IFIP Networking 2025 - Limassol, Cyprus - 26-30 May 2025

Precise Positioning for Healthcare Robotics with
Retroreflective Tags in 5G Small Cell Networks

Alireza Famili*, Tolga O. Atalay', Angelos Stavrou*'!
*WayWave Inc, Arlington, Virginia, USA
TA2 Labs LLC, Arlington, Virginia, USA
IDepartment of Electrical & Computer Engineering, Virginia Tech, Virginia, USA
afamili@waywave.com, tatalay @a2labs.com, angelos@vt.edu

Abstract—The deployment of service robots in healthcare
facilities—ranging from autonomous medication delivery carts
to patient-assisting mobile platforms—is expanding across di-
verse applications. To carry out these tasks effectively, there
is a pressing need for precise indoor positioning. While global
navigation satellite system (GNSS) reliably supports outdoor
localization, their performance degrades significantly in indoor
settings. In this work, we introduce REFINE: Retroreflective FR2
Indoor Navigation Engine, a high-accuracy localization scheme
for indoor robotics leveraging low-cost 5G small cells operating
in high-frequency bands in conjunction with retroreflective tags.
Our approach effectively mitigates synchronization challenges
and multipath interference by exploiting the 5G positioning
reference signal (PRS) and the unique Van Atta array properties
of the tags. We conduct a comprehensive simulation campaign
using realistic system parameters and channel models for 5G-
enabled deployments in hospital environments. Our results
demonstrate that REFINE achieves superior accuracy compared
to conventional 5G-based localization techniques, consistently
delivering positioning errors below 5 cm in the majority of tested
scenarios.

Index Terms—healthcare robotics, indoor localization, 5G
small cells, retroreflective tags, passive RTT

I. INTRODUCTION

The integration of robotic platforms in healthcare facilities
has gained significant traction in recent years [1]. Automated
delivery robots such as the Aethon TUG [2], for instance,
are increasingly being adopted to transport medications, lab-
oratory specimens, and meals within hospitals. These mobile
systems reduce manual labor, minimize human errors, and
improve operational efficiency. In addition, other service-
oriented robots assist with disinfection, patient monitoring,
and even remote telepresence for medical consultations [3].
As healthcare environments continue to embrace such tech-
nologies, the need for robust and reliable solutions that ensure
autonomous navigation and task execution becomes more
pronounced [4].

A key prerequisite for autonomous robotic operations is
accurate localization [5]. Conventional methods based on
vision sensors [6] can be expensive, data-intensive, and
vulnerable in low-visibility settings or dynamically changing
indoor conditions. Alternatively, radio-frequency (RF) finger-
printing techniques using received signal strength (RSS) [7]
or channel state information (CSI) [8] often depend on
site-specific models and extensive offline training, making
them susceptible to real-time environmental variations [9]. In
contrast, ranging-based localization strategies inherently offer
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Fig. 1: Overview of REFINE framework in a healthcare
environment, with 5G small cells mounted on the ceiling and
mobile units equipped with retroreflective tags for precise
positioning.

higher accuracy by measuring time of flight (ToF) or phase
of arrival (PoA). While global navigation satellite system
(GNSS) networks work well outdoors [10], [11], they suffer
considerable performance degradation in enclosed spaces
due to signal blockage and multipath [12], [13]. Even in
scenarios where GNSS services are available, their maximum
accuracy may not suffice for applications demanding higher
localization precision.

In this paper, we introduce REFINE: Retroreflective FR2
Indoor Navigation Engine, a novel indoor localization frame-
work designed specifically for healthcare robotics as illus-
trated in Figure 1. Unlike conventional schemes that rely on
large outdoor 5G base stations [14], our solution employs
cost-effective and compact 5G small cells mounted through-
out hospital floors. These small cells transmit positioning
reference signal (PRS) sequences in high-frequency bands,
such as frequency range 2 (FR2), to achieve high-resolution
ranging.

Recent studies on reconfigurable intelligent surface (RIS)
technology have explored its deployment in the environment
to shape RF propagation [15]. However, one study [16] took
an unconventional approach by mounting RIS on a drone,
using it merely as an RF mirror—an overly complex and
impractical setup for this purpose. Instead, REFINE leverages
ultra-low-power retroreflective tags based on Van Atta arrays.
These tags act as RF mirrors, reflecting incoming signals back
along the exact path they arrived from. Beyond lowering
system complexity, this approach inherently addresses syn-
chronization challenges and mitigates multipath interference.
To showcase its versatility, we evaluate REFINE across three
popular frequencies in the FR2 band (e.g., 26 GHz, 28 GHz,
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and 39 GHz), which are commonly allocated in different
global regions, ensuring broad applicability. The primary
contributions of our work are as follows:

« We introduce REFINE, a high-accuracy localization sys-
tem tailored for healthcare robotics operating in complex
indoor environments.

