
ReBARC: Recovery-Budget-Aware In-Network
Retransmission Control in ICN

Kazuhisa Matsuzono and Hitoshi Asaeda
National Institute of Information and Communications Technology (NICT), Japan.

Email: {matsuzono, asaeda}@nict.go.jp

Abstract—Information-centric networking (ICN) is promising
in fulfilling future application requirements, such as high-quality,
low-latency video streaming. Because data loss considerably
affects the user experience of such applications, rapid loss
recovery is central to ICN solutions. ICN works with hop-by-hop
data transmission, which is beneficial for in-network data re-
transmission. However, sophisticated in-network retransmission
mechanisms that can effectively and efficiently recover data losses
have not been fully studied. In this paper, we propose recovery-
budget-aware in-network retransmission control (referred to as
ReBARC) in ICN. ReBARC attempts successful loss recovery
while satisfying latency requirements and suppressing duplicate
data receptions in a fully distributed manner. Through receiver-
driven hop-by-hop communication, receivers (e.g., consumers)
allocate a maximum allowable recovery delay (recovery bud-
get) to each link. For effective budget allocation, consumers
recognize the budget consumption and request at each link in
a network telemetry manner. Based on the allocated budget,
each node adjusts the retransmission time-out value and methods
of relaying recovery data without exchanging additional control
messages with other nodes. Through comprehensive experimental
evaluations, we confirm that ReBARC maintains higher video
quality than existing methods by achieving more successful loss
recoveries and fewer duplicate data receptions.

I. INTRODUCTION

The growth and meaningfulness of applications using high-
quality video streaming have been evident in recent years. For
instance, low-latency video feedback is needed in common
live streaming applications and in teleoperation of robots and
unmanned aerial vehicles. Acceptable video streaming in these
applications requires network bandwidths of 10–100 Mbps and
end-to-end latencies below 200 ms [1], [2]. However, owing to
such latency requirements, they often suffer from data losses
owing to network impairments.

Lost data are commonly recovered through end-to-end
retransmission, such as in the transmission-control protocol
(TCP) and QUIC protocol [3], where the involved data sender
(or publisher) initiates data retransmission based on acknowl-
edgements (ACKs) from the receiver (or consumer). Another
technique is hop-by-hop retransmission, where the node before
the hop where data loss occurs initiates data retransmission
based on some feedback from the adjacent downstream node
(e.g., ACKs and negative ACKs [4]). By recovering data loss
locally, hop-by-hop retransmission is expected to accelerate
loss recovery. According to early studies [5], [6], hop-by-hop

ISBN 978-3-903176-72-0 © 2025 IFIP

retransmission has better latency performance than end-to-end
retransmission.

Information-centric networking (ICN) [7], including named
data networking (NDN) [8] and CCNx [9], is a new communi-
cation paradigm that improves content delivery efficiency. ICN
adopts a consumer-driven communication model; a consumer
initially sends a data request message (called interest), and
a node (e.g., router) having the requested content returns as
the data. When an interest or the corresponding data are
dropped en route, the consumer must retransmit the interest
packet (hereinafter called recovery interest) to recover the lost
data. Most existing studies [10]–[13] adopt consumer-based
retransmission models; here, the consumer observes the time
from sending an interest to obtaining the corresponding data
(i.e., round-trip time (RTT)), and sets a certain retransmission
time-out (RTO) value based on the observed RTT to determine
the timing of issuing a recovery interest to obtain the lost data.

Supporting hop-by-hop transport and in-network caching
at intermediate nodes (routers) [14], ICN can accelerate
retransmission-based recovery by fetching lost data from data
caches at intermediate nodes [15]–[17]. This communication
model enables a flow-aware transport control paradigm [18],
where intermediate nodes recognize the latency requirement
of the consumer application and perform hop-by-hop retrans-
mission as necessary.

However, the nodes on the path cannot easily trigger
in-network retransmission in a timely manner and cannot
efficiently avoid the unnecessary transmission of recovery
interests after detecting the lost data. Generally, ICN does
not include loss detection and feedback mechanisms (e.g.,
ACKs); nevertheless, implementing an ACK mechanism for
each link is infeasible because high-bandwidth streaming flows
considerably increase bandwidth consumption.

In this paper, we design a new class of transport proto-
cols: recovery-budget-aware in-network retransmission control
(referred to as ReBARC) in ICN. ReBARC provides effec-
tive in-network retransmission and efficiently satisfies various
latency requirements especially for high-quality, low-latency
streaming applications. The main contributions of this study
are summarized as follows:

• We characterize ICN hop-by-hop retransmission schemes
and formulate a problem with the twofold objective of sat-
isfying latency requirements and minimizing unnecessary
bandwidth use for loss recovery.

IFIP Networking 2025 - Limassol, Cyprus - 26-30 May 2025

456

• ReBARC achieves this objective, and it does not re-
quire additional traffic for exchanging control messages
between nodes and enables each node to perform self-
regulating transmissions of recovery interests considering
the latency requirement and network conditions.

• We implement ReBARC and experimentally validate its
performance.

The remainder of this paper is organized as follows. Sec-
tion II introduces the related work. Section III presents the
background of this study as well as the network and sys-
tem models. We characterize the performance of in-network
retransmission and formulate a problem in Section IV. We
describe the design of our scheme in Section V and the per-
formance evaluation of ReBARC in Section VI. In Section VII,
we discuss some potentials of ReBARC. Finally, Section VIII
concludes our work.

II. RELATED WORK

Abu et al. studied consumer-based retransmission schemes
using in-network caches in ICN and analyzed their recov-
ery performance [15]. They then considered the sending of
recovery interests at intermediate nodes, where in-network
retransmissions increase network traffic load due to unnec-
essary retransmissions. However, they did not discuss how
to develop in-network retransmission mechanisms that satisfy
the acceptable latency specified by the involved application.
Another previous scheme [17] also did not consider how
to achieve the acceptable latency. These proposed schemes
primarily focus on improving throughput performance and
may not successfully recover lost data within the acceptable
latency.

To suppress the adverse impact of interest losses on la-
tency, Carofiglio et al. proposed the wireless loss detection
and recovery mechanism [10], which promptly identifies and
recovers channel losses occurring at wireless access links.
The main idea is to implement additional sequencing on the
interests to detect data loss at these links. An upstream node
that detects a loss uses explicit feedback to trigger interest
retransmission at the downstream node. However, although the
authors addressed the channel losses of interests at wireless
access links, they did not discuss how to deal with data losses
occurring in a network.

Chen et al. designed the in-network proactive loss recovery
(PLR) scheme, which offloads loss detection and recovery
to intermediate nodes [19]. An intermediate node detects
congestion-induced data loss in the uplink by monitoring
its queue and then stores detected lost data for later re-
transmission. The lost data are retransmitted by the node
without receiving a recovery interest. The node also uses
explicit loss notification to inform the consumer about the
data loss. PLR reduces the number of interest retransmissions
and decreases the completion time compared with a consumer-
based retransmission scheme. However, when data loss occurs
during retransmission, PLR requires the consumer to issue a
recovery interest, thus prolonging recovery delays.

