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Abstract—Software Defined Networking (SDN) is a well-
established networking paradigm that enables granular
network control and optimisation via Traffic Engineering
(TE). A promising approach to SDN TE is to use centralised
Deep Reinforcement Learning (DRL) enabling automated
operation and optimisation both short and long-term.
Despite excellent performance, the centralised DRL suffers
from scalability and convergence issues, limiting its appli-
cability. On the other hand, DRL exploitation in a multi-
domain SDN environment is not well explored yet despite
several benefits coming from operations distribution, such
as better scalability or reduced impact of latency on Data
Plane metrics collection. This paper presents the DRL-
based routing approach targeting load balancing in a hie-
rarchical multi-controller SDN. The concept yields network
capacity gains over conventional routing methods. Apart
from the improved scalability, the approach facilitates
application in hybrid network deployments with limited
interaction and visibility of domains’ internals due to used
abstractions of topology, metrics and path operations.

Index Terms—6G, SDN, AI, DRL, User Plane, Data
Plane, Control Plane, traffic engineering, load balancing,
multi-agent system, DDPG, multi-domain routing

I. INTRODUCTION

6G networks are commonly assumed to embed self-
optimisation mechanisms in the future [1]. Software-
Defined Network (SDN) is a well-established networ-
king paradigm foreseen to play an important role in
this context. The separation of Control Plane (CP)
and Data Plane (DP) facilitates network traffic control
and optimisation by Traffic Engineering (TE) applica-
tions. The classical SDN concept, due to centralisation,
raises scalability issues in large networks. To solve
this problem, distributed SDN architectures are often
adopted [2], which complicate End-to-End (E2E) TE.
The conventional TE methods, e.g., Open Shortest Path
First (OSPF) [3], are not well suited for long-term
optimisation, underperform in complex environments
with rapid traffic fluctuations and lack the visibility
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of E2E network dynamics. A promising TE approach
is to use Deep Reinforcement Learning (DRL), which
dynamically adapts to variable conditions and is able to
exploit complex environment properties.

Today, very few concepts combine DRL and dis-
tributed SDN to provide local and E2E optimisation
simultaneously. Usually, a centralised model is adopted,
which is unsuitable for carrier-grade networks due to
poor scalability [4]. This paper proposes a novel multi-
agent Deep Deterministic Policy Gradient (DDPG)-
based routing algorithm, called Hierarchical Deep Rein-
forcement Learning Load Balancer (HDRL-LB), impro-
ving load distribution and total network capacity at both
domain and global levels in a hierarchical multi-domain
SDN. HDRL-LB introduces abstractions of topology,
metrics and CP operations to support hybrid environ-
ments. The evaluation showed over 10% improvement
of throughput compared to baseline state-of-the-art me-
thods and fast policy convergence.

II. RELATED WORK

Future heterogeneous and distributed User Plane (UP)
will require granular traffic control to provision E2E
Quality of Service (QoS) [1]. TE will need to consider
the current network state and imperceptible properties
manifesting, e.g., in different traffic peaks seasonality,
traffic types share, mobility patterns, etc. The DRL is
promising in this context due to its ability to adapt to
the environment traits by using the action-reward me-
chanism. The academia proposed several Reinforcement
Learning (RL)/DRL frameworks for centralised SDN
featuring automatic routing [5], [6] or load-balancing
[7] to improve throughput and delay. The solutions,
however, have not been tested in multi-domain SDN.

A routing concept for hierarchical multi-controller
SDN has been proposed in [8]. The SDN Controllers
(SDNCs) cooperate to find weighted shortest paths at the
domain and global levels to avoid congestion. The col-
laborative multi-domain routing framework exploiting
Integer Linear Programming (ILP) has been proposed
in [9]. It ensures delay and bandwidth and maximises
network usage. The DisTE approach provides max-
min fair bandwidth allocation for flows and maximises
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resource usage in a multi-domain SDN [10]. The do-
mains’ synchronisation mechanism mitigates the selfish
SDNCs’ behaviour to obtain a consistent policy. The
multi-agent cross-domain routing framework has been
proposed in [11], which uses prediction to improve
measurement reliability and DRL agents’ performance.