« REFINE leverages cost-effective and easily deployable
indoor 5G small cells operating in high-frequency FR2
band with up to 800 MHz bandwidth, enabling dedicated
PRS transmissions for enhanced positioning accuracy.

« REFINE employs ultra-low-power retroreflective tags
based on Van Atta arrays, which act as RF mirrors to
reflect PRS signals back to the 5G small cells.

o By returning the signal via the same path, REFINE al-
leviates stringent synchronization requirements between
the robot and the small cells, mitigates adverse multipath
effects, and significantly reduces power consumption
and computational demands on the robot side.

« We enhance the MATLAB 5G Toolbox with additional
models and optimizations and conduct a comprehen-
sive simulation campaign using realistic hospital en-
vironment parameters. Our results show that REFINE
outperforms state-of-the-art SG localization techniques,
achieving an overall positioning error below 5cm in
most scenarios.

The remainder of this paper is structured as follows. In
Section II, we provide some background and discuss related
work relevant to our study. Next, we detail the REFINE
architecture in Section III, followed by a theoretical analysis
of its ranging error bound in Section IV. Section V presents
our simulation setup and performance evaluation. Finally,
Section VI concludes the paper with a summary of our
findings and potential avenues for future research.

II. RELATED WORK & BACKGROUND

Our proposed approach lies at the intersection of three
key areas: robotics in healthcare, localization techniques,
and retroreflective technology. Below, we review the major
contributions and challenges in each domain.

Robotics in Healthcare: Robotic platforms have become
an integral component of modern healthcare settings, facili-
tating a wide range of tasks [17]. Some of the most notable
implementations include automated pharmacy robots that
dispense medications with high accuracy, disinfection robots
employing ultraviolet-C (UV-C) light to sanitize patient
rooms, and assistive robots that deliver meals or transport lab-
oratory specimens. For instance, the Aethon TUG [2] system
has been extensively deployed in hospitals to carry linens,
medications, and meals between different wards, helping
to reduce the manual workload on healthcare professionals.
Similarly, telepresence robots enable remote consultations,
significantly improving patient access to specialized care.
These diverse applications underscore the transformative po-
tential of robotic automation in enhancing both clinical effi-
ciency and patient outcomes. However, reliable autonomous
navigation remains a crucial requirement for widespread
adoption, as any mislocalization may compromise patient
safety and reduce workflow efficiency.

Indoor Localization Techniques: A variety of positioning
methods have been developed for indoor scenarios, each

with its own strengths and limitations [18]-[20]. Vision-
based techniques often utilize simultaneous localization and
mapping (SLAM) [21] or advanced image processing algo-
rithms [22] to build and update an environmental map. While
highly accurate under stable lighting and minimal occlusion
conditions, vision systems can become unreliable when faced
with poor illumination, cluttered environments, or unexpected
obstacles [23].

Fingerprinting methods, which rely on radio-frequency
features such as RSS [7] or CSI [8], offer an alternative by
matching real-time measurements to a pre-recorded database.
Although these solutions can be simple to deploy using
existing wireless infrastructure, they demand extensive offline
data collection and calibration. Furthermore, any significant
change in the indoor layout (e.g., moving furniture or walls)
can substantially degrade positioning performance [9].

Ranging-based strategies have emerged as a more robust
alternative, leveraging measurements like time of arrival
(ToA) [24], time difference of arrival (TDoA) [25], or angle
of arrival (AoA) [26]. In ToA systems, the distance is inferred
from the one-way travel time of a signal, necessitating strict
time synchronization between the transmitter (user) and the
receiver (anchor) [27]. This synchronization can be chal-
lenging in practical indoor environments due to fluctuating
clock drifts and multipath propagation. TDoA, on the other
hand, circumvents the synchronization issue by measuring the
difference in arrival times across multiple anchors, thereby
eliminating clock offset bias and relaxing synchronization
requirements [28]. AoA relies on antenna arrays to estimate
the incoming signal’s angle but typically requires elaborate
hardware and high computational overhead for direction
finding. In each of these ranging-based methods, the final step
of position estimation can be performed through trilateration
when distance information is available or angulation when
angular information is used.

Retroreflective Technology: Retroreflective tags origi-
nated in the field of optics [29], where they have long
been used on traffic signs and safety gear to reflect light
back to its source [30]. In the RF domain, Van Atta arrays
are a prominent example of retroreflective technology [31].
These arrays are designed so that the signal received on each
element is re-radiated back along the incident path, effectively
acting as an “RF mirror.” Traditional implementations of
RF retroreflectors were limited to continuous wave signals,
where the primary application was to enhance radar cross-
section or simplify radio frequency identification (RFID)-like
sensing. Recent advancements, however, have demonstrated
the feasibility of using retroreflective tags with modulated sig-
nals [32], such as orthogonal frequency-division multiplexing
(OFDM)-modulated cellular network signals.