In our previous work, we proposed an in-network recovery
mechanism called L4C2 [16], which exploits the ICN feature
of flow-aware hop-by-hop forwarding for timely data delivery
while considering the latency requirement of the involved
application. A node aims to quickly recover lost data from
the caches at the upstream nodes by issuing a recovery interest
according to the latency requirement. However, L4C2 does not
provide any in-network retransmission control mechanism to
suppress unnecessary retransmissions.

III. IN-NETWORK RETRANSMISSION

A. ICN Basics and Background

ICN is proposed to improve content delivery efficiency.
In ICN, content is retrieved by name. If content cannot be
packed into a single data packet, it is divided into multiple
chunks uniquely identified by the content name and chunk
number (e.g., /Room1/Robot1-Camera/chunk=3) [20]. A con-
sumer sends interest packets specifying the content name
(and chunk number, if necessary) to retrieve content, and a
publisher delivers them in data packets. An intermediate node
(commonly a router) along the forwarding path holds three
primary data structures: (1) a forwarding information base, a
lookup table that maps name prefixes and outgoing interfaces
(called faces) to forward received interests; (2) a pending
interest table (PIT), which contains the name specified by the
received interests and outgoing faces (interest arrival faces)
to forward received data; and (3) a content store (CS) for
caching data. If an intermediate node is already storing the
data specified by the received interest in the CS, then the data
are immediately sent to the downstream node.

According to ICN’s semantics [9], consumers send inter-
ests per chunk to retrieve data. Such an interest is called
regular interest (RGI). To increase throughput, consumers
simultaneously send multiple RGIs and control the number of
outstanding interests. However, especially for high-bandwidth
streaming content, numerous chunks are transmitted in bursts;
network congestion may occur and compromise network per-
formance.

ICN’s consumer-driven hop-by-hop transport allows con-
sumers to flexibly determine transport strategies according
to application characteristics. For example, symbolic interests
(SMIs) [21] were proposed to smoothly fetch real-time stream-
ing data from a publisher. Unlike RGIs, SMIs enable the wild-
card specification of chunk numbers and provide bulk data
transfer. Because SMIs can suppress interest traffic, they can
minimize the risk of network congestion and packet loss in
real-time streaming.

However, because an SMI does not specify a chunk number,
it cannot recover lost chunks. An RGI can be used with an
SMI as the recovery interest to request specific chunk retrieval
during data transmission using SMIs. To deal with data recov-
ery in a network, a consumer or an intermediate node should
quickly detect data loss and send recovery interests (RGIs) to
ask upstream nodes to retransmit lost chunks.

IFIP Networking 2025 - Limassol, Cyprus - 26-30 May 2025

457

・・・
Consumer Publisher

Real-time data flow (latest data)

Interest (SMI)

・・・𝒗𝒊 𝒗(𝒊#𝟏)
𝒊𝒕𝒉	𝒍𝒊𝒏𝒌𝟏𝒔𝒕	𝒍𝒊𝒏𝒌 𝑯𝒕𝒉	𝒍𝒊𝒏𝒌

𝜺𝒊"	𝜺𝒊
𝑶𝑫𝒊

𝒗𝑯 𝒗(𝑯#𝟏)𝒗𝟏 𝒗𝟐
uplink loss rate:

downlink loss rate:
one-way delay:

Fig. 1. Network model where publisher sends real-time content flow to
consumer via H links.

B. Network and System Models for Real-Time Streaming Data
Acquisition and Recovery

Network Model: To design real-time streaming data acquisi-
tion and recovery, we first consider a chain topology with H
hops, including one consumer and one publisher, as illustrated
in Fig. 1. Node vi,1≤i≤H is connected to its upstream node
v(i+1) via the ith link. The network primarily comprises the
publisher v(H+1), which generates a real-time content flow;
the intermediate nodes vi,2≤i≤H ; and the consumer v1, which
requests the real-time data (latest data) by issuing SMIs. The
interest and data packets traversing the ith link are subject
to packet loss rates of ε′i and εi, respectively. The one-way
propagation delay from vi to v(i+1) or from v(i+1) to vi is
ODi, and the RTT of the ith link (denoted by RTTi) is 2·ODi.
For simplicity, the queuing delay for packet forwarding at each
node is assumed constant.
System Model: The publisher generates real-time data packets
of the flow and assigns a unique name with a chunk number
to each piece of data. The consumer requests the latest data
by sending an SMI per 100 ms. The PIT entry created by
the SMI at each node remains for a few seconds. Therefore,
even if SMI loss occurs at a link, each node can promptly and
continuously receive and relay the latest data as long as data
loss does not occur at the links.

As shown in Fig. 2, if the latest data are lost at the ith link,
then the downstream node vi must detect this loss and recover
the lost data by sending recovery interests (RGIs) to obtain
the lost data from the CS at v(i+1). Thus, nodes vi={2,...,H+1}
can cache the received latest data within the acceptable end-to-
end latency at most (e.g., 200 ms) to respond to the received
recovery interests. Each node employs the gap in the chunk
number of the received latest data to detect and confirm the
loss of latest data. After the loss is detected, the downstream
nodes vj={1,...,i} immediately send recovery interests to the
upstream nodes; these recovery interests specify the chunk
number of the lost data. Because vj sets the hoplimit of the
recovery interest to 1, only v(j+1) receives it. Recovery data
are relayed through the stop-and-wait and fast-relay methods,
which are discussed in Section IV.

When the recovery interest issued by vi or the recovery
data sent by v(i+1) are lost at the ith link, the node vi must
retransmit the recovery interest to fetch the recovery data from
the cache at v(i+1). When sending the first recovery interest
after detecting the latest-data loss, vi sets a time-out value

𝒗𝒊 𝒗(𝒊#𝟏)𝒗(𝒊&𝟏)・・・ ・・・𝒊𝒕𝒉	𝒍𝒊𝒏𝒌(𝒊 − 𝟏)𝒕𝒉	𝒍𝒊𝒏𝒌

Loss

Cache

SMI

RGI

Detect the latest-data loss
and

Send a recovery interest (RGI)

n-1 (chunk number)
latest data n

n+1

recovery data
(chunk number = n)

𝒗𝑯"𝟏𝒗𝟏

Two methods of recovery data relay at 𝒗𝒊

{…, n-1, n, n+1}

n?
n? n

Fig. 2. Overview of latest-data loss detection and recovery. This figure omits
the process of relaying the received recovery data at vi.

of recovery interest retransmission. It retransmits the recovery
interest if the RTO event occurs. If loss recovery continuously
fails, then vi repeats recovery interest retransmission several
times. The RTO value at vi is as follows, which is the
representation commonly employed in TCP [22]:

RTOvi = RTTi + α (α = 4 · var), (1)

where RTTi and var are the smoothed RTT and RTT varia-
tion, respectively. To measure RTTi, vi sends a measurement
packet such as ICN-ping [23] to v(i+1) periodically. Node
v(i+1) responds by sending the corresponding response data,
and vi retains RTTi by measuring the difference between
the interest sending time and the response reception time.
The link loss rates, ε′i and εi, are also measured using the
measurement packet and corresponding response packets. A
sequence number is assigned to the measurement packet by
vi and assigned to the response data by v(i+1). vi and v(i+1)

determine the sampled packet loss rate using the gap in the
sequence number of the received packets. The packet loss rates
are calculated using an exponential weighted moving average
with a smoothing factor α = 0.8 to adapt to the loss condition
changes rapidly.