Whereas TE in SDN is a well-known problem, the
E2E optimisation of multi-domain SDN is not well
addressed yet. Also, the scalability of SDNC operations
is usually neglected. Hereby, we propose a scalable
DRL-based TE algorithm that can be efficiently used
in hierarchical multi-domain SDN setups.

III. HIERARCHICAL DEEP REINFORCEMENT
LEARNING LOAD BALANCER (HDRL-LB)

A. Concept description

The key issues regarding wide-scale SDN implemen-
tation are SDN scalability and E2E TE. Distribution of
control, while offloading each SDNCs and increasing
scalability, increases the complexity of E2E TE. First,
the optimisation is performed internally within each
domain without a global view of its impact on the whole
network. This can lead to a load imbalance on the inter-
domain links and potentially to congestion and QoS
degradation in the neighbouring domains. The uncoor-
dinated approach to multi-domain TE can also lead to
traffic imbalance in the network domains and inefficient
resource usage. Second, reaching optimal local states
does not imply achieving the global optimum. Therefore,
to achieve E2E network optimisation in multi-domain
SDN, there is a need to combine local and global TE to
i) continuously search for a global optimum; ii) enable
exploration of local search spaces; and iii) provide global
optimisation without disruption of local operations.

The HDRL-LB algorithm addresses the above-
mentioned issues. We adopt a multi-domain hierarchical
SDN architecture (cf. Fig. 1) composed of i) Global
SDN Controller (GSDNC) – a global network control
entity that handles inter-domain operations (routing,
metrics collection, E2E path enforcement by delegating
path creation to respective SDNCs) using the network
graph abstractions (cf. Section III-B); ii) domain SDNCs
responsible for intra-domain operations; iii) agents re-
sponsible for the global- and domain-level optimisations,
i.e., Global Load Balancing Agent (GLBA) and Domain
Load Balancing Agents (DLBAs), respectively. The lat-
ter ones are responsible for the periodic calculation
of routing graphs(cf. Sec. III-C), which are used by
SDNC/GSDNC for routing and path enforcement (using
SDN CP). Also, to stabilise the network and enable
domain-level routing adaptation, the global routing graph
is updated much less frequently than domain ones.

The components jointly provide the E2E routing and
E2E TE targeting improvement of network load dis-
tribution and throughput (cf. Sec. III-C). To improve

scalability, GSDNC sees only the abstracted view of
the network composed of Border Nodes (BNs) – nodes
connected to data sources/sinks or terminating inter-
domain links, hosts, inter-domain links, and abstracted
links – the connections between BNs pairs belonging to
the same domain (cf. Fig. 1). Also, to reduce the number
of CP operations and offload SDNCs, the domain and
overlay routing graphs do not affect the already routed
flows, only the new ones. This approach, combined with
the ability to distribute the E2E routing across multiple
SDNCs, contributes to the SDN scalability.
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Fig. 1. HDRL-LB entities, interactions and DP views, i.e., network
switches (circles) and hosts (rectangles), on each hierarchy level

When a new flow arrives in the network, SDNC
identifies the routing case. If the target lies within do-
main boundaries, SDNC performs intra-domain routing.
Otherwise, the flow metadata are forwarded to GSDNC,
which performs the inter-domain routing. The output
E2E path, in this case, is composed of BNs between the
flow’s source and target. Next, the path is split based on
the BNs domain membership and enforced by respective
SDNCs (performing intra-domain routing for the node
pairs). In both cases, SDNCs and GSDNC compute the
shortest paths using the Dijkstra algorithm on routing
graphs with edge weights computed by agents.

