline the challenges of mapping NDN

into IVNs. They focus on the similarity of the VSS and

NDN names, considering benefits of caching capabilities. The

authors also outline ICN’s limitations for IVNs, pointing out

the lack of standardization, relevant in the automotive industry.

Threet, et al. [16] verify the applicability of NDN for

enhanced security in IVNs. They investigate vulnerabilities of

CAN systems and show how NDN signing schemes alleviate

various attack types. The authors show that NDN can mitigate

most attacks while highlighting the need for more research.

Nagaraj, et al. [7], [17] investigate the applicability of ICN

for Industrial Automation Control Systems (IACS). The au-

thors outline the benefits of in-network caching and investigate

cache placement in NDN-enabled IACS. They further focus

on Traffic Control Subsystem (TCS) and its impact on latency

and throughput, while highlighting the applicability of NDN

naming schemes for IACS. The authors conclude that the

NDN implementation used in their experiments did not work

correctly with the TCS, outlining the need for further research.

Moll, et al. [8], [18] investigate push-based conversational

services in ICN. They formalize the concept of PIs in NDN.

With such INTERESTS, each PIT entry may result in one or

more DATA packets. The authors show improved performance

in the push-based variant compared to the pull-based opera-

tion, specifically lowering forwarder CPU load. PIs inspired

parts of the architecture design presented in this work.

IVN architectures are also subject to extensive research.

Häckel, et al. in [1] investigate a Software Defined Network-

ing (SDN) approach combined with TSN for a zonal IVN

architecture. They utilize SDN’s matching pipeline to manage

traffic flows and integrate those with TSN traffic shaping

and policing mechanisms. The authors show that such flow

isolation enhances the security and removes the attacker’s

ability to influence the system.

3https://www.ansible.com

2024 IFIP Networking Conference (IFIP Networking)

7212

III. ANALYSIS AND DESIGN

Real-time systems used, e.g., in IVNs or IACS, must fulfill

strict latency and jitter requirements for high-priority flows.

Such flows generally belong to Stream Reservation (SR)

classes A and B [13]. Over a network with seven hops, these

classes require a delay lower than 2ms and 10ms, as well

as jitter of less than 125 µs and 1000 µs, respectively. Such

strict requirements are needed to ensure proper functionality

of safety-critical subsystems within IACS and IVNs.

A. State of the Art

With increasing bandwidth demands as seen, e.g., for au-

tonomous driving, we observe an increasing adaptation of

Ethernet, replacing legacy technologies such as CAN, LIN,

or MOST [1]. Generally, to achieve low delays with Ethernet

networks, traffic policing and shaping methods from the IEEE

802.1Q family of standards are applied. The settings of these

shapers consider traffic characteristics, such as the packet

generation frequency or packet size. This switch to Ethernet

further necessitates redesigning the underlying network archi-

tecture from a centralized into a zonal, decentralized one.

Ethernet addresses communication end-points. This proves

challenging in TSN systems where devices push data. Gen-

erated information is often aimed at multiple destinations,

meaning that a suitable architecture should also support a

form of multicast or pub/sub communication. This requires a

protocol on Layer 3 or above, usually combined with some

Ethernet extensions [19]. Some approaches utilize Internet

Group Management Protocol (IGMP) [20] as, e.g., OPC UA

when used for IVNs [21]. Alternatively, Ethernet multicast

may be used. Its applicability is limited as available hardware

handles a limited number of multicast groups, e.g., 16 with

the Intel I210 NIC4. The groups are further generally defined

by IGMP snooping, still relying on end-point IP addressing.

With bus technologies such as CAN bus, IVNs and IACS

generally used signals to exchange information throughout the

network [3]. The data placed on the bus are broadcast to all

receivers. These signals use message identifiers that can be

related to the type of specific information contained within

the frames. Such identifiers can extend to names associated

with transmitted information. Prominent examples include the

VSS, defining semantic names for sensor and actuator data in

IVNs. Such an approach decouples the addressing from end-

points as used, e.g., in IP, and addresses the information.

Security is not directly integrated into protocols used in

IVNs and IACS. It is generally applied through related stan-

dards, e.g., MACsec for Layer 2 or IPSec for Layer 3. Their

integration with TSN is challenging and no readily available

solutions exist [1]. This is also the case for OPC UA when

used for pub/sub, as no security profiles are available [21].

