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Abstract—Understanding network traffic patterns is crucial in
today’s interconnected world, particularly with the increasing use
of communication and collaboration apps (CC apps). These allow
different user activities (chat, audio, video), resulting specifically
hard to classify. Despite promising results of DL for traffic
classification (TC), its opacity poses challenges in understanding
the decision-making process and hinders its widespread adoption.

To cope with these limitations, we leverage eXplainable
Al (XAI) techniques to open the “black box” and inter-
pret MIMETIC-ALL, a state-of-art multimodal DL architecture.
Our goal is to analyze joint app-activity classification in an
early fashion—viz. with the first packets of each bidirectional
communication—while evaluating the contribution of each traffic
input—packet header fields (SEQ), payload bytes (PAY), and
contextual inputs from concurrent biflows (Context)—to the
final prediction. OQur findings show that although the inclusion
of Context enhances performance, its importance is relatively
lower w.r.t. SEQ and PAY in TC. Moreover, within PAY, specific
byte subsets are identified as more influential for TC compared
to others, whereas in SEQ, the length of transport-level payload
holds greater importance than other header fields.

Index Terms—communication apps; deep learning; encrypted
traffic classification; multimodal approaches; XAl

I. INTRODUCTION

In today’s interconnected world, where digital communi-
cation permeates every aspect of our lives, understanding
the related network traffic has become paramount. Recently,
communication and collaboration apps (CC apps) have attested
as one of the primary categories contributing to ~ 23% of
uplink traffic [1]. This phenomenon arises from the recent
COVID pandemic and the associated lock-downs, when these
services became essential for communication. Now, they have
become integral parts of daily routines. Furthermore, a 2023
market analysis predicts that global users of CC apps will
reach about 7 billion by 2030 (+92% w.r.t. 2022) [2]. This
growth, along with the diversification of applications and
services, has increased the complexity and volume of network
traffic, necessitating advanced management techniques.

Traffic Classification (TC)—i.e., the process of categorizing
traffic based on its characteristics—has emerged as a crucial
endeavor for various purposes ranging from network manage-
ment to security enforcement. In such a scenario, dealing with
CC apps is even more complex because of their multi-activity
nature—i.e., they commonly generate video, voice, chat, or

ISBN 978-3-903176-63-8 ©2024 IFIP

game content traffic [3]. Hence, the research landscape in
this domain has experienced significant expansion, evolving
from Machine Learning (ML) to Deep Learning (DL) method-
ologies and further advancing into multi-modal architectures,
leveraging various network traffic views to optimize perfor-
mance [4]. Despite their efficacy, a notable hindrance to the
widespread adoption of such approaches is their “black box”
nature, which renders the decision-making process inscrutable.
This issue is also underscored by established guidelines for Al
systems [5] and European Al Act [6], which aim to ensure the
safe and reliable use of Al for societal advancement.

To tackle this challenge, eXplainable Artificial Intelligence
(XAI) offers a solution to elucidate Al-based models, demys-
tify their operations, and dismantle their “black box™ structure,
fostering transparency and trust in these systems.

The main contributions of this paper lie in employing XAI
techniques to explain multimodal architectures. Specifically,
we employ DEEP SHAP, a widely used feature attribution
method to assign an importance to each input in determining
model output. We leverage MIRAGE-COVID-CCMA-2022—
a recently collected and publicly-available dataset encompass-
ing traffic of 9 popular CC apps and providing app-activity
ground truth—and MIMETIC- ALL—a multimodal architecture
tailored for joint app-activity classification.

The rest of the paper is organized as follows. Section II sum-
marizes current advancements in multimodal architecture for
TC and XAI methods for DL models. Next, Sec. III outlines
our methodology, while Sec. IV details the experimental setup.
Results are presented in Sec. V. Finally, Sec. VI concludes the
paper, also discussing potential future directions.

II. RELATED WORK

In this section, we analyze various state-of-the-art (SOTA)
works employing XAl in the domain of TC. We present these
works in Tab. I, outlining for each work the networking prob-
lem addressed, the interpretability of the proposed solution,
the use of multimodal architecture along with the modalities
employed, the classification of apps and activities, and the XAl
methodology used. The last row summarizes the present work,
whose positioning w.r.t. SOTA is discussed at the end of this
section.

Most works employ mobile datasets and perform classifi-
cation or prediction tasks. Only a few employ multimodal ar-
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Table I: Related work, listed in chronological order, employing XAl for various networking problems. Last row describes current proposal.