To enable dynamic and autonomous UP optimisa-
tion, HDRL-LB uses modified DDPG [12], which uses
Double Deep Q-Network (DDQN)-based [13] critic to
mitigate initial over-optimism [14] and improve policy
convergence. Its sample efficiency also contributes to
SDN scalability by enabling less frequent DP sampling.
In HDRL-LB, DLBAs exchanges with GLBA abstrac-
ted metrics. It supports the operation in hybrid multi-
provider SDN environments, implementing different TE
mechanisms within the domains. Hereby, we consider
full operator’s control over the underlying domains to
assess the full HDRL-LB benefits. Finally, to leverage
quasi-periodic demand peaks in the UP (i.e., busy hours)
[15], we add time to the environment’s state vector.
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B. Network model

We consider the multi-domain network supervised by
the centralised entity with a limited view of the domains’
internals (cf. Section III-A). The topology is represented
by an undirected graph G(V,E), where V is a set of
vertices and E is a set of edges. Hosts H (connected to
vertices v of V ) constitute traffic sources and sinks. We
consider two network views: a global (abstracted) and
domain one, denoted as Gg(V g, Eg) and Gd(V d, Ed)
respectively (d ∈ D, where D is a set of domains).
Domain switches combine a set V d = [vd1 , v

d
2 , ..., v

d
n]

and edges a set Ed = [ed12, e
d
13, ..., e

d
ij ], where d denotes

the node’s domain and i, j the vertices vi, vj (V g =
[vg1 , v

g
2 ..., v

g
n] and Eg = [eg12, e

g
13, ..., e

g
ij ] for the global

graph). Domain hosts constitute a set Hd = [hd
1, ..., h

d
m],

where m is their number (all hosts in Hg case). The link
connecting hd

m with a switch has capacity cdm and band-
width bdm. All hosts are visible from the global view, i.e.,
Hd ⊂ Hg . In terms of vertices, the global network view
is limited to the domain gateways (switches connected
to hosts or inter-domain links), i.e., V g ⊂ V , where
vdi ∈ V g iff ∃vd

j ∈N(vi)v
d
j ∈ Hd ∨ dvi ̸= dvj . The

components at the global level see the abstracted edges
(cf. Fig. 1). Each link eij has capacity cij , and handles
aggregate traffic bij resulting in utilisation uij (eq. 1).

uij =
bij
cij

(1)

For each domain, a set Ud = [ud
12, u

d
13, ...u

d
ij ]

describing the utilisation of the links Ed is defined
(Ug = [ug

12, u
g
13, ...u

g
ij ] for the global graph links Eg).

The capacity of abstracted links observed by GLBA
is calculated using fmax function (e.g., by using the
Ford–Fulkerson algorithm) as shown in eq. 2.

cgij =

{
cij iff dvi ̸= dvj
fmax(vi, vj) iff dvi = dvj

(2)

The utilisation ug
ij of the abstracted edge egij , is cal-

culated by subtracting the current capacity under traffic
(cgb) from the nominal one (cg) and normalisation, i.e.,
ug
ij = (cgij − cgbij )/c

g
ij . Each traffic flow is described

by a tuple f = (b, t, hsrc, hdst), containing consumed
bandwidth b (variable in time), flow duration t, source
hsrc and destination nodes hdst.

C. Algorithm principles

HDRL-LB aims to solve the dynamic flow allocation
problem to improve load distribution across the network
links and domains and increase aggregate global and
domain-level throughput. The optimised metrics are load
balancing factor (eq. 3) and total host throughput (eq. 4).