B. Initial Architecture Design

To address these challenges, we propose an ICN-based ar-

chitecture design for IACS and IVNs. Following best practices,

4https://www.intel.com/content/www/us/en/content-details/333016/intel-
ethernet-controller-i210-datasheet.html

Sensor(s)

Actuator(s)

NDN
Forwarder

Producer

Consumer
NDN

Forwarder

NDN
Forwarder

Network of
forwarders Controller(s)

Producer

Consumer

Push Data

LL Interest
Subscribe

Subscribed
Data LL Interest

Subscribe

Push Data

Subscribed
Data

Zone 2

Zone 1

Zone X

Fig. 1. Simplified overview of the proposed network architecture.

we employ Ethernet and include support for various IEEE

802.1Q standards. The timing accuracy is ensured using gPTP.

At Layer 3, we employ a modified version of NDN to connect

various consumers with producers. Data is named according

to VSS or an equivalent scheme. As indicated in Figure 1,

we follow the zonal architecture concept with all components

interconnected using a decentralized network. We assume

these components are directly connected to the forwarders.

While NDN enables information addressing, it brings fur-

ther challenges. The packet size is influenced by NDN’s

request-response behavior and additional data encoded in the

header, e.g., the name with variable length. This variance

impacts traffic shapers, e.g., CBS, which are sensitive to packet

sizes, requiring individual settings per direction to guarantee

delay and jitter. This is especially relevant for INTERESTS,

directly influencing the latency of the DATA packets.

To support pub/sub and multicast communication, we pro-

pose Long-Lived (LL) INTERESTS, a concept similar to a

minimal version of PIs [8], [18]. Both approaches extend the

NDN INTEREST with an additional type field indicating its

nature. If present, the forwarder retains the PIT entry even

after a DATA packet arrived and was forwarded. PIT entries

containing the LL flag are soft-state. Stale ones are avoided

using timeouts dictated by the interest lifetime type.

Due to the different system requirements, we approach the

push-based communication with LL INTERESTS differently

when compared to PIs. The LL INTERESTS and DATA packets

do not encode sequence numbers in the name to avoid its

bloating and improve compatibility with traffic-shaping algo-

rithms expecting consistent packet sizes. These numbers may

be included in their payload or as a separate type field in the

NDN header. The exact encoding is out of this work’s scope.

In the data-push configuration, a producer creates DATA

packets according to its traffic pattern and continuously trans-

mits those to the nearest NDN forwarder. The forwarders assist

in its distribution, forwarding the newest DATA according

to LL PIT entries. The packet’s freshness period parameter

ensures no obsolete information is distributed through the

network. This results in a targeted multicast capability, where

multiple consumers can receive a data from a single producer,

using only one INTEREST per client. Support for request-

response INTEREST to DATA exchange is retained.

Further considerations must be made for Quality of Service

(QoS) in NDN. Some solutions consider its encoding in the

name [22]. Such an approach might result in data duplication

across the network if it is available under multiple priorities.

Caching could also reduce the load introduced by non-critical

2024 IFIP Networking Conference (IFIP Networking)

7223

traffic streams if request-response communication is used.

However, it may significantly impact the system because the

TSN configuration is influenced by the packet generation

frequency. Investigation of caching and priority encoding is

subject to ongoing work and is out of scope for this paper.

IV. INITIAL VERIFICATION

To validate the initial architecture design, we prepare and

verify an NDN-enabled experimental environment based on

the EnGINE framework. We then extend the NDN implemen-

tation with support for LL INTERESTS. The resulting system

enables verification of ICN concept in the context of TSN and

is provided as an open-source repository5.

A. Experimental Environment

To enable experimentation on ICN-enabled TSN systems,

we extend the EnGINE framework with support for NDN, fol-

lowing the four-phase experiment execution flow of EnGINE.

In the first phase, install, the experimental nodes are booted.

The second phase, setup, is responsible for installing all

required dependencies. We extend it to install software relevant

for ICN. As we are using C++ NDN implementation, these

dependencies include the ndn-cxx6, NDN Forwarding Daemon

(NFD)7, and ndn-traffic-generator8. These are compiled from

source, enabling experimentation with modified NDN code.

The experiments are set up and executed in the third phase,

scenario. Firstly, we extend EnGINE’s experiment configura-

tion with the ability to place NFD on select nodes. We then

utilize EnGINE’s Open vSwitch-based flow configuration ca-

pabilities to enable point-to-point, NDN-enabled connections.