IV. RECOVERY DELAY

In this section, we characterize the recovery delay perfor-
mance of in-network retransmission and formulate the prob-
lem.

A. Definitions

We consider two methods for relaying recovery data: the
stop-and-wait and fast-relay methods. Unlike the latter, the
former does not allow vi to immediately relay recovery data.
To relay the recovery data to v(i−1), vi should receive a
recovery interest from v(i−1) after obtaining and caching the
recovery data from v(i+1).
Recovery Delay: Consider latest data that are lost at the ith

link first (i.e., delivered up to v(i+1) without loss), as shown
in Fig. 3. Assuming that vi recovers and obtains the recovery
data, the recovery delay at the ith link is defined as follows:

Ri = trecvvi − trecvv(i+1)
−ODi, (2)

where trecvvi is the time vi receives the recovery data and trecvv(i+1)

is the time v(i+1) receives and caches the data. Similarly,

IFIP Networking 2025 - Limassol, Cyprus - 26-30 May 2025

458

𝒗𝒊

𝒗(𝒊#𝟏)

𝒗(𝒊&𝟏)

first loss

𝒕𝒗(𝒊#𝟏)
𝒓𝒆𝒄𝒗

𝒕𝒗𝒊
𝒓𝒆𝒄𝒗

𝒕

𝑶𝑫(𝒊#𝟏)

𝑹𝒊	

𝒕𝒗(𝒊#𝟏)
𝒓𝒆𝒄𝒗

𝑹(𝒊#𝟏)	

𝑶𝑫𝒊

first loss

𝒕𝒗(𝒊#𝟏)
𝒓𝒆𝒄𝒗

𝒕𝒗𝒊
𝒓𝒆𝒄𝒗

𝑶𝑫(𝒊#𝟏)

𝑹𝒊	

𝒕𝒗(𝒊&𝟏)
𝒓𝒆𝒄𝒗

𝑶𝑫𝒊

Stop-and-Wait Fast-Relay

(𝑹(𝒊#𝟏)= 𝟎)	

𝑖*+	𝑙𝑖𝑛𝑘

(𝑖 − 1)*+	𝑙𝑖𝑛𝑘

Data
RGI (i.e. recovery interest)

𝑹𝑻𝑶𝒗(𝒊#𝟏)

Fig. 3. Recovery delay in the stop-and-wait and fast-relay methods. In case
of the fast-relay method, because the recovery data relayed to v(i−1) are not
lost, the recovery delay R(i−1) is zero according to Eq. (2).

Rj,1≤j≤i−1 is defined as Eq. (2). Thus, the total recovery delay
for the data to arrive at the consumer v1 is as follows:

Rtot
(1,i) =

i∑
l=1

Rl. (3)

Acceptable Recovery Delay: The one-way delay from v(i+1)

to v1 is OD(1,i) =
∑i

l=1ODl. Let Tapp be the application-
specified acceptable latency. Assuming that Tapp > OD(1,i),
the acceptable recovery delay T is defined as follows:

T = Tapp −OD(1,i). (4)

Successful Loss Recovery: If Rtot
(1,i) ≤ T , then loss recovery

is successful.

B. Methods

Stop-and-Wait Method: Assume that the latest data are lost
for the first time at the ith link, and consider a round where vi
sends a recovery interest to v(i+1). Assuming the data recovery
succeeds in the xth round, the recovery delay (Eq. (2)) is
approximated as follows:

Ri(x) = x ·RTOvi (x ≥ 1). (5)

The probability that vi obtains the recovery data in the xth

round is as follows:

P suc
i (x) = {1− (1− ε′i)(1− εi)}x−1(1− ε′i)(1− εi). (6)

Consider the recovery delay at the (i − 1)th link, which
depends on the time at which vi receives the recovery interest
from v(i−1). The left part of Fig. 3 shows vi receiving the
recovery interest just before caching the recovery data. We
consider this case because of (1) the delayed timing for
vi to relay the recovery data and (2) the importance of
considering such an extreme scenario to satisfy applications’
latency requirements. As in Eq. (5), the recovery delay of
the downstream node vj is approximated as Rj(x) = x ·
RTOvj (1 ≤ j ≤ i−1). Therefore, the expected total recovery
delay is as follows:

E[Rtot
(1,i)] =

i∑
l=1

∞∑
x=1

P suc
l (x) ·Rl(x). (7)

𝒕

𝑶𝑫𝒊

𝑹𝑻𝑶𝒗(𝒊#𝟏) = 𝑹𝑻𝑻(𝒊$𝟏) + 𝜶		(𝜶 = 𝟒 + 𝒗𝒂𝒓)

𝑶𝑫𝒊𝜶
𝑶𝑫𝒊

𝒕𝒗𝒊
𝒓𝒆𝒄𝒗 𝒕𝒗(𝒊#𝟏)

𝒓𝒆𝒄𝒗

𝑶𝑫𝒊

𝒕𝒗𝒊
𝒓𝒆𝒄𝒗

𝑶𝑫𝒊

	𝒗𝒊	transmits the data again (using the cache)

	𝒗(𝒊$𝟏)	receives the duplicate data

𝑶𝑫𝒊

𝒕𝒗𝒊
𝒓𝒆𝒄𝒗 𝒕𝒗(𝒊#𝟏)

𝒓𝒆𝒄𝒗

𝑶𝑫𝒊 𝑶𝑫𝒊 𝑶𝑫𝒊

	𝒗𝒊	transmits the data again (using the cache)
	𝒗(𝒊$𝟏)	receives the duplicate data

𝒕𝒗(𝒊#𝟏)
𝒓𝒆𝒄𝒗

														𝒗𝒊 receives and relays a recovery
data

														𝒗𝒊 receives a recovery interest

														𝒗(𝒊$𝟏) receives the recovery data

														𝒗(𝒊$𝟏) sends a recovery interest

𝒗𝒊 𝒗(𝒊#𝟏)𝒗(𝒊&𝟏)・・・ ・・・𝒊𝒕𝒉	𝒍𝒊𝒏𝒌(𝒊 − 𝟏)𝒕𝒉	𝒍𝒊𝒏𝒌

first loss latest data
recovery data

recovery interest

case 1

case 3

case 2

Fig. 4. Fast relay without duplicate transmission (case 1) and with duplicate
data transmission and reception (cases 2 and 3).