φ =

n∑
i=1

n∑
j=1

i̸=j

|uij − avg(U)| (3)

Γ =

m∑
i=1

bi (4)

The HDRL-LB target is the combination of conflicting
goals for domain and global level entities (eq. 5 and 6).

min(φd)

max(Γd)
(5)

min(φg)

max(Γg)
(6)

We model the multi-domain hierarchical SDN net-
work as the combination of standard RL settings (i.e.,
a set of stochastic domain environments constituting a
stochastic global environment) and model each one as
Markov Decision Process (MDP) represented by tuples
M = (S;A;T;R), where S – set of states st, A –
set of actions a, T – transition probability from state
st to st+1 at time t after taking action at, R – reward
function specifying reward rt for st to st+1 transition.
We model the environment state s as the vector com-
posed of utilisation ud

ij of domain links (utilisation ug
ij

of abstracted links in GLBA case) and the normalised
time tnorm = (tcur mod tdur)/tdur, where tcur is the
current time and tdur the duration of a day. Based on the
state information, the DRL agents’ output actions at –
the routing graphs used by SDNCs/GSDNC. The agents’
policies are evaluated using the reward functions shown
in eq. 7 and eq. 8 (DLBAs and GLBA, respectively).

rd = Γd − (φd + φda) (7)

rg = Γg − φg (8)

Where φda denotes the abstracted domain load balan-
cing factor (i.e., φ calculated using the single domain
graph abstraction as perceived by GLBA) and aggregate
throughput Γg is calculated as shown in eq. 9.

Γg =

D∑
d=1

Γd (9)

GLBA is focused on the load distribution across the
abstracted and inter-domain links and total throughput
as both contribute to the network operator’s profits
(capacity and energy savings due to even load per node).
The DLBA reward considers the load balancing factors
of domain φd and the abstracted domain φda. The latter
makes DLBA pursue not only the “selfish” domain-
level goals but also the global ones by considering
the load imbalance on domains’ abstracted links. As
DLBAs try to reach domain goals, GLBA stabilises the
traffic distribution across the whole network, neglecting
the impact of rapid intra-domain routing changes. The
interactions between the agents are shown in Fig. 2.

The network state is acquired by dedicated entities.
For DLBA, it is done by the Metrics Calculator (MC),
which assembles state information sdt provided by SDNC
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Fig. 2. Data exchange between the domain and global level entities

(i.a., bij , cij , uij , bm) and calculates Γd and φd. The
DLBA’s actor consumes sdt to provide domain routing
graph adt . MC also derives the abstracted domain graph
to obtain the abstracted domain load balancing factor
φda for DLBA reward calculation. The abstracted do-
main graph is extended by the visible inter-domain links
(with associated parameters) to obtain abstracted domain
state sdat provided to Global Metrics Calculator (GMC).
GMC joins the sdat received from each domain (elimi-
nating link duplication) to get a global network state
sgt , which is used to obtain rewards and global routing
graph agt , as in DLBA case. The routing graphs are
sent to relevant SDNCs/GSDNC to be used for Dijkstra-
based routing until the next update by DLBA/GLBA.
Due to SDN specifics, to reduce SDNC load, the policy
is updated every time interval T x (T d for DLBA, T g

for GLBA, T g >> T d), equal to the state sampling
frequency. Each domain can, therefore, operate at a
different time scale, as the network flows are routed
using the current domains’ routing graphs.

IV. CONCEPT EVALUATION AND RESULTS

To evaluate the HDRL-LB benefits, we conducted
a set of tests verifying: i) performance gains under
different network loads and traffic types; ii) the impact
of the GLBA’s overlay routing graph on the E2E perfor-
mance. The tests were conducted under the Geant2019
[16] topology (40 nodes, 61 links), instantiated using
the TopologyZoo dataset [17]. We divided topology
into three domains (Fluid Communities algorithm), each
managed and optimised by an SDNC/DLBA pair (cf.
Fig. 3) and added a total of 15 hosts. Each link capacity
was set to 20 Mbps. The influx of flow requests was
modelled with the Poisson process with λ = 3 (20 flows
per minute). Six test scenarios were conducted, corre-
sponding to 50%, 75%, and 100% network loads for
Transport Control Protocol (TCP) and User Datagram
Protocol (UDP) traffic (cf. Table I), which was generated
using iPerf3 [18] library. As the basis for comparison,
we used Weighted Dijkstra (WD), which selects the best
path based on the current link utilisation.

