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Abstract—The deployment of service robots in healthcare
facilities—ranging from autonomous medication delivery carts
to patient-assisting mobile platforms—is expanding across di-
verse applications. To carry out these tasks effectively, there
is a pressing need for precise indoor positioning. While global
navigation satellite system (GNSS) reliably supports outdoor
localization, their performance degrades significantly in indoor
settings. In this work, we introduce REFINE: Retroreflective FR2
Indoor Navigation Engine, a high-accuracy localization scheme
for indoor robotics leveraging low-cost 5G small cells operating
in high-frequency bands in conjunction with retroreflective tags.
Our approach effectively mitigates synchronization challenges
and multipath interference by exploiting the 5G positioning
reference signal (PRS) and the unique Van Atta array properties
of the tags. We conduct a comprehensive simulation campaign
using realistic system parameters and channel models for 5G-
enabled deployments in hospital environments. Our results
demonstrate that REFINE achieves superior accuracy compared
to conventional 5G-based localization techniques, consistently
delivering positioning errors below 5 cm in the majority of tested
scenarios.

Index Terms—healthcare robotics, indoor localization, 5G
small cells, retroreflective tags, passive RTT

I. INTRODUCTION

The integration of robotic platforms in healthcare facilities

has gained significant traction in recent years [1]. Automated

delivery robots such as the Aethon TUG [2], for instance,

are increasingly being adopted to transport medications, lab-

oratory specimens, and meals within hospitals. These mobile

systems reduce manual labor, minimize human errors, and

improve operational efficiency. In addition, other service-

oriented robots assist with disinfection, patient monitoring,

and even remote telepresence for medical consultations [3].

As healthcare environments continue to embrace such tech-

nologies, the need for robust and reliable solutions that ensure

autonomous navigation and task execution becomes more

pronounced [4].

A key prerequisite for autonomous robotic operations is

accurate localization [5]. Conventional methods based on

vision sensors [6] can be expensive, data-intensive, and

vulnerable in low-visibility settings or dynamically changing

indoor conditions. Alternatively, radio-frequency (RF) finger-

printing techniques using received signal strength (RSS) [7]

or channel state information (CSI) [8] often depend on

site-specific models and extensive offline training, making

them susceptible to real-time environmental variations [9]. In

contrast, ranging-based localization strategies inherently offer
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Fig. 1: Overview of REFINE framework in a healthcare

environment, with 5G small cells mounted on the ceiling and

mobile units equipped with retroreflective tags for precise

positioning.

higher accuracy by measuring time of flight (ToF) or phase

of arrival (PoA). While global navigation satellite system

(GNSS) networks work well outdoors [10], [11], they suffer

considerable performance degradation in enclosed spaces

due to signal blockage and multipath [12], [13]. Even in

scenarios where GNSS services are available, their maximum

accuracy may not suffice for applications demanding higher

localization precision.

In this paper, we introduce REFINE: Retroreflective FR2

Indoor Navigation Engine, a novel indoor localization frame-

work designed specifically for healthcare robotics as illus-

trated in Figure 1. Unlike conventional schemes that rely on

large outdoor 5G base stations [14], our solution employs

cost-effective and compact 5G small cells mounted through-

out hospital floors. These small cells transmit positioning

reference signal (PRS) sequences in high-frequency bands,

such as frequency range 2 (FR2), to achieve high-resolution

ranging.

Recent studies on reconfigurable intelligent surface (RIS)

technology have explored its deployment in the environment

to shape RF propagation [15]. However, one study [16] took

an unconventional approach by mounting RIS on a drone,

using it merely as an RF mirror—an overly complex and

impractical setup for this purpose. Instead, REFINE leverages

ultra-low-power retroreflective tags based on Van Atta arrays.

These tags act as RF mirrors, reflecting incoming signals back

along the exact path they arrived from. Beyond lowering

system complexity, this approach inherently addresses syn-

chronization challenges and mitigates multipath interference.