Let xmax
l denote the maximum x of the lth link (1 ≤ l ≤ i)

or the minimum number of rounds for vl to obtain the recovery
data from v(l+1) with a probability of over 99%.

xmax
l = min{x|P suc

l (x) ≥ 0.99} (1 ≤ l ≤ i). (8)

Given xmax
l , the maximum total recovery delay is approx-

imated as follows:

Rtot max
(1,i) =

i∑
l=1

Rl(x
max
l). (9)

Fast-Relay Method: Unlike the stop-and-wait method, the
fast-relay method allows nodes vk(2 ≤ k ≤ i) to relay the
received recovery data immediately to the downstream node
v(k−1). Therefore, considering the probability that the relayed
recovery data are lost at the link (denoted by ε(k−1)), the
expected total recovery delay is as follows:

E[Rtot
(1,i)] =

∞∑
x=1

P suc
i (x) ·Ri(x)+

i−1∑
l=1

∞∑
x=1

εl ·P suc
l (x) ·Rl(x).

(10)
The maximum total recovery delay is approximated using

Eq. (9).

C. Problem Formulation

In-network retransmission primarily aims to satisfy the ac-
ceptable recovery delay T (or the application-specified accept-
able latency Tapp). In the stop-and-wait method, a node does
not relay the received recovery data until it receives a recovery
interest from the downstream node. Therefore, it is not likely
to cause duplicate data reception at the downstream node but
likely to prolong recovery delay. The fast-relay method can
reduce recovery delays relative to the stop-and-wait method
but may unnecessarily duplicate data reception, increasing the
network traffic load. Such an increase in the network traffic
load will cause network congestion, so an effective, efficient
mechanism should be developed to satisfy T while suppressing
duplicate data receptions by bridging the gap between the stop-
and-wait and fast-relay methods.

IFIP Networking 2025 - Limassol, Cyprus - 26-30 May 2025

459

Recovery-Budget-Aware Adaptation

𝒗𝟏 𝒗𝟐 𝒗𝟑

Interest (SMI)

Real-time data
flow (latest data)

Consumer-driven Recovery
Budget Allocation

Specify the allocated
recovery budget info.

Network Telemetry for Sharing Budget Information

consumer application
Obtain (1) the budget consumption
and (2) budget request at each node

Total Recovery
Budget (𝑻)

𝑹𝑻𝑶𝒗𝟏

Relay mode
of 𝒗𝟐

𝟐𝒏𝒅	𝒍𝒊𝒏𝒌𝟏𝒔𝒕	𝒍𝒊𝒏𝒌

𝑹𝑻𝑶𝒗𝟐

Relay mode
of 𝒗𝟑

Insert the relay mode
of 𝒗𝟐 into SMI

Insert the relay mode
of 𝒗𝟑 into SMI

・・・

Insert the budget consumption
and budget request at the 𝒍𝒊𝒏𝒌

Control Control

Specify a total
recovery budget

Total Available
Recovery Budget

Fig. 5. Functions enabling ReBARC.

Fig. 4 illustrates three fast-relay result cases: one without
duplicate data reception (case 1) and two with duplicate data
reception (cases 2 and 3). We focus on trecvvi (the time at
which vi receives and relays the recovery data obtained from
v(i+1)) and α(= 4 · var) (which determines RTOv(i−1)

). As
shown in case 1, vi should receive the recovery data within
α after receiving a recovery interest (i.e., within the blue
dotted line) to prevent vi from transmitting duplicate data after
receiving a recovery interest from v(i−1). The larger the value
of α (RTOv(i−1)), the higher the likelihood of suppressing
duplicate data reception.

Because the latest data are lost at the ith link first, it is
not likely to cause duplicate data reception at vi. Assuming
a uniform timing of recovery data reception at the nodes, the
probability of duplicate data reception at vj , (1 ≤ j ≤ i − 1)
is represented as follows:

P dup
j = (1− α

RTTj + α
) · (1− εj) · (1− ε′j)(1− εj). (11)

The bandwidth cost of recovery interests is minimal because
the size of the recovery interest is small relative to the data
packet [24]. We thus formulate the following problem:

Minimize

i−1∑
j=1

N tot
dup(j)

subject to Rtot
(1,i) ≤ T,

(12)

where N tot
dup(j) is the number of duplicate data receptions at

vj .

V. PROTOCOL DESIGN

This section presents the proposed scheme for ReBARC.
The ReBARC mechanism follows the ICN protocol principle
(consumer-driven communication and two-way exchange us-
ing interest and data) and fully exploits the features of hop-by-
hop communication. Fig. 5 illustrates the functions enabling
the recovery-budget-aware in-network retransmission.

A. ReBARC Features

The fundamental concept behind ReBARC is to execute
retransmission-based loss recovery per link for locally recov-
ering data loss. Keeping the total recovery delay within an

acceptable latency is necessary. Thus, ReBARC controls the
recovery delay per link by exploiting hop-by-hop communi-
cation in ICN. To enable self-regulating in-network retrans-
mission control, we propose and introduce a metric called
recovery budget, which corresponds to the maximum allowable
recovery delay. The consumer allocates the total available
recovery budget to each link (Section V-B).

According to the allocated budget, the recovery-budget-
aware adaptation mechanism switches between the stop-and-
wait and fast-relay methods (Section V-C). Then, the RTO
value of the downstream node at each link is adjusted. For
suppressing duplicate data receptions, the relay mode is set
to the stop-and-wait method if the allocated budget is suffi-
cient. Otherwise, the RTO value in the fast-relay method is
increased by as much as the allocated budget allows.
Why Simple Loss Detection of Latest Data?: If each
downstream node can determine where and what data were
lost, the scope of recovery control can be limited to the link
of data loss. In this case, only the downstream node at the link
issues recovery interests using an adequate RTO value so that
duplicate data reception does not occur. However, considering
the existence of lossy links, quickly and reliably notifying all
downstream nodes of data loss locations is difficult. Using
additional sequence numbers to indicate lost data (as in [10])
increases the computational cost on each node.

ReBARC simply uses the gap in chunk number of the
received latest data to confirm the loss. Each downstream
node does not determine where the latest-data loss occurred,
issuing the same RGIs (as in vi and v(i−1) of Fig. 2);
therefore, duplicate data receptions can occur. However, owing
to the recovery-budget-aware adaptation, ReBARC suppresses
duplicate data receptions at the nodes.
Why No Use of ACK?: By adopting an ACK mechanism for
data reception by the downstream node, the upstream node
can trigger data retransmission such that the downstream node
avoids duplicate data receptions. However, a large amount
of ACK or negative ACK messages increase the bandwidth
consumption and may lead to network congestion. ReBARC,
therefore, follows the ICN principle without using ACK.