To the best of our knowledge, we are the first to propose
a localization system that employs ranging-based techniques
in high-frequency 5G bands while using retroreflective tags
to simplify synchronization and mitigate multipath. By lever-
aging 5G small cells and the full potential of wide-band PRS
transmissions alongside the retroreflective tag on the user side
(i.e., the robot), our approach achieves both high-resolution
ranging and a dramatically reduced processing burden on the
user side.
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III. REFINE ARCHITECTURE

This section presents the architecture of REFINE, high-
lighting how our proposed 5G-based framework addresses
indoor positioning challenges without incurring high power
usage or heavy synchronization demands. Unlike conven-
tional approaches that rely on active transmitters on the user
equipment (UE) or complex multi-anchor synchronization,
REFINE leverages mmWave 5G small cells and retrore-
flective tags to simplify operations and significantly reduce
power consumption. We begin by outlining the relevant 5G
system model and reviewing two key methods in the 3rd
generation partnership project (3GPP) standards, observed
time difference of arrival (OTDoA) and round trip time
(RTT). Next, we revisit RIS to show how prior attempts
to modify the propagation environment led to unnecessary
complexity. Finally, we introduce the core contribution of
REFINE: the utilization of retroreflective tags as low-power
substitutes for active user transmitters, alongside the conclu-
sion of REFINE’s localization scheme.

A. REFINE Small Cell Deployment

In this work, we capitalize on 5G New Radio (NR)
technology to enable high-precision indoor positioning. As
illustrated in Figure 2, traditional macrocell towers often
provide insufficient coverage inside large healthcare facilities,
primarily due to attenuated signals and obstructed lines of
sight. Instead, we deploy small cells, which are compact
base stations connected to the same 5G core network infras-
tructure. By installing multiple small cells on the ceilings of
hospital corridors and rooms, we gain finer-grained control
over coverage, mitigate outdoor path-loss issues, and ensure
a line of sight (LoS) for each cell within its intended area.

5G NR frequency ranges are broadly split into FR1 (sub-
6 GHz) and FR2 (millimeter-wave). While FR1 accommo-
dates wide-area coverage, its limited bandwidth restricts rang-
ing resolution. Conversely, FR2—operating above 24 GHz—
offers substantially larger bandwidth (hundreds of MHz),
translating to higher time resolution and improved positioning
accuracy. In our design, we utilize FR2 channels centered
at three representative bands: 26 GHz, 28 GHz, and 39 GHz.
Each of these frequencies is widely adopted in different
global regions, for instance, 28 GHz in parts of the US,
26 GHz in Europe, and 39 GHz across multiple markets,
ensuring the broad applicability of our approach.

Let N be the number of indoor small cells deployed
throughout the facility, each with a known coordinate p; =
(4, Yi, zi), © = 1,2,..., N. During operation, each small
cell periodically transmits 5G PRS on its assigned FR2
band, leveraging the generous bandwidth to achieve fine-
grained distance measurements. A mobile robot travels on
the hospital floor with a retroreflective tag mounted on it. The
key objective is to estimate the robot’s position r = (z, y, 2)
in real time. In many healthcare settings, movement is
predominantly on the ground, so height may be treated as
known; however, the formulation extends naturally to three-
dimensional (3D) deployments if vertical motion or multi-
floor environments must be considered.
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Fig. 2: Various deployments in 5G heterogeneous networks.

B. Time-Based Localization

In 5G networks, the two primary time-based techniques
standardized by 3GPP for positioning are OTDoA and RTT.
Both methods seek to improve localization accuracy by
measuring signal travel times, but each tackles the device-
to-network synchronization challenge in distinct ways. In the
following subsections, we briefly outline their core princi-
ples and drawbacks. Later, we explain how REFINE builds
on these standard protocols to further enhance positioning
accuracy while reducing power consumption and complexity.

1) OTDoA: This method exploits the differences in signal
arrival times from multiple anchors to eliminate the unknown
UE clock bias. Suppose the ¢-th small cell transmits a PRS
signal s;(t) at time ¢ = 0. The UE receives this signal at
time:

ti = Ty + 7o, ey
where 7; = M is the one-way propagation delay (with ¢
the speed of light), and 7y encapsulates the UE’s clock offset
relative to the network. Here, ||-|| denotes the Euclidean norm,
ie, |r—pill = /(. —2)2 + (y — 4:)2 + (2 — 2)% which
represents the Euclidean distance between the UE position
r = (x,y, z) and the anchor position p; = (x4, yi, 2;)-
Instead of computing absolute ToA, OTDoA calculates the
differences:

Atij:tiftj:(Ti+7'0)7(7'j+7'0):7'7377'j. (2)

Hence, the unknown 7y cancels out, leaving only the differ-
ences in geometric propagation delays:

PO L S 11 -
c

Each At;; translates into a hyperbolic constraint in the spatial

domain. With measurements from at least four non-collinear

small cells, these hyperbolas intersect at the UE’s position in

three-dimensional space.