Fig. 3. GÉANT topology used for HDRL-LB evaluation [16] split
into 3 domains, each handled by individual SDNC

TABLE I
TEST SCENARIOS

Scenario Flows
Throughput [Mbps]

Avg. Flows
Throughput [Mbps] Type Network

Load [%]
SC1 U(5.2, 8.6) 6.9 TCP 100
SC2 U(3.9, 6.5) 5.2 TCP 75
SC3 U(2.6, 4.3) 3.5 TCP 50
SC4 U(5.2, 8.6) 6.9 UDP 100
SC5 U(3.9, 6.5) 5.2 UDP 75
SC6 U(2.6, 4.3) 3.5 UDP 50

Experiments were conducted in the hierarchical
multi-domain SDN emulation using Mininet [19] with
OpenFlow-enabled Open vSwitches [20], Ryu [21]
SDNC and Python-based DLBA, GLBA, and GSDNC.
The agents used Keras with TensorFlow back-end [22].

A. Performance

We evaluated the performance gains using the follo-
wing metrics: capacity improvements (total volume con-
veyed by the network), network availability (number of
served/missed flows) and user-perceived throughput (ob-
tained using time- and episode-correlated client/server
iPerf3 logs). Fig. 4 presents the improvements regarding
the throughput Γ experienced by individual hosts.

SC1 SC2 SC3 SC4 SC5 SC60

2

4

6

8

10

 [M
bp

s]

WD
HDRL-LB

Fig. 4. Average Γ experienced by hosts (white dots – mean value)

In every case using HDRL-LB has led to improved
average Γ. The first and third quartiles of Γ are higher
for HDRL-LB than for the reference WD method.
The general Γ improvement implies better throughput
of individual network switches, linked with reduced
buffering in the switches’ ingress and egress queues.
The latter indicates better load distribution across the
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network components improving the total carrying capa-
city. For the highest load scenarios, some values exceed
the nominal maximum throughput specified in the test
configurations (cf. Table I). This is due to the iPerf3
library configuration, which takes the average throughput
as the input without the possibility of setting the upper
bound of generated traffic for bursts in each interval. The
results show similar trends for TCP and UDP traffic.

The biggest gains of HDRL-LB are achieved in the
highest load scenarios (cf. Table II). Using HDRL-LB
increases the aggregate data volume sent in the network
(over 8.5% gain on average) and average throughput
from 11.5% to almost 12.5% in the case of WD and
TCP traffic (respectively, over 8% and 10.5% for UDP
flows). Also, an almost 50% decrease of missed TCP
flows can be observed. In UDP case, consecutive policy
improvement led to a 30% decrease of flow drops after
episode 50. In both cases, the improvement is achieved
due to better load distribution and lowered congestion.

B. Convergence

In Fig. 5 and Fig. 6, the rewards obtained by the agents
for all TCP and UDP traffic scenarios are presented.
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Fig. 5. Total rewards accumulated by the HDRL-LB agents across the
training episodes under different TCP traffic loads
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Fig. 6. Total rewards accumulated by the HDRL-LB agents across the
training episodes under different UDP traffic loads

In every case, the convergence of the domain-level
agents is relatively fast as the decent policy is reached
after episode 20 with only minor improvements later
on. The disproportions across the agents’ rewards are
linked with the domain topology, size, and the number of
hosts. GLBA features the worst convergence due to the
effects of conflicting domain-level policies. Nonetheless,

a slight improvement during the training process can be
seen. The poor stability of GLBA’s learning is caused by
the small number of domains corresponding to a limited
number of states observed by the agent (and limited
possibilities regarding load balancing across domains).
Also, HDRL-LB uses the DDPG without convergence-
oriented extensions, e.g., prioritised replay [7].