As outlined in Figure 2, each of these flows 1⃝ follows a

pre-defined path over a static network and terminates at se-

lected nodes with virtual flow interfaces 2⃝. The orchestration

framework automatically associates these with their respective

NFD faces 3⃝. Those are used to associate traffic flowing

through a NFD face with a Virtual LAN Priority Code Point,

as well as Linux Socket Buffer priority 4⃝. Priorities are

applied using the cgroups9 utility, specifying traffic priority

on the flow interfaces. Such arrangement enables per-face

QoS enforcement using TSN traffic shapers 5⃝, following

EnGINE’s qdisc configuration capabilities.

In the next step, the NFD content store is disabled, and

the NDN routing is configured. As indicated in Figure 2,

all reachable nodes on a given priority are associated with

an appropriate face. A similar static configuration would

typically be used in systems with deterministic guarantees.

While we defer a final design for naming, in our prototype, the

scheme always includes /node-X/prioY/data-name,

with node-X specifying the node, prioY specifying the

priority, and a data-name indicating specific DATA. This

naming scheme follows suggestions introduced in [22] and

5https://github.com/rezabfil-sec/engine-framework
6https://github.com/named-data/ndn-cxx
7https://github.com/named-data/NFD
8https://github.com/named-data/ndn-traffic-generator
9https://docs.kernel.org/admin-guide/cgroup-v2.html

can easily be adjusted in the future. To generate traffic on the

NDN-enabled nodes, we utilize a customized implementation

of the ndn-traffic-generator outlined in Section IV-B. We ab-

stract its settings, utilizing the EnGINE configuration format.

The result collection follows the EnGINE pipeline, with

packets being recorded by the tcpdump utility. To process the

recorded information, in the fourth phase, process, we modify

the pipeline that automatically parses collected packet traces

to additionally extract NDN-specific details. Collected fields

include the packet’s timestamp, type (INTEREST or DATA),

and sequence number embedded in the name or the payload

by the ndn-traffic-generator, as indicated in Section IV-B. If

the sequence number is absent, we use the nonce associated

with the packets. However, this method is not always reliable

or applicable. This information is collected and saved into a

CSV file for each defined data name on every interface in

the network. With PTP actively synchronizing clocks across

network nodes in all experiments, these files can then be

correlated to directly calculate the end-to-end delay or jitter.

B. Support for LL INTERESTS

We realize LL INTERESTS as an extension to ndn-cxx and

NFD. The LL Type-Length-Value field is implemented as an

additional description in ndn-cxx definition of INTERESTS,

alongside all required methods to set and read it. To support

these, the implementation of NDN face was also slightly

adjusted, allowing the consumer to receive multiple data

packets responding to a single INTEREST. Note that the initial

implementation does not consider or support caching.

The NFD’s INTEREST and DATA handling is enhanced

with support for the LL type. The PIT entries include a flag

indicating whether the incoming INTEREST contained the LL

type. The data forwarding pipeline is modified to not remove

LL PIT entries when they matched an incoming DATA. These

entries are only removed when an appropriate NACK packet

is received or the timer based on the interest lifetime expires.

Using ndn-traffic-generator’s ndn-traffic-server, we imple-

ment ndn-traffic-push that can generate push data traffic.

The server’s functionality is modified to only register the

name prefix with the forwarder without including the methods

usually used to react to incoming INTERESTS. The DATA

packets are then generated in a loop based on a configured

interval and subsequently sent to the NFD. Both the server

and push application are further extended to include sequence

numbers encoded in the payload. This is later used to accu-

rately correlate the DATA packets between the producer and

the consumer. We do not adjust the metrics calculation of

the ndn-traffic-generator, as we calculate relevant ones using

EnGINE’s evaluation capabilities. We further extend the ndn-

traffic-client to support generating INTERESTS with LL type

field and accept multiple returning DATA packets for each.