B. Consumer-Driven Recovery Budget Allocation

All upstream nodes adopt the stop-and-wait method to avoid
duplicate data reception. However, owing to the long recovery
delays caused by not immediately relaying recovery data, loss
recovery at a consumer can fail. In contrast, the fast-relay
method enables faster loss recovery but results in increasing
duplicate data reception. To manipulate the relay methods for
effective and efficient loss recovery, in-network retransmission
needs a criteria to determine which to use; therefore, the
consumer allocates a recovery budget to each link, enabling
each downstream node to perform self-regulating transmis-
sions of recovery interests and determine the relay method
of the upstream node. To notify each downstream node of the
allocated budget, the consumer sends an SMI including the
allocated budget information.

IFIP Networking 2025 - Limassol, Cyprus - 26-30 May 2025

460

Algorithm 1 Recovery Budget Allocation at Consumer
1: Require:
2: T : total recovery budget (acceptable recovery delay).
3: H: total hop number from consumer to publisher.
4: Output:
5: budget alloc(L): budgets allocated to each link,
6: L = {l1, ..., lH}.
7: At Data Reception(name, budget info)
8: if Data has budget info then
9: /* Update budget info. for links L */

10: Update budget use(l ∈ L)
11: Update budget req(l ∈ L)
12: /* Compute total budget consumption */
13: total budget use ← Sum budget use(l ∈ L)
14: /* Compute total available budget */
15: budget avail ← T − total budget use
16: if budget avail > 0 then
17: for l ∈ L /* in ascending order */ do
18: /* Budget allocation for l */
19: if budget avail > budget req(l) then
20: budget alloc(l)← budget req(l)
21: budget avail ←
22: budget avail − budget req(l)
23: else if budget avail == 0 then
24: budget alloc(l)← 0
25: else
26: budget alloc(l)← budget avail
27: budget avail← 0

28: else
29: budget alloc(L)← 0

Collection of Budget Conditions of Links: To recognize the
total available budget to allocate, the consumer must obtain the
budget consumption (estimated recovery delay) of each link as
well as the total recovery budget specified by the application.
Each downstream node thus estimates the budget consumption
based on its uplink conditions and the relay method used. In
the stop-and-wait method, the maximum budget consumption
is estimated considering unsuccessful loss recovery owing to
the long recovery delays. The budget consumption at link l is
as follows using a number of recovery interest retransmissions
that achieves loss recovery of over 99% at the link (as
represented in Eq. (8)):

budget use(l) =

{∑xmax
l

x=1 εl · P suc
l (x) ·Rl(x) (Fast-Relay),

RTOmin
vl
· xmax

l (Stop-and-Wait),
(13)

where RTOmin
vl

is set using Eq.(1). The RTO setting using
RTOmin

vl
can be considered sufficient to avoid duplicate data

reception because the stop-and wait method relays recovery
data only after receiving a recovery interest from the down-
stream node.

Each downstream node also estimates the budget request,
which represents a budget required to execute the stop-and-
wait method. The consumer can determine how much of a

Algorithm 2 Recovery Budget based Adaptation at vl
1: Require:
2: RTTl: RTT at lth link.
3: RTOmin

vl
: minimum value of RTOvl .

4: ε′l: loss rate of lth uplink.
5: εl: loss rate of lth downlink.
6: Updated Output:
7: RTOvl : The RTO value of vl.
8: mv(l+1)

∈M: relay method at v(l+1),
9: M ={Stop-and-Wait, Fast-Relay}.

10: At Interest Reception(name, budget info)
11: if SMI has allocated budget info. then
12: /* Get budget allocated for lth link */
13: budget alloc(l) ←
14: Get Budget Alloc(name, l, budget info)
15: /* Determine the relay method of v(l+1) */
16: budget req(l) ← RTOmin

vl
· xmax

l

17: if budget alloc(l) ≥ budget req(l) then
18: mv(l+1)

← Stop-and-Wait
19: RTOvl ← RTOmin

vl
20: else
21: mv(l+1)

← Fast-Relay
22: /* Increase RTOvl if possible*/
23: RTOvl ← max{RTOvl | budget use(l)
24: ≤ budget alloc(l)}
25: if RTOvl < RTOmin

vl
then

26: RTOvl ← RTOmin
vl

27: /* Notify v(l+1) of mv(l+1)
*/

28: Send Interest(mv(l+1)
)

maximum budget to allocate to the link by referring to the
budget request at each link. As the budget request at link l,
the estimated maximum budget consumption in the stop-and-
wait method is used as follows:

budget req(l) = RTOmin
vl
· xmax

l . (14)

Only when the allocated budget in the link is greater than
or equal to the budget request, the stop-and-wait method is
executed.

Each downstream node sends latest data including the bud-
get consumption and request at the link to notify the consumer.
The budget information sharing in a network telemetry manner
does not need to issue additional control messages, which
promotes efficient bandwidth usage.
Budget Allocation Policy: Algorithm 1 describes the recovery
budget allocation at the consumer. When receiving data with
budget information, the consumer reviews and registers the
budget consumptions and requests (lines 10 and 11). Further-
more, the total budget consumption and total available budget
are computed (lines 13 and 15).

As the proposed method adopts a simple loss detection
mechanism for latest data, the downstream nodes detect latest-
data losses occurring at links other than their uplinks (as in
v(i−1) of Fig 2). Therefore, the further downstream a node is,

IFIP Networking 2025 - Limassol, Cyprus - 26-30 May 2025

461

the more likely it is to detect latest-data losses. The consumer
thus allocates the total available budget preferentially from
nodes closest to the consumer (line 17). If the available budget
is greater than or equal to the budget request of link l, then
the consumer allocates it to link l (line 20). Otherwise, the
remaining budget is allocated to link l for an opportunity to
increase RTOvl (line 26).

C. Recovery-Budget-Aware Adaptation

Required Parameters: Algorithm 2 describes the recovery-
budget-aware adaptation at vl. For recovery-budget-aware
adaptation, vl should retain and update three parameters:
RTTl, εl and ε′l. The parameters are determined using mea-
surement packets and corresponding response data packets
(Section III-B). To notify vl of ε′l, v(l+1) inserts the loss rate
value of ε′l into the latest data after updating ε′l.
Adjustment of Relay Method and RTO value: If a received
SMI has budget allocation information for the lth link (line
11), then vl determines the relay mode of v(l+1) and RTOvl

based on the allocated budget. If the allocated budget is greater
than or equal to the budget request, the relay method mv(l+1)

is set to the stop-and-wait method (line 18). Then, RTOvl

is set to RTOmin
vl

(line 19). To require the upstream node
v(l+1) to execute the stop-and-wait method, vl sends the SMI
including the information (line 28). If the allocated budget
is insufficient for v(l+1) to execute the stop-and-wait method,
the relay method mv(l+1)

is set to the fast-relay method. Then,
RTOvl is increased based on the allocated budget if possible
(lines 23 and 24). Duplicate data receptions in the fast-relay
method can be suppressed as much as possible by increasing
the RTO value such that the budget consumption falls within
the allocated budget.