C. Impact of overlay routing graph

We evaluated the impact of using the overlay routing
graph by running the highest load scenarios (SC1, SC4)
without the operating GLBA, i.e., with the inter-domain
routing performed using WD and intra-domain routing
using modified DDPG with the same setup as in HDRL-
LB case). The rewards accumulated by the agents in SC1
and SC4 are presented in Fig. 7 and Fig. 8, respectively.
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Fig. 7. Total rewards obtained for scenario SC1 using HDRL-LB
algorithm vs. uncoordinated DDPG agents (without GLBA)
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Fig. 8. Total rewards obtained for scenario SC4 using HDRL-LB
algorithm vs. uncoordinated DDPG agents (without GLBA)

Similar policy convergence can be seen for supervised
and non-supervised cases. While the global routing
graph enforces some general rules on domain-level rou-
ting (i.e., selects the BNs), there is no apparent impact
on the convergence of DLBAs policies. However, the
following benefits of using the overlay routing graph
can be observed (cf. Fig. 7 and Fig. 8):

• more even reward distribution across domains,
which reflects efficient domain load balancing;

• higher aggregate reward for domain agents (SC1:
around 50% gain for D1, D2 and around 10% for
D3; SC4: 30% for D1, 50% D2, up to 10% for D3);

• higher total reward obtained by the agents.
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TABLE II
CUMULATIVE PERFORMANCE COMPARISON OF HDRL-LB VS. WD ACROSS TRAINING EPISODES FOR HIGHEST LOAD SCENARIOS

Episode
Aggregate Data [GB] Average Γ [Mbps] Missed Flows [%]

SCHDRL-LB WD Gain [%] HDRL-LB WD Gain [%] HDRL-LB WD Gain [%]
10 26.5 24.4 8.61 3.87 3.47 11.6 0.31 0.62 50.0

SC
1

(T
C

P)20 51.7 56.1 8.51 3.88 3.46 11.9 0.28 0.56 50.0
30 78.7 85.7 8.89 3.89 3.46 12.4 0.25 0.55 54.5
40 106.1 115.2 8.58 3.89 3.46 12.4 0.24 0.48 50.0
50 133.3 144.8 8.63 3.89 3.46 12.4 0.24 0.45 46.7
10 24.4 26.4 8.2 3.51 3.87 10.3 0.36 0.34 -5.6

SC
4

(U
D

P)20 51.5 55.7 8.2 3.51 3.88 10.5 0.33 0.32 -3.0
30 78.7 85.1 8.1 3.51 3.87 10.5 0.30 0.33 10.0
40 105.9 114.5 8.1 3.51 3.9 10.6 0.26 0.32 23.1
50 133.1 143.8 8.0 3.50 3.9 10.7 0.24 0.32 33.3

The above gains come solely from supervising GLBA
and using network abstractions. The latter contributes
to increased privacy and reusability as HDRL-LB can
be applied in heterogeneous environments (comprising
SDN and non-SDN domains) with limited access to the
domains’ internals and operations.

V. SUMMARY AND CONCLUSIONS

This paper presents a novel multi-agent DDPG-based
routing algorithm for dynamic load-balancing in hie-
rarchical multi-domain SDN (HDRL-LB). The domain-
level optimisation is done at a fast scale to support
rapid traffic fluctuation, while the global one stabilises
the E2E network operation. The concept uses network
abstractions to improve the scalability of SDN and
TE and support multi-provider environments. The CP
and TE distribution improves metrics accuracy (due to
SDNC and switches collocation), convergence speed (re-
duced solution search spaces) and applicability in large
networks. HDRL-LB also considers normalised time
to improve the agents’ behaviour during peak network
traffic. The tests show that HDRL-LB yields significant
throughput and carrying capacity gains compared to
WD while reducing the number of missed flows. Future
plans involve increasing HDRL-LB performance (GLBA
policy convergence improvement), extensions towards
fairness provisioning and tests in other topologies, while
using various metric abstractions and reward functions.