V. EXPERIMENTS AND EVALUATION

To validate the experimental environment and the LL IN-

TERESTS concept, we build a simple network of eight nodes

interconnected using Intel I210 NICs. Each node runs Linux

2024 IFIP Networking Conference (IFIP Networking)

7234

NFD

Face A
HiPrio

Face A
LowPrio

NIC

Flow A
Interface

Flow B
Interface

OvS
Switch

Virtual
VLAN

Interface

Qdisc 1

Qdisc 2

Qdisc N

Directly
connected
node

Assign lower
priority

Flow B @
PCP 2

Qdiscs police
traffic

according to
priority

Same
arrangement

repeated on the
other side

Other
Face

Other
Face

Priorities
assigned per
interface with

cgroups

Parent
Qdisc

Flow A @
PCP 3

Could also be
connected via a
simple switched

network

Two (or more) flows on
the exact same routes
between NFD faces

Route to
/RemNode/prio2/DataName

1

1
2

Assign higher
priority

2

3

3

Route to
/RemNode/prio3/DataName

4

4

5

PIT

FIB

Producer

Consumer

Enhanced with support
for Long-Lived Interests

Supports request-
response or data
push operation

Supports request-
response or Long-Lived

Interest operation

Serves, e.g,
/LocNode/prio3/DataName

Requests/Subscribes to, e.g.,
/RemNode/prio2/DataName

Fig. 2. Overview of components required to integrate per-face Layer 2 priority assignment and enforcement in EnGINE.

Producer Node 1 Node 2
NFD NFDNFD

Node 4
NFD

Node 3
NFD

PR @P3
PR @P2

Consumer
NFDC @P3

C @P2

Node 6
NFD

Node 5
NFD

 Interest
 Data

Fig. 3. Overview of the network used for experiments. C and PR indicate
consumer or producer with @PX defining their priority X .

with 5.15.0-89-lowlatency kernel on Intel Xeon E3-

1265L V2 CPU, forming a line topology with seven hops, as

shown in Figure 3, with NFDs placed on each hop. We follow

EnGINE CPU management policies and isolate the NFD and

other relevant components. We designed two experiment types

to validate the system, following the guidelines in [13]. The

first experiment uses only MQPRIO and does not apply any

traffic shaping. We then include adequate shaping on each

involved interface using the CBS. Each experiment lasts 40 s.

On the Producer, we configure two generators offering

DATA on priority 3 (higher) and priority 2 (lower). On the

Consumer, we place two clients, each requesting data on the

respective priorities. We distinguish between two scenarios.

The first one, NDN-RR, utilizes the normal NDN request-

response communication with sequence numbers encoded in

the name. The consumer sends INTERESTS every 250 µs with

PHY size of 88B. The producer fulfills the INTERESTS with

DATA of 1250B, resulting in PHY frames of up to 1373B.

In the second scenario, NDN-LL, we use our implementation

utilizing LL INTERESTS. The clients send INTERESTS every

500ms with the LL type set and size of 88B. The producer

pushes DATA packets every 250 µs with a payload of 1250B.

The sequence number is encoded in the payload, enabling

post-processing and resulting in PHY frames of 1364B.

For the CBS experiments, the shaper is configured on two

hardware queues, individually for each priority. The shaping

is set up adequately for the traffic patterns and packet sizes

expected in each direction. We verified that the respective

qdiscs shape the traffic accordingly for all experiments.

As a baseline, we run experiments with UDP traffic in the

DATA direction generated with Iperf3. The same payload of

1250B (PHY size of 1320B) every 250 µs is sent. In CBS

experiments, we configure the traffic shaper accordingly.

To validate NDN’s use with TSN, we look at end-to-end

statistics of NDN DATA and Iperf3 packets. Figure 4 shows

delay box plots, with the dashed horizontal lines representing

Fig. 4. Measured end-to-end delay in experimental environment validation

Fig. 5. Measured jitter of end-to-end delay for environment validation

2ms and 10ms target for SR classes A and B. The whiskers

are configured to show values within 1.5 times inter-quartile

range. The left half of the figure shows priority 3 and the

right one results for priority 2 traffic. We observe generally

lower latencies when Iperf3 is used, with both NDN-RR and

NDN-LL performing comparably. Most of the measured delay

values fall within the requirements of SR classes A and B.

When no shaping is used, Iperf3 on priority 3 observed an

average latency of 1.02ms, lower by 0.61ms when compared

to NDN-RR and by 0.43ms when compared to NDN-LL.

Recorded values and differences were comparable for priority

2 flows. With CBS traffic shaping, the average delay was also

lower for Iperf3 on both priorities and measured at 1.18ms.

The mean latency in NDN-RR scenario was higher by 0.24ms

and in NDN-LL by 0.37ms. Recorded values and differences

were again comparable for flows placed on priority 2.