2) RTT: An alternative approach is round-trip time local-
ization, where the same anchor transmits a reference signal
and measures the time until it is received back. Denote t g7 ;
as the measured round-trip time between the i-th small cell
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and the UE. If the signal makes a forward and backward pass
over distance ||r — p;||, then:

lr — pil
C

trrT,i =2 + 4, 4
where §; is any residual processing delay at the anchor or
the UE. Since both transmission and reception occur at the
small cell, the system can effectively calibrate out §; or treat
it as a fixed offset. Thus, the one-way distance is:
c

di = |r —pi| = §(tRTT,i —8;). )
According to several studies (e.g., [16]), RTT-based ranging
demonstrates a Cramér-Rao lower bound (CRLB) roughly
half that of OTDoA under comparable conditions, which
means they have better positioning accuracy. However, con-
ventional RTT requires the UE to actively transmit the
return signal making it power-demanding and increasing the
computational process.

C. REFINE Ranging Scheme

RIS technologies have emerged as a promising tool in
next-generation wireless systems to shape the radio propa-
gation environment. An RIS is typically a two-dimensional
(2D) metasurface composed of numerous sub-wavelength
elements, each capable of imposing a controllable phase
shift to incoming waves. In standard deployments, an RIS
is affixed to walls or ceilings, aiding coverage by reflecting
beams in desired directions. In [16], Famili et al. proposed
an unconventional method by placing the RIS on an aerial
drone hovering above the target area.

While their approach validates that RIS-based reflectors
can enhance localization by relaxing synchronization require-
ments, it also introduces complexities. Although the RIS can
redirect incoming waves toward any chosen angle, using
them solely as a mirror that reflects a signal back to its
source is unnecessarily complex and costly. Implementing
RIS entails added hardware, complex control of reflection
coefficients, and ongoing calibration to set desired angles,
which is overkill if the goal is simply to send the signal back
along the same path. Consequently, we propose REFINE as
a low-power, low-complexity alternative that eliminates these
overheads by leveraging inherently retroreflective hardware.

To circumvent the power-hungry nature of actively trans-
mitting UEs (as in RTT) or the heightened cost and com-
plexity of RIS-based approaches, REFINE leverages ultra-
low-power retroreflective tags built on the Van Atta array
principle, as shown in [31]. In a Van Atta configuration,
each antenna element has a paired element so that incom-
ing signals are re-radiated back along precisely the same
trajectory from which they arrived. This setup is shown in
Figure 3, where a robot is mounted with a retroreflective tag
so that any incoming signal is sent back on the incoming
angle. Concretely, if a plane wave from angle 6 induces a
current [,, on the n-th array element, the array is wired such
that the re-radiated wave leaves at angle 6 in the reverse
direction, retaining the incident signal’s phase relationships.
This “focused mirror” action ensures that reflected energy
naturally flows back toward its source, removing the need
for high-power active transmissions at the user side.

Rébot with
Retroreflective Tag

Fig. 3: Retroreflective tag mounted on a robot for categorizing
the multipath components and the line of sight (LoS) path.

Signal Model for Retroreflection: Consider a small cell
located at p; transmitting a PRS signal:

z;(t) = VP;s(t) et 6)

where P; is transmit power and f, is the FR2 carrier
frequency. An incoming wave at the retroreflective tag excites
each antenna element n with:

ra(t) = omixi(t —Tni), ()

where «, ; captures path loss and element gain, and 7, ; is
the propagation delay to element n. Van Atta wiring ensures
these waves re-radiate coherently back to p;, yielding:

yi(t) ~ ﬁi l‘i(t—QTi) = Pi S(t—QTi) 6j27rfb(t_27—"'), (8)

where 7; = w is the one-way delay, and [3; includes the
total round-trip path loss and array gain. Notably, the robot’s
tag remains passive; the anchor alone measures the round-trip
time and computes d; = ||r — p;]|.