REFERENCES

[1] T. Magedanz and M.-I. Corici, “Getting ready for 6G research –
understanding technological drivers towards 6G and emerging
6G management requirements,” Fraunhofer Fokus, Tutorial at
IEEE/IFIP NOMS, April 25th, 2022, 2022, https://owncloud.
fokus.fraunhofer.de/index.php/s/4oIylfMlANQTZCB/download.

[2] A. Abuarqoub, “A review of the control plane scalability approa-
ches in software defined networking,” Future Internet, vol. 12,
no. 3, 2020, doi: 10.3390/fi12030049.

[3] IETF NWG, “OSPF Version 2,” IETF, Tech. Rep., 1998.
[Online]. Available: https://www.ietf.org/rfc/rfc2328.txt

[4] M. Karakus and A. Durresi, “A survey: Control plane sca-
lability issues and approaches in software-defined networking
(SDN),” Computer Networks, vol. 112, pp. 279–293, 2017, doi:
10.1016/j.comnet.2016.11.017.

[5] Y. Hu, Z. Li, J. Lan, J. Wu, and L. Yao, “EARS: Intelligence-
driven experiential network architecture for automatic routing in
software-defined networking,” China Communications, vol. 17,
no. 2, pp. 149–162, 2020, doi: 10.23919/JCC.2020.02.013.

[6] D. M. Casas-Velasco, O. M. C. Rendon, and N. L. S. da Fon-
seca, “Intelligent routing based on reinforcement learning for
software-defined networking,” IEEE Transactions on Network
and Service Management, vol. 18, no. 1, pp. 870–881, 2021,
doi: 10.1109/TNSM.2020.3036911.

[7] J. Chen, Y. Wang, J. Ou, C. Fan, X. Lu, C. Liao, X. Huang,
and H. Zhang, “ALBRL: Automatic load-balancing architecture
based on reinforcement learning in software-defined networking,”
Wireless Communications and Mobile Computing, vol. 2022, pp.
1–17, May 2022, doi: 10.1155/2022/3866143.

[8] J.-J. Huang, Y.-Y. Chen, C. Chen, and Y. H. Chu, “Weighted
routing in hierarchical multi-domain SDN controllers,” in 2015
17th Asia-Pacific Network Operations and Management Sym-
posium (APNOMS), 2015, pp. 356–359, doi: 10.1109/AP-
NOMS.2015.7275362.

[9] T. Moufakir, M. F. Zhani, A. Gherbi, and O. Bouachir, “Col-
laborative multi-domain routing in SDN environments,” Journal
of Network and Systems Management, vol. 30, Jan 2022, doi:
10.1007/s10922-021-09638-0.

[10] Y. Liu, L. Zhao, J. Hua, W. Qu, S. Zhang, and S. Zhong,
“Distributed traffic engineering for multi-domain SDN without
trust,” IEEE Transactions on Cloud Computing, vol. 10, no. 4,
pp. 2481–2496, 2022, doi: 10.1109/TCC.2021.3067456.

[11] M. Ye, L. Huang, X. Deng, Y. Wang, Q. Jiang, H. Qiu, and
P. Wen, “A new intelligent cross-domain routing method in
SDN based on a proposed multiagent reinforcement learning
algorithm,” 2023, doi: 10.48550/arXiv.2303.07572.

[12] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep
reinforcement learning,” 2019, doi: 10.48550/arXiv.1509.02971.

[13] H. van Hasselt, A. Guez, and D. Silver, “Deep rein-
forcement learning with double Q-learning,” 2015, doi:
10.48550/arXiv.1509.06461.

[14] H. van Hasselt, “Double Q-learning,” in Advances in Neural
Information Processing Systems, vol. 23. Curran Associates,
Inc., 2010, pp. 2613–2621, doi: 10.5555/2997046.2997187.
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