Figure 5 shows jitter, being the variation in latency between

two consecutive packets. The figure and boxplot structure

follows this of Figure 4, with the red lines indicating the jitter

target of 125 µs and 1000 µs for SR classes A and B. We again

observe that most recorded values fall within the respective

2024 IFIP Networking Conference (IFIP Networking)

7245

requirements of each class. While we notice generally higher

jitter in NDN experiments, when the traffic was policed with

CBS, the jitter for Iperf3 flows was significantly lower.

Comparing the experiments further shows the overhead

reduction. In NDN-RR, each consumer on each priority gen-

erated INTERESTS at a rate of 2816.05 kbit/s. For NDN-LL,

this was reduced to 1.43 kbit/s. The bitrate ratio of DATA per

INTEREST is improved from 15.6 in NDN-RR to 30 610 in

NDN-LL. We also observe a significant change in ratios of

packet numbers from 1 to 2000 DATA packets per INTEREST.

Those values are specific to this scenario and will differ when

different payload sizes and traffic patterns are used.

We believe that NDN combined with TSN traffic shaping is

a feasible approach to the realization of an ICN-enabled real-

time system. We observe a somewhat worse performance of

NDN when compared with IP-based results using Iperf3. The

classic NDN implementation performs similarly to that with

LL INTERESTS, indicating that push-based traffic generation

does not negatively impact the system. However, the NDN

implementations present a worst-case scenario as its code is

executed in user space. With a kernel-space or hardware-based

implementation of the forwarder, we would likely observe

improved fulfillment of SR class A and B requirements.

VI. CONCLUSION AND FUTURE WORK

In this work, we introduced a hardware-based environment

for the assessment of ICN-based solutions in TSN systems.

Our solution is based on the open-source EnGINE frame-

work, into which we integrate support for NDN. Using this

environment, we show that NDN is a promising alternative to

IP, fulfilling the requirements of 2ms delay and 125 µs jitter

for most recorded values. We further proposed an ICN-based

architecture for time-sensitive networks. The architecture aims

to ease the interaction with or migration from legacy bus

systems to TSN-based Ethernet networks. Utilizing long-lived

interests, we enable a pub/sub-like behavior in NDN, reducing

the overhead of otherwise used request-response exchanges.

Being ICN-based, the architecture supports content addressing

with named message identifier schemes such as VSS.

In the future, the correlation of named traffic with TCL

priorities should be investigated further. Adequate priority

encoding could also improve caching support. Best-effort and

lower-priority consumers could benefit from such cached data

on the forwarders, minimizing the overhead of their request-

response communication. Routing is another aspect requiring

further investigation. The currently considered static case

should be extended with dynamic routing. Route reconfig-

uration is especially relevant for safety in systems such as

IVNs. These networks must quickly react to failures while

maintaining support for safety-critical functions.

ACKNOWLEDGMENT

This work was supported by the German Federal Ministry

of Education and Research joint project 6G-life (16KISK002).

We thank Atacan Iyidogan for his support implementing NDN

into the EnGINE framework.

REFERENCES

[1] T. Häckel, P. Meyer, F. Korf, and T. C. Schmidt, “Secure time-
sensitive software-defined networking in vehicles,” IEEE Transactions

on Vehicular Technology, vol. 72, no. 1, pp. 35–51, 2023.
[2] “Ieee standard for local and metropolitan area networks–bridges and

bridged networks,” IEEE Std 802.1Q-2022, pp. 1–2163, 2022.
[3] R. B. GmbH, “Can specification version 2.0,” Stuttgart, Germany, 1991.
[4] L. L. Bello and W. Steiner, “A perspective on ieee time-sensitive

networking for industrial communication and automation systems,”
Proceedings of the IEEE, vol. 107, no. 6, pp. 1094–1120, 2019.