Synchronization and Multipath Reduction: Since the
small cell both transmits and receives, any clock offset at
the user side is irrelevant, reducing the typical synchro-
nization headache in ToA-based positioning. The small cell
simply time-stamps x;(t) and correlates it with y;(¢) upon
reflection. Moreover, as shown in Figure 3, multipath signals
from environmental reflectors, such as walls, objects in the
hospital, clutter, and other obstructions, typically return to
their source rather than to the 5G small cell. For instance,
if a multipath component arises from the reflection of the
primary 5G PRS signal off a wall, the retroreflective tag
acts as a mirror, directing the reflected signal back toward
the wall instead of the small cell. Consequently, multipath
components from environmental reflectors rarely return along
the exact path needed to combine coherently. Thus, Van
Atta retroreflection inherently suppresses interference from
unintended surfaces. The result is a low-complexity, low-
power, and multipath-resilient alternative to sophisticated
RIS-based solutions, forming the cornerstone of REFINE’s
passive-RTT localization strategy.
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D. REFINE Trilateration

As mentioned earlier, we have N small cells located at
known coordinates on the ceiling p; = (z;, yi, 2;), for i =
1,..., N, and the robot’s unknown location is denoted by
r = (z, y, z). Now, after accurately obtaining the ranging
information—thanks to the synchronization-free, multipath-
robust ranging scheme in REFINE—we have the distance d;
between the robot and the ¢-th small cell and can write:

v —pil|* = d7, i=1,...,N. ©)
Expanding Equation (9) yields:
(x—x)> + (y—y)? + (2 — z)? = d2. (10)

Defining a reference anchor (e.g., the N-th small cell) and
comparing each ¢-th with [V leads to a set of linear equations
in (z,y,2). Fori=1,2,...,(N — 1), we can write:

(df —diy) = (af — ok + 97 — i + 47 = %) =
-2 [(mi—x]v)x—i—(yi—yN)y—i—(zi—zN)z}. (11)
Collecting these into a matrix form A x = b:
A1 A2 A1z b1
Az Az 2 Az 3 z ba
. . . , x=|y|, b= . )

An-—11 An-12 ANn—13

A =

byn_1

where x =" = (7,y, 2)7, and the elements of A and b are
as follows:

Aig==2(xi —zN), Aiz2
by =

=—2(yi —yn), Ai3 = —2(zi — 2n),
2 2 2 2,2 9, 2 2
(di —dy) — (27 —a + i —yn +2 —2n)-

If the robot z coordinate is known; in other words, we
need to perform location estimation in 2D plane, N > 3
anchors suffice. Otherwise, N > 4 is required for a full 3D
space localization. A pseudo-inverse solution or least-squares
approach gives:

-~ -1

x = (ATA) ATb. (12)
In practice, measurement noise implies a least-squares objec-
tive is often more robust:

N 2
min Z(Hr—plﬂ - di) )
Ty,

i=1

which can be solved via iterative algorithms (e.g., Gauss-
Newton) when outliers or non-line-of-sight (NLoS) paths
are significant. Regardless, this linear or iterative framework
conveniently incorporates the REFINE distances d; from each
small cell to the retroreflective tag, yielding a direct and
computationally efficient method for real-time localization.

13)

IV. REFINE RANGING ERROR BOUNDS

In this section, we derive the CRLB to characterize the
achievable ranging accuracy of REFINE. As in classical
estimation theory, the CRLB provides a minimum-variance
threshold for any unbiased estimator, equivalently expressed
via the Fisher information matrix (FIM). Let # be an unknown
parameter to be estimated from observations x with density

f(x;0). Then the FIM is as follows and the variance of 6 is
bounded by the inverse of the FIM:

160)=E l(alngéxw)) (amg(;m)ﬂ |

. 1

0) > —.

wr() > 7

In a positioning scenario, we focus on the positioning error

bound (PEB), defined as the square root of the CRLB on the

user’s (z,y,z) location. Denoting the unknown coordinate
vector by ¢ = [z y 2], we can write:

PEB = tr<1—1(c)),

where I(¢) is the FIM for those coordinates and tr(-) denotes
the matrix trace. In ranging-based localization, the PEB is
commonly viewed as the product of two factors: the per-
link ranging error o, and a geometric dilution of precision
(GDOP) factor that depends on anchor layout [33]:

PEB = o(r) = o, - GDOP.

In this work, we do not address the GDOP arising from the
relative anchor—user layout. Instead, our primary objective is
to diminish the latter factor, the per-link ranging error o,.. As
discussed earlier, we propose a passive RTT approach that
leverages retroreflective tags on the user with high-frequency
5G small cells installed on the ceiling.

To start, consider the single-link CRLB for distance. Let d
be the unknown anchor-to-user distance, d its estimate, and
7 the estimated one-way ToA. We have

CRLB(d) = ¢*-CRLB(7),

where c¢ is the speed of light. Thus, we first examine
CRLB(7) under typical 5G PRS. In 3GPP Rel. 16 and
beyond, PRS is often an OFDM-modulated signal spanning
subcarrier spacing A f. Let the OFDM-modulated PRS signal
be as follows:

1

N _
13 :

Sit = Szk €J27rkAft,

0=75 X SH

k=-%

where N is the total number of subcarriers, Af = 1/(N Tj)
is the subcarrier spacing (effective bandwidth per subcarrier),
the parameter T represents the OFDM symbol duration
(without cyclic prefix), and S;[k] are the symbols. After a
channel-induced delay 7 plus noise, the receiver samples the
incoming signal at discrete time instances ¢t = nl', where T’
is the sampling interval, resulting in a discrete-time received
signal:

yi[n] = sri[n] + ninl, ni[n]~CN(0,02),

where CA(0,02) represents complex Gaussian noise with

zero mean and variance o2, and

ne

[=

—1
Sz[ki] ejQWkAf (nT—‘r).