VI. EXPERIMENTAL EVALUATION

A. Implementation

We implemented the recovery-budget-aware in-network re-
transmission mechanism using the open-source software Ce-
fore [25], which is compatible with the CCNx protocol 1.0,
as specified by the Internet Research Task Force [9]. Cefore
provides actual running codes for ICN-based communication
equipped with SMIs (and RGIs) and in-network caches. For
recovery-budget-aware adaptation, we modified cefnetd, a ba-
sic forwarding daemon, to handle interest and data encoded
in IPv4/v6 packets. Our implementation enabled nodes to
insert budget information into SMIs and data using the hop-
by-hop Type-Length-Value (TLV) header [9]. Cefore provides
two sample programs named cefputstream and cefgetstream.
cefputstream is a publisher application that sends real-time
stream data sequentially, while cefgetstream is a consumer ap-
plication for obtaining data with specified names. For recovery
budget allocation at the consumer, cefgetstream was enhanced
to support the ReBARC algorithm.

B. Experimental Setting

We experimentally investigated in-network retransmission
in an emulated testbed using Mininet [26] and the modified

𝒗𝟏 𝒗𝟐 𝒗𝟑 𝒗𝟒 𝒗𝟓 𝒗𝟔

Wireless link Wired link

𝑶𝑫 = 𝟓	𝒎𝒔
𝜺! = 𝟓 − 𝟐𝟎%
𝜺 = 𝟓 − 𝟐𝟎%

𝑶𝑫 = 𝟓	𝒎𝒔
𝜺! = 𝟓%
𝜺 = 𝟓%

𝑶𝑫 = 𝟏𝟎	𝒎𝒔
𝜺! = 𝟓%
𝜺 = 𝟓%

𝑶𝑫 = 𝟓	𝒎𝒔
𝜺! = 𝟓%
𝜺 = 𝟓%

𝑶𝑫 = 𝟓	𝒎𝒔
𝜺! = 𝟓 − 𝟐𝟎%
𝜺 = 𝟓 − 𝟐𝟎%

𝑶𝑫: one-way delay 𝜺: downlink loss rate 𝜺!: uplink loss rate

Fig. 6. Network topology used in the experiment.

Cefore. The main questions were about how the proposed
method could enhance the success of loss recovery compared
with existing methods, satisfy latency requirements efficiently,
and improve video quality.
Network Topology and Condition Setting: We used a typical
chain topology (Fig. 6). The network comprised of six nodes:
(1) one consumer, (2) one publisher (which sends real-time
data at 20 Mbps), (3) two wireless access points (APs), and
(4) two edge nodes.

The access links were assumed to be wireless links where
the interest and data packet losses followed the official 3GPP
scenario (Table 6 in [27]), which considers a pedestrian at
3 km/h. Considering severe loss conditions, mean loss rates
of 5%, 10%, and 20% were used. The one-way propagation
delay of each access link was set to 5 ms. Given that most
of loss rates are 1%–10% [28], we set the loss rate of the
wired core link between the two edge nodes to 5%. The one-
way propagation delay of the core link was set to 10 ms.
Similarly, regarding the two wired links between (1) the AP
at the consumer and the edge node and (2) the AP at the
publisher and the edge node, the loss rates were set to 5%.
The one-way propagation delay was set to 5 ms.
Performance Metrics: The measured performance metrics
were (1) the ratio of successful loss recovery at the consumer,
(2) the ratio of duplicate data reception (the total number
of duplicate data received by a node divided by the total
number of latest data sent by the publisher), and (3) the video
playback quality (specifically the structural similarity index
measure [SSIM]) [29]. We used the ratio of duplicate data
reception averaged by the number of links. The SSIM provided
a similarity score of 0–1 to assess the video frame displayed
at the consumer end. The lowest SSIM score of 0 implied that
the video frame was dropped, whereas the highest score of 1
indicated that the displayed video frame was identical to the
original one.
Schemes for Comparison: The performance of ReBARC was
compared with those of two ICN-based schemes: consumer-
based retransmission scheme [15] with a TCP-like RTO (called
baseline scheme) and an in-network PLR scheme [19] where
intermediate nodes spontaneously retransmit lost latest data
(called existing scheme). For the existing scheme to achieve
a high successful loss recovery ratio, we assumed that the
nodes retransmitted lost latest data immediately and provided
explicit loss notification. Both schemes do not perform timely
loss detection at the consumer end for latest data. Therefore,
for a fair comparison, the two schemes were set to detect
latest-data loss in the same manner as our proposed scheme.

IFIP Networking 2025 - Limassol, Cyprus - 26-30 May 2025

462

30 50 70 90 110
Data Commun. Delay (ms)

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

ReBARC
baseline scheme
existing scheme

Fig. 7. Performance of end-to-end data communication delay. In this
experiment, the acceptable latency was set to 80 ms.

60 70 80 90 100
Acceptable Latency (ms)

0.2

0.4

0.6

0.8

1.0

Su
cc

es
sf

ul
 L

os
s

Re
co

ve
ry

 R
at

io

baseline scheme
existing scheme
ReBARC

(a) Successful loss recovery ratio

60 70 80 90 100
Acceptable Latency (ms)

0.00

0.05

0.10

0.15

Du
pl

ica
te

 D
at

a
Re

ce
pt

io
n

Ra
tio

baseline scheme
existing scheme
ReBARC

(b) Duplicate data reception ratio

Fig. 8. Performance results according to acceptable latency requirements.

C. Loss Recovery Performance: Preliminary Test

We first investigated the communication delay performance
of ReBARC with a relatively severe latency requirement,
where the acceptable latency was set to 80 ms. In this
experiment, we used the topology shown in Fig. 6, with the
loss rates at the wireless access links being statically set to
10%.

Fig. 7 presents the ReBARC performance result of end-
to-end data communication delay, compared to those corre-
sponding to the baseline and existing schemes. The baseline
scheme failed to achieve a high ratio of successful loss
recovery because of the lack of a fast in-network recovery
mechanism. Similarly, the existing scheme could not achieve a
higher successful loss recovery ratio, because the loss recovery
partly relies on consumer-based retransmission, prolonging the
recovery delays. Therefore, both the schemes could not satisfy
the acceptable latency requirement well. In contrast, ReBARC
kept almost the entire data transmission within the acceptable
latency of 80 ms, achieving a high successful loss recovery
ratio of more than 90%.

D. Impact of Differences in Latency Requirements

In this evaluation, the loss rates at the wireless access links
were statically set to 5% to investigate acceptable latency
effects. Figs. 8(a) and 8(b) present the performance assessment
results with respect to the application latency requirement. The
successful recovery ratios of both the baseline and existing
schemes were lower than that of ReBARC, especially with
a low acceptable latency. The results indicate that ReBARC
works effectively for loss recovery, even under severe end-
to-end loss. In case of the acceptable latency ≥ 90 ms,
the successful recovery ratios of ReBARC slightly decreased,

0 2 4 6 8 10 12
Time (sec.)