[5] R. A. Peña, M. Pascual, A. Astarloa, D. Uribe, and J. Inchausti, “Impact
of macsec security on tsn traffic,” in 2022 37th Conference on Design

of Circuits and Integrated Circuits (DCIS), 2022, pp. 01–06.
[6] C. Papadopoulos, S. Shannigrahi, and A. Afanaseyv, “In-vehicle net-

working with ndn,” in Proceedings of the 8th ACM Conference on

Information-Centric Networking, New York, USA, 2021, p. 127–129.
[7] A. H. Nagaraj, M. P. Tahiliani, D. Tandur, and H. Satheesh, “Leveraging

named data networking for industrial automation: Opportunities and
challenges,” in 2020 IEEE International Conference on Communications

Workshops (ICC Workshops), 2020, pp. 1–6.
[8] P. Moll, D. Posch, and H. Hellwagner, “Investigation of push-based

traffic for conversational services in named data networking,” in 2017

IEEE International Conference on Multimedia & Expo Workshops

(ICMEW). IEEE, 2017, pp. 315–320.
[9] F. Rezabek, M. Bosk, T. Paul, K. Holzinger, S. Gallenmüller, A. Gon-

zalez, A. Kane, F. Fons, Z. Haigang, G. Carle, and J. Ott, “Engine:
Flexible research infrastructure for reliable and scalable time sensitive
networks,” Journal of Network and Systems Management, vol. 30, no. 4,
p. 74, 2022.

[10] D. Kutscher, S. Eum, K. Pentikousis, I. Psaras, D. Corujo, D. Saucez,
T. C. Schmidt, and M. Wählisch, “Information-Centric Networking
(ICN) Research Challenges,” RFC 7927, Jul. 2016.

[11] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, k. claffy, P. Crowley,
C. Papadopoulos, L. Wang, and B. Zhang, “Named data networking,”
SIGCOMM Comput. Commun. Rev., vol. 44, no. 3, p. 66–73, jul 2014.

[12] “Ieee standard for local and metropolitan area networks–timing and
synchronization for time-sensitive applications,” (2020).

[13] M. Bosk, F. Rezabek, K. Holzinger, A. G. Marino, A. A. Kane, F. Fons,
J. Ott, and G. Carle, “Methodology and infrastructure for tsn-based
reproducible network experiments,” IEEE Access, vol. 10, pp. 109 203–
109 239, 2022.

[14] M. Ulbricht, S. Senk, H. K. Nazari, H.-H. Liu, M. Reisslein, G. T.
Nguyen, and F. H. P. Fitzek, “Tsn-flextest: Flexible tsn measurement
testbed,” IEEE Transactions on Network and Service Management, pp.
1–1, 2023.

[15] A. Varga, “Omnet++,” Modeling and tools for network simulation, pp.
35–59, 2010.

[16] Z. Threet, C. Papadopoulos, W. Lambert, P. Podder, S. Thanasoulas,
A. Afanasyev, S. Ghafoor, and S. Shannigrahi, “Securing automotive
architectures with named data networking,” in 2022 IEEE 25th Interna-

tional Conference on Intelligent Transportation Systems (ITSC), 2022,
pp. 2663–2668.

[17] A. H. Nagaraj, B. Kataria, A. Sohoni, M. P. Tahiliani, D. Tandur, and
H. Satheesh, “On the importance of traffic control subsystem in icn-
based industrial networks,” in 2020 IEEE International Conference on

Advanced Networks and Telecommunications Systems (ANTS), 2020.
[18] P. Moll, S. Theuermann, and H. Hellwagner, “Persistent interests in

named data networking,” in 2018 IEEE 87th Vehicular Technology

Conference (VTC Spring). IEEE, 2018, pp. 1–5.
[19] S. E. Deering, “Host extensions for IP multicasting,” RFC 1112, Aug.

1989. [Online]. Available: https://www.rfc-editor.org/info/rfc1112
[20] B. Fenner, H. He, B. Haberman, and H. Sandick, “Internet Group

Management Protocol (IGMP) / Multicast Listener Discovery (MLD)-
Based Multicast Forwarding (”IGMP/MLD Proxying”),” RFC 4605,
Aug. 2006. [Online]. Available: https://www.rfc-editor.org/info/rfc4605

[21] B. Leander, B. Johansson, T. Lindström, O. Holmgren, T. Nolte, and
A. V. Papadopoulos, “Dependability and security aspects of network-
centric control,” in 2023 IEEE 28th International Conference on Emerg-

ing Technologies and Factory Automation (ETFA). IEEE, 2023, pp. 1–8.
[22] I. Moiseenko and D. R. Oran, “Flow Classification in

Information Centric Networking,” Jan. 2021. [Online]. Available:
https://datatracker.ietf.org/doc/draft-moiseenko-icnrg-flowclass/07/

2024 IFIP Networking Conference (IFIP Networking)

7256