L

sriln] = si(nT —7) =

2l

k

N
2
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If the probability distribution function (PDF) of y given 7 is
represented as p(y | 7), then the variance of the time-delay
estimate is bounded by the CRLB, given by:

1
7
E[ (£ mp(y | )]
Under high signal-to-noise ratio (SNR) and uncorrelated
subcarriers, we can write it as follows:
1
872 (Af)2K’

var(7) >

var (%) >

N
Ngymbol—1 5 —

1
> k2 Si[k)%, and Nyympor is the

-0, N
k=-7%

number of OFDM symbols.
Mapping 7 — d = cr scales the variance by c?, resulting in
the single-link distance bound under perfect synchronization

between the user and anchor as follows:

2

872 (Af)ZK’

= c 1
or > \/CRLB(d) = m \/;

As described earlier, 5G commonly adopts one of two
techniques for managing user clock offsets in time-based
positioning: OTDoA and RTT. In OTDoA, the user subtracts
the arrival time at one anchor from that at another, eliminating
the common synchronization bias but doubling the variance
of ranging error. If the baseline single-link ranging variance is
o2 and assuming perfect synchronization among positioning
anchors, then OTDoA’s variance becomes 203. By contrast,
RTT centralizes timing at the anchor, which halves the
variance, i.e., o7 ppp is about 1/2 times o7 [34].

Our proposed REFINE system follows the distance-
measurement principle of RTT without requiring an active
uplink transmitter at the user side. Consequently, oREFINE
matches o, grT, without the requirement of perfect syn-
chronization among anchors, which is required in OTDoA
systems. Specifically, to derive the ranging error bound for
our retroreflective-based design, we replace s;(nT — 7) with
s;(nT — 27), since the flight time doubles when the wave
is reflected back to the same anchor. Repeating the partial-
derivative steps for 7 reveals that:

where K =

CRLB(d) =

5 1
OREFINE = % or > 1/CRLB(dreriNE) = ﬁ Vi

Thus, under the same bandwidth A f and SNR, and without
requiring stringent synchronization—either between the user
and anchor or between anchors (as in OTDoA)—the REFINE
design halves the per-link distance ranging error compared to
OTDoA. Finally, from PEB = o, x GDOP, this halving of
o, carries over directly to the final positioning bound, leading
to improved localization accuracy.

V. PERFORMANCE EVALUATION

In this section, we assess the performance of REFINE
in a realistic hospital-oriented indoor environment. First,
we describe the simulation setup in Section V-A. Then, in
Section V-B, we provide the overall evaluation results.

A. Simulation Setup

We implement our simulation campaign in MATLAB on
a MacBook Pro computer equipped with 64 GB RAM and
an Apple M3 Max processor. The scenario mimics a typical
hospital floor plan, featuring all the typical clutter and objects
in a healthcare environment, with positioning nodes (5G
small cells) located on the ceiling to maximize LoS coverage.
In most experiments, we model an indoor space with size
of 20m x 20m x 3m, although the framework can handle
different dimensions for broader assessments.

To maintain realism, we employ the 5G Toolbox in MAT-
LAB to generate downlink PRS and configure the channel.
System parameters (e.g., subcarrier spacing, OFDM symbol
configuration, PRS frame structure) adhere to 3GPP guide-
lines. We also set the path-loss and fading characteristics to a
cluttered-yet-line-of-sight indoor environment, approximating
hospital corridors and open wards. The exact profile—InH
configuration, which is designed for indoor hotspot or simi-
lar configurations—ensures that simulations reflect plausible
multipath effects while still allowing a dominant direct path
from anchors on the ceiling.

Each small cell transmits in the FR2 band, where broader
allocations facilitate fine time resolution. Specifically, we
evaluate three representative frequencies:

e 26 GHz, widely deployed across parts of Asia and Eu-
rope,

e 28 GHz, a popular choice in North America,

e 39GHz, another common mmWave band with large
contiguous blocks.

These allow us to showcase how higher frequencies, coupled
with wider bandwidth, can yield improved ranging accuracy
in REFINE, especially when compared to lower-frequency
sub-6 GHz systems.

To capture the effect of signal reflection in our passive
retroreflective tags, we simulate the two-hop propagation
(anchor —tag —anchor) and include small-fading variations.
With ceiling-mounted anchors ensuring predominant LoS, we
achieve better coverage to measure for each anchor—tag pair.