0

5

10

15

20

Lo
ss

 R
at

es
 o

f W
ire

le
ss

Ac
ce

ss
 li

nk
s (

%
)

(a) Loss rate changes in wireless
access links

60 80 100
Acceptable Latency (ms)

0.2
0.4
0.6
0.8
1.0

Su
cc

es
sf

ul
 L

os
s

Re
co

ve
ry

 R
at

io

baseline scheme
existing scheme
ReBARC-fast-relay
ReBARC-stop-and-wait
ReBARC

(b) Successful loss recovery ratio

60 80 100
Acceptable Latency (ms)

0.00
0.03
0.06
0.09
0.12
0.15
0.18

Du
pl

ica
te

 D
at

a
Re

ce
pt

io
n

Ra
tio

baseline scheme
existing scheme
ReBARC-fast-relay
ReBARC-stop-and-wait
ReBARC

(c) Duplicate data reception ratio

v2 v3 v4 v5
Node ID

0.0
0.2
0.4
0.6
0.8
1.0

Pe
rio

d
Pe

rc
en

ta
ge

of
 S

to
p-

an
d-

W
ai

t acceptable lantecy 60 ms
acceptable latency 80 ms
acceptable lantecy 100 ms

(d) Period Percentage of Stop-and-
Wait

Fig. 9. Performance at varying loss rates of wireless access links.

compared to the case where that was 80 ms. This was because
the ReBARC adaptation was more likely to adopt the stop-
and-wait method when having more recovery budget, which
caused unsuccessful loss recovery owing to the long recovery
delays.

Regarding the duplicate data reception ratio, both the base-
line and existing schemes performed worse than ReBARC.
This was because of the variation in the places of nodes
holding the lost data and ineffective RTO settings at the
consumer, as reported in [15]. ReBARC avoids this issue
by adopting hop-by-hop adaptation based on the allocated
recovery budget. Therefore, ReBARC efficiently suppressed
duplicate data reception compared with the other schemes.
These results indicate that effective, efficient in-network re-
transmission was performed by ReBARC.

E. Impact of Loss Conditions

We investigated the adaptability of ReBARC by varying the
loss rates of the wireless access links (Fig. 9(a)) considering
a situation where wireless links become severe and unstable.
As shown in Figs. 9(b) and 9(c), ReBARC outperformed the
baseline and existing schemes in terms of both the successful
loss recovery ratio and duplicate data reception ratio.

We also evaluated the performance of two ReBARC vari-
ants: one where all nodes always adopt the fast-relay method
(called ReBARC-fast-relay) and one where all nodes always
adopt the stop-and-wait method (called ReBARC-stop-and-
wait). As discussed in Section IV, ReBARC-fast-relay sup-
pressed recovery delays, thus enhancing the successful loss
recovery ratio, but increased the duplicate data reception ratio.
ReBARC-stop-and-wait substantially suppressed the duplicate
data reception ratio but achieved a lower successful loss
recovery ratio. Fig. 9(d) presents the period percentage of
the stop-and-wait method of each node adjusted by ReBARC,

IFIP Networking 2025 - Limassol, Cyprus - 26-30 May 2025

463

140 160 180 200 220
Frame Delay (ms)

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

ReBARC
baseline scheme
existing scheme

(a) Frame delay (i.e., playback la-
tency) (ms)

0.7 0.8 0.9 1.0
SSIM

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

ReBARC
baseline scheme
existing scheme

(b) SSIM

Fig. 10. Video playback quality. In this experiment, the acceptable latency
was set to 180 ms.

which affected ReBARC performance. Nodes v2 and v3 denote
the consumer-end AP and edge node, respectively, and v4
and v5 denote the publisher-end edge node and AP, respec-
tively. Given an insufficient acceptable latency (≤ 80 ms),
the period percentages at v2 and v3 decreased due to the less
available budget, resulting in more duplicate data receptions
at the links. Instead, ReBARC achieved a considerably higher
successful loss recovery ratio compared with ReBARC-stop-
and-wait. ReBARC adaptation bridged the gap between the
fast-relay and stop-and-wait methods, achieving well-balanced
performance according to the acceptable latency and network
conditions. Thus, these results showed that ReBARC could
ensure stable teleoperation [32].

F. Video Quality

We evaluated ReBARC in terms of video playback quality.
We used the video application GStreamer [30] at both the
publisher and consumer ends. The publisher-end application
encoded a prerecorded source video (4K resolution) using an
x264 encoder at a bitrate of 20 Mbps and sent it over the
real-time transport protocol [31] via cefputstream. The source
video contained a sufficiently moving scene. For low-latency
settings, we only used I-frames and P-frames (i.e., without
B-frames, which would have required additional latency).

In this experimental environment, the total processing time
of video encoding/decoding was ' 60 ms at most. The ac-
ceptable latency was set to 180 ms considering the processing
time. The network conditions in the Section VI-D evaluation
were used. The video play time was approximately 10 s.

Figs. 10(a) and 10(b) show the overall frame delays and
SSIM performance, respectively. ReBARC outperformed both
the baseline and existing schemes owing to the in-network
retransmission mechanism per link; its frame delays were
lower than those of the baseline and existing schemes, re-
sulting in higher SSIM scores for the frames. In ReBARC,
approximately 90% of the frame delays were suppressed
within the acceptable latency and the SSIM scores for most
of the frames were maintained at above ' 0.8. These results
highlighted that even in such a severe loss condition, ReBARC
can contribute to achieving stable real-time video transmission
with higher video quality.

VII. DISCUSSION

Application of FEC: If an allocated recovery budget is
insufficient due to a long propagation delay at a link, then
only the retransmissions at that link cannot achieve successful
loss recovery. In this case, FEC can be useful [16]. Our
proposed in-network retransmission mechanism can effectively
incorporate FEC. Using recovery interests, a downstream
node requests redundant data (replica or coded data) from
the upstream node if the allocated budget is less than the
estimated budget consumption. Such redundant data traffic can
be effectively eliminated, as redundant data transmissions are
applied only at links where successful loss recovery cannot be
achieved by in-network retransmissions alone.
Rate Control: If network congestion occurs at a bottleneck
link, then the publisher should decrease the data transmis-
sion rate by lowering the video quality to avoid congestion
collapse. Several effective rate control methods using explicit
congestion notification in ICN have been proposed [33], [34].
ReBARC has a potential to sophisticate such rate control
mechanisms, as in-network retransmission can effectively ad-
dress data losses caused by network congestion for successful
loss recovery. In our future work, we will combine in-network
retransmission with such a rate control mechanism.