Paper Year Dataset N;?gg{g;:lg Interpretability MM Modalities App-TC  Act-TC XAI Method
Amarasinghe et al. [7] 2018 3 AD [ ) O - O O LRP
Dethise et al. [8] 2019 B TP o O - O O LIME
Morichetta et al. [9] 2019 [ > ] VQP [ O - @) @) LIME
Rezaei et al. [10] 2019 ] TC [ ) O - ] O Occlusion
. a t-SNE
Beliard et al. [11] 2020 " TC o O - O O T
Wang et al. [12] 2020 0 TC [ ] @) - ) O DEEP SHAP
Aceto et al. [13] 2021 (7] TC @) ® PB, HF ) 0 Calibration
Aceto et al. [14] 2021 0 TP O O - O O Markov-Distill.
Akbari et al. [15]% 2021 & TC ° ® THB, FTS, FS ° © Occlusion
Montieri et al. [16] 2021 0 TP O O - O O Markov-Distill.
. DEEP SHAP,
Nascita et al. [17] 2021 0 TC ° ° PB, HF ° @) Calibration
Sadeghzadeh et al. [18] 2021 TC ° @) - O 0 Perturbation
Fauvel et al. [19] 2022 (] TC ) @) - ® @) X-DL Arch.
Guarino et al. [20] 2022 ] TC O [ PB, HF, CF (] (] Calibration
. DEEP SHAP,
Guarino et al. [21] 2024 0 TP ° o} - 0 0 Calibration
This Paper 2024 0 TC ° ° PB, HF, CF ° ° DEEP SHAP

aan

Dataset: Malware (3), Video (&), Youtube (@), Mobile ({J), VPN (8), Internet (&), Google (G), Wired (if); Networking Problem: Anomaly Detection
(AD), Video Quality Prediction (VQP), Traffic Classification (TC), Traffic Prediction (TP); Multimodal (MM); XAI Method: Layer-wise Relevance
Propagation (LRP), Feature Map Visualization (F.Map Visual.), Markovian-Distillation (Markov-Distill.), Explainable-by-Design DL Architecture (X-DL
Arch.); Modalities: Flow-Time Series (FTS), TLS Handshake Bytes (THB), Flow Statistics (FS), Payload Bytes (PB), Header Features (HF), Contextual
Features (CF); @ present, © partially present, O lacking; {: disjoint evaluation on non-mobile app and mobile service traffic.

chitectures, typically leveraging payload bytes, flow statistics,
or features extracted from packet headers. While most focus
on app classification, only a minority address a task similar to
activity classification, with some specifically categorizing VPN
and non-VPN services. Furthermore, many of these works em-
ploy interpretability techniques to explain the decision-making
process. As for XAI methodology, several works focus on
the trustworthiness of their proposed solution by performing
a calibration analysis. Others perform various form of post-
hoc explanation: (a) layer-wise relevance propagation (LRP),
(b) interpretable local surrogates via LIME, (c) different type
of perturbation analysis, (d) importance attribution based on
Shapley values. Additionally, some use visual representations
(e.g., t-SNE, Feature Maps) to highlight significant decision-
contributing features or Markovian Distillation to interpret
predictions based on Markov Chains’ transition probabilities.
Lastly, others propose explainability-by-design architecture
and compare input data with prototypes specific to each class.
Positioning. In this work, we address the inherent lack of
interpretability of DL models for joint app and activity classi-
fication (viz. Joint-TC). We offer interpretability through XAI
techniques starting from the methodology proposed by Nascita
et al. [17]. Our approach involves conducting a comprehensive
analysis of DL models using DEEP SHAP to provide inter-
pretable results. In detail, we adapted such methodology to
interpret MIMETIC-ALL [20], which classifies both app and
activity and leverages an additional modality based on Context
Inputs extracted from “contextual” traffic.

III. METHODOLOGY

This section delves into the methodology employed to
explain multimodal DL architectures in a Joint-TC task. We

recall that Joint-TC involves jointly classifying both the app
and user activity performed. To this end, in Sec. III-A, we
introduce MIMETIC-ALL [20], a multimodal architecture tai-
lored for this task. Then, we outline the technique to interpret
the predictions of multimodal architectures in Sec. III-B.

A. SOTA Multimodal Architectures for TC: MIMETIC-ALL

MIMETIC-ALL address Joint-TC task at the biflow-level
based on its first packets (viz. early TC). It consists of three
per-modality branches, named bPAY, bSEQ, and bCONTEXT,
each fed with a specific input representing a different “view”
on network traffic: (i) bPAY takes as input the first N}, bytes
of the transport-layer payload (PAY); (ii) bSEQ takes as input
informative fields extracted from the sequence of the first IV,
packets (SEQ); (iii) bCONTEXT is fed with contextual inputs
(viz. Context) that are obtained by aggregating information
from the biflows concurrent with the target biflow (B,) until
the arrival of its N,-th packet (viz. contextual biflows). Con-
textual biflows are selected according to defined criteria to
ensure causality and that only relevant contextual information
is considered.