B. Overall Results

This part presents the evaluation outcomes for our pro-
posed REFINE scheme. We begin by plotting the local-
ization error’s cumulative distribution functions (CDFs) in
Figure 4. As discussed previously, REFINE operates at high
frequencies in the FR2 range in order to exploit the large
available bandwidth for higher timing resolution. Specifically,
we use three representative carriers in FR2, namely 26 GHz,
28 GHz, and 39 GHz, all of which are commonly adopted
worldwide for 5G mmWave deployments. Each subplot in
Figure 4 compares the performance of REFINE at all of
these three frequencies, allowing us to observe how the
error distribution shifts with different carrier bands and their
respective bandwidths.

To assess errors along different coordinates, we present
three separate subplots: one for the absolute error along the
z-axis, one for the y-axis, and one for the resulting 2D planar
localization error. We assume the healthcare robot remains
on the floor at a known height, thus we did not provide
the z-axis estimation. Nonetheless, our framework supports
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Fig. 4: CDF plots of localization error for (a) the z-axis, (b) the y-axis, and (c) the overall 2D plane. Each plot compares
the results from three FR2 carrier frequencies (26 GHz, 28 GHz, and 39 GHz). All errors are reported in centimeters.
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Fig. 5: Boxplots illustrating the localization error for (a) the z-axis, (b) the y-axis, and (c) the overall 2D plane. Each plot
compares three FR2 carrier frequencies (26 GHz, 28 GHz, and 39 GHz). Errors are reported in centimeters.

3D positioning if required, as mentioned earlier. At each
point in the simulation, we estimate the robot’s location using
REFINE and compare it against the ground-truth coordinates
at that instant; the absolute discrepancy between these two
positions defines the error for that point. By aggregating
these per-point errors into a CDF, we can readily visualize
how frequently REFINE meets specific accuracy thresholds,
thereby validating its mmWave-based precision in realistic
hospital layouts.

As shown in Figure 4, operating at 26 GHz or 28 GHz
(yielding similar performance) keeps 95% of all 2D localiza-
tion errors under 5 cm. Leveraging the even wider bandwidth
at 39 GHz reduces that error threshold to about 2.5 cm. This
improvement stands well above the performance of state-of-
the-art solutions, enabled by REFINE’s innovative approach
to mitigate multipath and relax synchronization requirements.

To provide a more detailed view of REFINE’s localization
accuracy—covering the minimum and maximum error, dis-
tribution shape, and notable outliers—we present Figure 5.
These boxplots incorporate different carrier frequencies as
well as error measurements along each axis and the overall
2D positioning, extending the analysis initiated by Figure 4.

In each boxplot, the lower and upper edges correspond
to the 25" and 75" percentiles, respectively, capturing the
middle 50%, interquartile range (IQR), of the data. The
horizontal line within the box denotes the median, illustrating
the central tendency. Whiskers extend up to 1.5 times the
IQR beyond the box, while any points beyond this range
are plotted individually as outliers—highlighting extreme
deviations in accuracy. As seen in Figure 5, the median
2D localization error for both 26 GHz and 28 GHz clusters
around 3cm (specifically 2.8cm at 26 GHz and 2.6cm at
28 GHz), whereas moving to 39 GHz reduces the median
error below 2 cm (down to about 1.9 cm).

Figure 6 compares our proposed REFINE system with
the OFDRA system presented in [16], which leverages RIS
for localization, and a standard 5G system operating in
the sub-6 GHz (FR1) band using RTT for localization. To
ensure a fair comparison, we implement both OFDRA and
the conventional 5G system in the same environment as
REFINE, maintaining identical multipath effects and envi-
ronmental noise. In other words, all environmental factors—
ranging from the size of the indoor healthcare space to the
adverse channel effects of noise, multipath, and clutter in
the hospital—are kept consistent. Additionally, we maintain
uniform conditions for the number of locations where robot
position data is collected, the placement of small cells on
the ceiling, and all other experimental parameters. This setup
guarantees that our comparison accurately reflects the true
performance differences between REFINE and other state-
of-the-art systems.