VIII. CONCLUSIONS

Sophisticated in-network retransmission for fast loss re-
covery should be designed to promote various ICN-enabled
use cases. We propose ReBARC as an effective fully dis-
tributed loss recovery mechanism for high-quality, low-latency
streaming applications. It leverages the architectural benefits of
ICN, such as in-network caching and consumer-driven hop-by-
hop communication. ReBARC enables nodes to recognize the
maximum allowable delay and perform loss recovery consid-
ering the end-to-end latency requirement without issuing and
exchanging additional control messages with each other. It also
prevents duplicate data reception. We implement ReBARC
using an open-source software with the CCNx 1.0 protocol
and conduct experiments. Compared with existing methods,
ReBARC helps maintain higher video quality by achieving
higher successful loss recovery while suppressing duplicate
data reception.

ACKNOWLEDGEMENT

This work was partly supported by JST Moonshot R&D
Goal 1, Grant Number JPMJMS2216.

REFERENCES

[1] A. Baltaci, et al., “A survey of wireless networks for future aerial com-
munications (FACOM),” IEEE Communications Surveys and Tutorials,
vol. 23, no. 4, Aug. 2021, pp. 2833–2884.

[2] P. Nadrag, et al., “Remote control of a real robot taking into account
transmission delays,” Proc. IFAC, vol. 43, no. 10, 2010, pp. 59–64.

[3] J. Iyengar and M. Thomson, “QUIC: A UDP-based multiplexed and
secure transport,” IETF, RFC 9000, May 2021.

[4] H. She, et al., “Analytical evaluation of retransmission schemes in
wireless sensor networks,” Proc IEEE VTC, Jun. 2009.

[5] M. Irland and G. Pujolle, “Comparison of two packet-retransmission
techniques (corresp.),” IEEE Trans. Inf. Theory, vol. 26, no. 1, Jan.
1980, pp. 92–97.

IFIP Networking 2025 - Limassol, Cyprus - 26-30 May 2025

464

[6] S. Heimlicher, et al., “End-to-end vs.hop-by-hop transport under inter-
mittent connectivity,” Proc. of ICST Autonomics, 2007, Oct. 2007.

[7] H. Asaeda, et al., “A Survey of Information-Centric Networking: The
Quest for Innovation,” IEICE Transaction on Communications, vol.
E107-B, No. 1, Jan. 2024, pp. 139–153.

[8] L. Zhang, et al., “Named data networking,” ACM Comput. Commun.
Rev., vol. 44, no. 3, Jul. 2014, pp. 66–73.

[9] M. Mosko, I. Solis, and C. Wood, “Content-centric networking (CCNx)
messages in TLV format,” IRTF, RFC 8609, Jul. 2019.

[10] G. Carofiglio, et al., “Leveraging icn in-network control for loss detec-
tion and recovery in wireless mobile networks,” Proc. ACM ICN, Sep.
2016, pp. 50–59.

[11] M. Nikzad, et al., “An accurate retransmission timeout estimator for
content-centric networking based on the Jacobson algorithm,” Digital
Communications and Networks, vol. 8, no. 6, Dec. 2022, pp. 1085–
1093.

[12] K. Schneider, et al., “A practical congestion control scheme for named
data networking,” Proc. ACM ICN, Sep. 2016, pp. 21–30.

[13] K. Ueda, et al., “Revisiting loss detection in NDN: detecting spurious
timeout using probe interest,” Proc. IEEE Globecom, Dec. 2022.

[14] W. M. H. Azamuddin, et al., “The emerging of named data networking:
architecture, application, and technology,” IEEE Access, vol. 11, Feb.
2023, pp. 23620–23633.

[15] A. Abu, et al., “Interest packets retransmission in lossy CCN networks
and its impact on network performance,” Proc. ACM ICN, Sep. 2014,
pp. 167–176.

[16] K. Matsuzono, H. Asaeda, and T. Turletti, “Low Latency Low Loss
Streaming Using In-Network Coding and Caching,” Proc. IEEE INFO-
COM, May 2017, pp. 1–9.

[17] Z. Wang, et al., “R2T : A rapid and reliable hop-by-hop transport
mechanism for information-centric networking,” IEEE Access, vol. 6,
2018, pp. 15311–15325.

[18] S. Oueslati, J. Roberts, and N. Sbihi, “Flow-aware traffic control for a
content-centric network,” Proc. IEEE INFOCOM, May 2012, pp. 2417–
2425.

[19] Y. Chen, et al., “PLR: An In-Network Proactive Loss Recovery Scheme
for Named Data Networking,” Proc. IEEE ICCCN, Jul. 2023.

[20] M. Mosko and H. Asaeda, “CCNx Content Object Chunking,” IRTF,
Internet-Draft (work in progress), Oct. 2024.

[21] K. Matsuzono, D. Nguyen, and H. Asaeda, “Content Request Handling
for Application-Oriented Transport Control,” IEEE Commn. Mag., vol.
57, no. 6, Jun. 2019, pp. 14–19.

[22] M. Sargent, et al., “Computing TCP’s retransmission timer,” IETF, RFC
6298, Jun. 2011.

[23] S. Mastorakis, et al., “Information-centric networking (ICN) ping pro-
tocol specification,” IRTF, RFC 9508, Mar. 2024.

[24] D. Han et al., “RPT: re-architecting loss protection for content-aware
networks,” Proc. USENIX NSDI, Apr. 2012.

[25] “Cefore,” available at: https://github.com/cefore, accessed Mar. 5. 2025.
[26] “Mininet,” available at: http://mininet.org/, accessed Mar. 5, 2025.
[27] ETSI, “3rd Generation Partnership Project; Technical Specification

Group Services and System Aspects; Multimedia Broadcast/Multicast
Service (MBMS); Selection and characterization of application layer
Forward Error Correction (FEC),” 3GPP TR 26.947 version 17.0.0
Release 17, Apr. 2022.

[28] M. Rudow, et al., “Tambour: Efficient loss recovery for videoconferenc-
ing via streaming codes,” Proc. 20th USENIX Symposium on Networked
Systems Design and Implementation (NSDI), Apr. 2023.

[29] Z. Wang, et al., “Image quality assessment: from error visibility to
structural similarity,” IEEE Transactions on Image Processing, vol. 13,
no. 4, Apr. 2004, pp. 600–612.

[30] “GStreamer,” available at: https://gstreamer.freedesktop.org/, accessed
Mar. 10, 2024.

[31] H. Schulzrinne, et al., “RTP: A Transport Protocol for Real-Time
Applications,” IETF, RFC 3550, Jul. 2003.

[32] A. Baltaci, et al., “Analyzing real-time video delivery over cellular
networks for remote piloting aerial vehicles,” Proc. ACM Internet
Measurement Conference (IMC), Oct. 2022, pp. 98–112.

[33] D. Nguyen, J. Jin, and A. Tagami, “Cache-friendly streaming bitrate
adaptation by congestion feedback in ICN,” Proc. ACM ICN, Sep. 2016,
pp. 71–76.

[34] K. Schneider, et al., “A practical congestion control scheme for named
data networking,” Proc. ACM ICN, Sep. 2016, pp. 21–30.

IFIP Networking 2025 - Limassol, Cyprus - 26-30 May 2025

465