B. Interpreting Multimodal Architectures: SHAP

In this section, we explain the methodology for interpreting
a DL model f(-) for a probabilistic TC task. We used a simpler
explanation model g(-)—that closely approximates f(-)—to
evaluate the soft output for the generic i class, denoted as
pi(+), and identify the inputs with the most significant impact

on the confidence probability value.

!'A bidirectional flow (biflow) encompasses all the packets sharing the same
5-tuple (i.e., IPgsrc,IPgst,portsrc,portyst, protors) with interchangeable
source and destination [22].
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Fig. 1. MIMETIC-ALL classifier. Colors indicate the layer type.

Our approach involves using local methods to explain f(x)
in the neighborhood of a specific instance x. It is worth noting
that, in the case of TC, this results in a per-flow explanation
and uses simplified inputs «’ that are mapped to the original
inputs @ through the mapping & = h(x').

We leverage Additive Feature Attribution (AFA) as g(-) for
determining the contribution (viz. importance) ¢,, € R of each
input towards the output of f(x). To compute AFA solutions,
we use SHapley Additive exPlanation (SHAP), an approxima-
tion method that estimates Shapley values using conditional
expectation. We use DEEP SHAP, a rapid approximation
algorithm, to explain the soft-output for the predicted class,
denoted as p(x). Accordingly, positive (resp. negative) values
increase (resp. decrease) the confidence in the i*" class com-
pared to its average value. We aggregate local explanations to
achieve global explanations. Our method involves computing
range-normalized SHAP values, i.e., ¢, = ¢, / Zj\m4=1 Om,
due to soft output variability. This enables us to derive
measures of importance independent of specific confidence
levels over test samples.

In the following, we use DEEP SHAP to analyze the im-
portance of different inputs in the MIMETIC-ALL architecture.
The inputs include PAY, SEQ, and Context, and p(x) refers
to the specific app and its activity.

IV. EXPERIMENTAL SETUP

The MIRAGE-COVID-CCMA-2022 dataset?, collected be-
tween April and December 2021 at the ARCLAB laboratory
University of Napoli “Federico II”, is leveraged for experi-
ments since it provides ground truth at both the app and user
activity levels. It encompasses 9 CC apps (in brackets the ab-
breviations for each them): Discord (Dsd), GotoMeeting
(Gmg), Meet (Met), Messenger (Msg), Skype (Sky),
Slack (Slk), Teams (Tms), Webex (Wbx), and Zoom
(Zom). For each app, traffic related to different activities is
collected according to the app usage. These activities included

Zhttp://traffic.comics.unina.it/mirage/mirage-covid-2022
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Fig. 2. Median importance of each input (i.e., PAY, SEQ, and

Context) for correctly classified samples according to the corre-
sponding (app, activity).

(i) Chat (Chat)—entails two participants exchanging textual
messages and/or multimedia content (e.g., images or GIFs);
(ii) Audio-call (ACall)—involving only two participants, this
activity consists of transmitting audio exclusively; (iii) Video—
call (VCall)—involves multiple attendees who can transmit
both video and audio (e.g., video calls or webinars).

For experiments, we borrow the setup employed in [20].
Specifically, for bPAY branch, we use the first N, = 576
payload-bytes as input. For bSEQ branch, we use the se-
quences of the transport-layer payload length (PL), TCP
window size (TCPWIN), inter-arrival time (IAT), and packet
direction (DIR) ? for the first N, = 20 packets as SEQ input.
As input of bCONTEXT branch, we aggregated data from
contextual biflows of BF, to compute 9 metrics: (a) num-
ber of contextual biflows (ncf), (b) volume of transmitted
bytes/packets (vol,/pkt,), and (c) bit/packet-rate (br./pr,),
in both upstream (x=up) and downstream (x=dw).

From an architectural viewpoint (see Fig. 1), bPAY consists
of two 1D-Conv layers, each followed by a max-pooling
layer, and a final Dense layer. In contrast, bSEQ includes a
BiGRU layer followed by a Dense layer. Lastly, bBCONTEXT
is a Multi-Layer Perceptron network with three Dense lay-
ers. * The features extracted by the single-modality branches
are joined via a concatenation layer and fed to a (Dense)
shared representation layer before performing the classifi-
cation through a softmax. MIMETIC-ALL is trained via a
two-phase procedure: (i) an independent pre-training of each
modality branch followed by (ii) a fine-tfuning of the whole
architecture. The pre-training of the p*® modality branch is
achieved by means of a softmax stub. This setup maintains
consistent class sample ratios across each fold. For further in-
formation on dataset collection, hyper-parameters, and training
strategy, please refer to [20].
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Fig. 3. Median importance of Context Inputs for correctly classified samples. Results refer to Discord (a), Meet (b), Messenger (c),
Skype (d), Slack (e), Teams (f), Webex (g), and Zoom (h), based on the activity type.