As previously discussed, REFINE is designed to operate
in the FR2 band and is not restricted to a single carrier
frequency. To demonstrate its adaptability, we evaluate RE-
FINE at three widely used and readily available frequencies
that do not require additional infrastructure modifications.
As shown in Figure 6, REFINE significantly outperforms
both OFDRA and the standard 5G RTT system, regardless
of the carrier frequency used. Specifically, REFINE achieves
an overall 2D localization accuracy of less than 10 cm
across all data points. In contrast, the RIS-based localization
system proposed in [16] exhibits a localization accuracy of
approximately 60 cm, six times worse than REFINE. This
discrepancy arises from REFINE’s use of a much simpler
structure (a Van Atta array for retroreflectivity), which not
only reduces error but also makes the system considerably
less complex and significantly more power-efficient compared
to the computationally intensive RIS-based approach.
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Fig. 6: CDF plots comparing the performance of REFINE, OFDRA [16], and 5G FR1 RTT: (a) along the z-axis, (b) along
the y-axis, and (c) in the overall 2D plane. Each plot presents results for three FR2 carrier frequencies (26 GHz, 28 GHz,
and 39 GHz) explored in REFINE, compared to OFDRA [16] and a standard 5G system operating in the sub-6 GHz band
and using the RTT technique for positioning. All errors are reported in centimeters.
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Fig. 7: Bar plots illustrating the average error of REFINE, OFDRA [16], and 5G FR1 RTT: (a) in the z-axis component,
(b) in the y-axis component, and (c) in the overall 2D space. Each plot depicts results for three FR2 carrier frequencies
(26 GHz, 28 GHz, and 39 GHz) analyzed in REFINE, alongside a comparison with OFDRA [16] and a conventional 5G
system operating in the sub-6 GHz band that employs RTT for positioning. All error values are expressed in centimeters.

Furthermore, leveraging the 5G mmWave band provides
REFINE with a larger bandwidth, which translates to im-
proved timing resolution and higher ranging accuracy. Fi-
nally, when comparing REFINE to the conventional 5G
system operating in the sub-6 GHz band with RTT, we
observe additional disadvantages in the latter. First, it requires
an active user on the robot side, necessitating continuous
active transmissions to the small cells. Second, it suffers
more significantly from multipath effects compared to our
proposed system. As a result, the 2D localization accuracy
threshold for the majority of the data in the CDF plot exceeds
120 cm, twelve times worse than what REFINE provides.
Therefore, REFINE enhances localization accuracy compared
to the state-of-the-art RTT-based positioning scheme in 5G
NR by more than an order of magnitude.

Figure 7 presents a comparison of the average ranging
error for REFINE, OFDRA [16], and 5G FR1 RTT across
different localization dimensions. From left to right, the
subfigures represent: (a) the average ranging error for the z-
axis estimation, (b) the same metric for the y-axis estimation,
and (c¢) the overall 2D localization error.

To compute the average error, we first estimate the robot’s
position using the REFINE architecture and then compare
it against the ground-truth location at each test point. The
average error for the zx-axis also known as x-axis mean
absolute error (MAE) is calculated as:

1 Nt
e =— (x i — TGT,i)?
T ,avg NT REFINE, GT,i)" >
i=1

where N7 represents the total number of locations at which
the robot’s position is estimated, xreriNg,; 1S the estimated
z-coordinate at location ¢, and zgr,; is the corresponding
ground-truth z-coordinate. A similar formula applies to the
y-axis:

Nt

1 E: 2

€y,avg = N (yREFINE,i - yGT,i) .
T

For the overall 2D average error, the formula to calculate
€, avg €xtends as follows:

1 &
-~ Z \/(HCREFINE,i - fUGT,i)Q + (yREFINE,i - yGT7i)2-
Nt =

Similar to Figure 6, we ensure that all environmental
conditions remain identical across all systems to provide a
fair comparison. This includes maintaining the same indoor
healthcare environment, multipath effects, noise levels, small
cell placements, and the number of data collection points.

As observed in Figure 7, REFINE significantly outper-
forms both OFDRA and the standard 5G FR1 RTT-based
positioning systems. The overall 2D average error for RE-
FINE is approximately 3 cm, whereas OFDRA exhibits an
average error of 19 cm, and the 5G FR1 RTT-based system
results in an average error of 38 cm.

VI. CONCLUSION AND FUTURE WORK

Conclusion. In this paper, we introduced REFINE, a
high-accuracy localization scheme designed for robotic and
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automation use cases in healthcare facilities. By installing 5G
small cells on the ceiling and mounting retroreflective tags
on indoor robots, REFINE enables the direct mirroring of
5G PRS back to their respective transmitters. This approach
addresses two major limitations of conventional 5G position-
ing. First, it relaxes the need for tight synchronization on the
robot side, since the anchor (small cell) alone performs RTT
measurements. Second, it substantially mitigates multipath, as
only the strongest direct path is re-radiated coherently toward
the same anchor, while off-angle reflections return to other
unintended sources and thus remain largely inconsequential.
Through an extensive simulation campaign using realistic 5G
NR parameters and three representative frequencies in the
FR2 band, we showed that REFINE achieves significantly
lower positioning errors than state-of-the-art baselines.
Future Work. Currently, we are building an extensive 5G
testbed in our laboratory, which now operates at sub-6 GHz
frequencies using OpenAirlnterface [35]. Our next step is to
adapt this infrastructure for FR2 mmWave, enabling a deeper
real-world evaluation of REFINE beyond simulations.
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