To showcase its versatility, we evaluate REFINE across three

popular frequencies in the FR2 band (e.g., 26 GHz, 28 GHz,
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and 39 GHz), which are commonly allocated in different

global regions, ensuring broad applicability. The primary

contributions of our work are as follows:

• We introduce REFINE, a high-accuracy localization sys-

tem tailored for healthcare robotics operating in complex

indoor environments.

• REFINE leverages cost-effective and easily deployable

indoor 5G small cells operating in high-frequency FR2

band with up to 800 MHz bandwidth, enabling dedicated

PRS transmissions for enhanced positioning accuracy.

• REFINE employs ultra-low-power retroreflective tags

based on Van Atta arrays, which act as RF mirrors to

reflect PRS signals back to the 5G small cells.

• By returning the signal via the same path, REFINE al-

leviates stringent synchronization requirements between

the robot and the small cells, mitigates adverse multipath

effects, and significantly reduces power consumption

and computational demands on the robot side.

• We enhance the MATLAB 5G Toolbox with additional

models and optimizations and conduct a comprehen-

sive simulation campaign using realistic hospital en-

vironment parameters. Our results show that REFINE

outperforms state-of-the-art 5G localization techniques,

achieving an overall positioning error below 5 cm in

most scenarios.

The remainder of this paper is structured as follows. In

Section II, we provide some background and discuss related

work relevant to our study. Next, we detail the REFINE

architecture in Section III, followed by a theoretical analysis

of its ranging error bound in Section IV. Section V presents

our simulation setup and performance evaluation. Finally,

Section VI concludes the paper with a summary of our

findings and potential avenues for future research.

II. RELATED WORK & BACKGROUND

Our proposed approach lies at the intersection of three

key areas: robotics in healthcare, localization techniques,

and retroreflective technology. Below, we review the major

contributions and challenges in each domain.

Robotics in Healthcare: Robotic platforms have become

an integral component of modern healthcare settings, facili-

tating a wide range of tasks [17]. Some of the most notable

implementations include automated pharmacy robots that

dispense medications with high accuracy, disinfection robots

employing ultraviolet-C (UV-C) light to sanitize patient

rooms, and assistive robots that deliver meals or transport lab-

oratory specimens. For instance, the Aethon TUG [2] system

has been extensively deployed in hospitals to carry linens,

medications, and meals between different wards, helping

to reduce the manual workload on healthcare professionals.

Similarly, telepresence robots enable remote consultations,

significantly improving patient access to specialized care.

These diverse applications underscore the transformative po-

tential of robotic automation in enhancing both clinical effi-

ciency and patient outcomes. However, reliable autonomous

navigation remains a crucial requirement for widespread

adoption, as any mislocalization may compromise patient

safety and reduce workflow efficiency.

Indoor Localization Techniques: A variety of positioning

methods have been developed for indoor scenarios, each

with its own strengths and limitations [18]–[20]. Vision-

based techniques often utilize simultaneous localization and

mapping (SLAM) [21] or advanced image processing algo-

rithms [22] to build and update an environmental map. While

highly accurate under stable lighting and minimal occlusion

conditions, vision systems can become unreliable when faced

with poor illumination, cluttered environments, or unexpected

obstacles [23].

Fingerprinting methods, which rely on radio-frequency

features such as RSS [7] or CSI [8], offer an alternative by

matching real-time measurements to a pre-recorded database.

Although these solutions can be simple to deploy using

existing wireless infrastructure, they demand extensive offline

data collection and calibration. Furthermore, any significant

change in the indoor layout (e.g., moving furniture or walls)

can substantially degrade positioning performance [9].

Ranging-based strategies have emerged as a more robust

alternative, leveraging measurements like time of arrival

(ToA) [24], time difference of arrival (TDoA) [25], or angle

of arrival (AoA) [26]. In ToA systems, the distance is inferred

from the one-way travel time of a signal, necessitating strict

time synchronization between the transmitter (user) and the

receiver (anchor) [27]. This synchronization can be chal-

lenging in practical indoor environments due to fluctuating

clock drifts and multipath propagation. TDoA, on the other

hand, circumvents the synchronization issue by measuring the

difference in arrival times across multiple anchors, thereby

eliminating clock offset bias and relaxing synchronization

requirements [28]. AoA relies on antenna arrays to estimate

the incoming signal’s angle but typically requires elaborate

hardware and high computational overhead for direction

finding. In each of these ranging-based methods, the final step

of position estimation can be performed through trilateration

when distance information is available or angulation when

angular information is used.