V. EXPERIMENTAL EVALUATION

In the following, we discuss the interpretability of
MIMETIC-ALL predictions when dealing with the Joint-TC
task. Specifically, we first analyze the relative contribution of
each modality (viz. branch) for the final classification relying
on DEEP SHAPS | then thoroughly investigate the inputs
corresponding to each of them. In more detail, to achieve per-
modality interpretation, we examine the stub output associated
with the p'” modality. This approach isolates the considered
modality from the influence of other modalities and from
the combined effect of intermediate fusion achieved by the
shared representation layers. To clarify further, our focus lies
on test samples correctly classified [17]. This approach allows
us to prioritize the correct functioning of a DL-based traffic
classifier and then interpret its occasionally counter-intuitive
(yet correct) decisions.

Accordingly, Fig. 2 reports the median importance of
each modality (i.e., bPAY, bSEQ, and bCONTEXT) of
MIMETIC-ALL w.r.t. to each (app, activity). Overall, bPAY
and bSEQ branches have more importance (30-50%) w.r.t.
the bCONTEXT one (12-30%). Notably, for 5 apps (i.e.,
Discord, GotoMeeting, Slack, Webex, and Zoom),
both bPAY and bSEQ contribute similarly regardless of ac-
tivity. However, for Skype, while bPAY and bSEQ have
similar importance for Chat, this does not hold for ACall

3TCPWIN is set to zero for UDP packets while DIR € {—1,1}.

4Since LeakyReLU is not fully supported by DEEP SHAP Python library,
we have replaced it with a ReLu.

SWe used a background set of 500 randomly selected training samples used
by DEEP SHAP to determine a reference value for the explanations.

and VCall, where the former modality is more important.
Furthermore, we observe that for Teams (resp. Meet and
Messenger), bPAY is more (resp. less) important than
bSEQ regardless of activity. Finally, focusing on bCONTEXT,
we observe that in almost all cases, its importance is > 20%.
However, when dealing with VvCall for Webex and Zoom,
its importance falls in the range [12,15]%.

Takeaway: Among MIMETIC-ALL branches, bPAY and
bSEQ are more important than bCONTEXT for Joint-TC, with
importance values in [30,50]% and [12,30]%, respectively.

A. How do Context Inputs affect Joint-TC?

Fig. 3 depicts the median importance of Context, provid-
ing a per-activity breakdown for different apps.

Overall, we observe that in all apps and activities, the
packets exchanged in both directions (pktp and pktq,) always
contribute positively to the accurate prediction. Considerably,
these features have a higher importance value than others,
especially for activities related to Discord, Messenger,
Slack, Webex, and Zoom. For almost all apps, we observe
that ncf assumes significant relative importance, particularly
when classifying ACall and VCall.

In contrast, traffic volumes generally have less relative
importance and may be detrimental to the final outcome. For
instance, voly, has negative importance on ACall (resp.
Chat) for Discord and Messenger (resp. Teams). No-
tably, regardless of the activity, vol,, always has a negative
effect on activities of Slack and Zoom. However, the oppo-
site holds for Meet and Messenger.
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Fig. 5. Median importance (in Symlog-scale) of SEQ inputs (iden-
tified by their packet index) for correctly classified samples of
Discord, Skype, Slack, and Teams, based on the activity type.

Finally, focusing on bit- and packet-rates, the importance
varies greatly depending on the app, activity, and direction.
Specifically, while bit rates always positively impact the final
decision, packet rates generally have a negative effect, espe-
cially when dealing with VCall (resp. ACall) on Discord,
Slack, and Webex (resp. Meet). pkty, has overall non-

negligible importance in the case of Chat, especially for
Skype, Slack and Zoomn.

Takeaway: About Context, the number of exchanged pack-
ets and contextual biflows mostly affect the accurate predic-
tion. However, exchanged traffic volumes may lead to incorrect
decisions. The importance of upstream and downstream bit-
and packet-rate varies depending on the app and activity.

B. How do payload bytes affect Joint-TC?

Fig. 4 shows the importance of PAY inputs—consisting of
the first IV, = 5768 of the biflow—on bPAY by reporting
the activity breakdown for different apps, including Teams,
GotoMeeting, Skype, and Zoom 6, Specifically, we report
the per-activity breakdown of the median importance value of
each byte composing PAY input for a given app.

As shown, while all bytes positively affect the final out-
come, their importance varies by app and activity, which is
highlighted by different regions. Bytes from 32"¢ to 320%"
generally are the most important, indicating that they are
crucial to correctly classifying the app and activity. A peak
around 528" byte is experienced for all apps, sometimes
obtaining higher importance w.r.t. other bytes (e.g., for Zoom
and Teams). On the other hand, the first 32 and the last 48
bytes correspond to the lower importance, suggesting that they
are less relevant to the classification task under consideration.

Finally, comparing the behavior as the activity changes, we

notice a significant difference in the importance of certain
bytes for Skype and Teams. For Skype, the most notable
difference is seen between the 32"¢ and 96'" bytes, where
these bytes are more important for ACall compared to
Chat and VCall. A similar observation applies to Teams,
where we also observe that for Chat the importance of bytes
between 120" and 152" and especially 528" is significantly
higher compared to ACall and VCall.
Takeaway: Bytes from 32" to 320*" of PAY input are the
most crucial to address Joint-TC. A peak around 528" byte
is significant for all apps, especially Zoom and Teams. Since
traffic of these apps is mostly composed of TLS biflows
(>60% per-app), we deduce that the most important bytes
include Cipher Suite/Service Name within the Client Hello and
specific bytes within the Server Certificate. This underscores
the potential inefficiency of this input type with the increasing
adoption of an encrypted TLS header, such as TLS 1.3.

C. How do header fields affect Joint-TC?

Herein, we analyze the importance of header fields extracted
from the first IV,, = 20 packets of the biflow (viz. SEQ input)
and feed the bSEQ.

Hence, Fig. 5 shows the median importance value for the 4
header fields across the first 20 packets of the SEQ input. The
graph provides a breakdown of the activity of different apps,
such as Discord, Skype, Slack, and Teams. 7

6Qther apps are omitted for brevity since Skype ~ Messenger,
GotoMeeting =~ {Meet,Webex}, Zoom = Slack, and Teams =
Discord.

7For brevity, we have omitted results for other apps, as they have similar
results to those shown.
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Overall, our analysis reveals that the first 10 packets are
the most important for accurate prediction. Furthermore, PL
not only consistently improves the prediction accuracy but also
stands out as the most important field. This finding shows how
the embedding layer can improve the information derived from
the sequence of PL. Similarly, DIR also has a positive impact
on the final decision in almost all cases, being the second most
important feature.

Conversely, the importance of TCPWIN and IAT is gener-

ally lower, and in some cases, it may even adversely affect
the accurate prediction. For instance, in the case of ACall
for Skype and Teams, we observe that TCPWIN and IAT
of some packets in the second half (i.e., from 11** to 20")
have negative values, which is not the case for other activities.
This suggests that these fields could lead to incorrect model
decisions. Similar findings are also noticeable for Chat and
VCall on Slack and Discord.
Takeaway: The first 10 packets of SEQ are the most important.
Among the header fields, PL is the most crucial, followed by
DIR. Conversely, TCPWIN and IAT are less important, and
their impact can be negative on the final outcome.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

In this work, we analyze the traffic of communication
and collaboration apps (CC apps), experiencing rapid growth
in the last few years. To effectively manage networks, DL
finds extensive use in TC. Despite its promising outcomes,
its opacity presents challenges in understanding the decision-
making process, thereby hindering its broad adoption, echoing
concerns raised by the European Al Act and Al HLEG.

In this paper, we use XAl techniques (i.e., DEEP SHAP) to
elucidate MIMETIC-ALL, a multimodal architecture tailored
for TC, in the Joint-TC task—viz. classify both app and user
activities (i.e. chat, video-, and audio-call) jointly. Accord-
ingly, we underscore the importance of Context Inputs, with
median importance levels ranging from ~ 12% to ~ 30%.
More specifically, the number of exchanged packets and
contextual biflows emerge as primary influencers for accurate
predictions. Moreover, we assessed that bytes from the 327¢
to 320" are critical for classification, with another significant
peak observed near the 528" byte. Additionally, we identified
the first 10 packets, notably the payload length (PL), as crucial
factors.

As future directions, we plan to (i) leverage SHAP expla-
nations for feature selection, (ii) validate explanations using
various feature attribution methods, and (iii) assess perfor-
mance/importance through modality deletion. Although this
application of XAI methodology requires human-in-the-loop,
we aim to design automated dashboards to effectively exploit
XAI explanations without the need for human involvement.
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