Retroreflective Technology: Retroreflective tags origi-

nated in the field of optics [29], where they have long

been used on traffic signs and safety gear to reflect light

back to its source [30]. In the RF domain, Van Atta arrays

are a prominent example of retroreflective technology [31].

These arrays are designed so that the signal received on each

element is re-radiated back along the incident path, effectively

acting as an “RF mirror.” Traditional implementations of

RF retroreflectors were limited to continuous wave signals,

where the primary application was to enhance radar cross-

section or simplify radio frequency identification (RFID)-like

sensing. Recent advancements, however, have demonstrated

the feasibility of using retroreflective tags with modulated sig-

nals [32], such as orthogonal frequency-division multiplexing

(OFDM)-modulated cellular network signals.

To the best of our knowledge, we are the first to propose

a localization system that employs ranging-based techniques

in high-frequency 5G bands while using retroreflective tags

to simplify synchronization and mitigate multipath. By lever-

aging 5G small cells and the full potential of wide-band PRS

transmissions alongside the retroreflective tag on the user side

(i.e., the robot), our approach achieves both high-resolution

ranging and a dramatically reduced processing burden on the

user side.
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III. REFINE ARCHITECTURE

This section presents the architecture of REFINE, high-

lighting how our proposed 5G-based framework addresses

indoor positioning challenges without incurring high power

usage or heavy synchronization demands. Unlike conven-

tional approaches that rely on active transmitters on the user

equipment (UE) or complex multi-anchor synchronization,

REFINE leverages mmWave 5G small cells and retrore-

flective tags to simplify operations and significantly reduce

power consumption. We begin by outlining the relevant 5G

system model and reviewing two key methods in the 3rd

generation partnership project (3GPP) standards, observed

time difference of arrival (OTDoA) and round trip time

(RTT). Next, we revisit RIS to show how prior attempts

to modify the propagation environment led to unnecessary

complexity. Finally, we introduce the core contribution of

REFINE: the utilization of retroreflective tags as low-power

substitutes for active user transmitters, alongside the conclu-

sion of REFINE’s localization scheme.

A. REFINE Small Cell Deployment

In this work, we capitalize on 5G New Radio (NR)

technology to enable high-precision indoor positioning. As

illustrated in Figure 2, traditional macrocell towers often

provide insufficient coverage inside large healthcare facilities,

primarily due to attenuated signals and obstructed lines of

sight. Instead, we deploy small cells, which are compact

base stations connected to the same 5G core network infras-

tructure. By installing multiple small cells on the ceilings of

hospital corridors and rooms, we gain finer-grained control

over coverage, mitigate outdoor path-loss issues, and ensure

a line of sight (LoS) for each cell within its intended area.

5G NR frequency ranges are broadly split into FR1 (sub-

6 GHz) and FR2 (millimeter-wave). While FR1 accommo-

dates wide-area coverage, its limited bandwidth restricts rang-

ing resolution. Conversely, FR2—operating above 24 GHz—

offers substantially larger bandwidth (hundreds of MHz),

translating to higher time resolution and improved positioning

accuracy. In our design, we utilize FR2 channels centered

at three representative bands: 26 GHz, 28 GHz, and 39 GHz.

Each of these frequencies is widely adopted in different

global regions, for instance, 28 GHz in parts of the US,

26 GHz in Europe, and 39 GHz across multiple markets,

ensuring the broad applicability of our approach.

Let N be the number of indoor small cells deployed

throughout the facility, each with a known coordinate pi =
(xi, yi, zi), i = 1, 2, . . . , N . During operation, each small

cell periodically transmits 5G PRS on its assigned FR2

band, leveraging the generous bandwidth to achieve fine-

grained distance measurements. A mobile robot travels on

the hospital floor with a retroreflective tag mounted on it. The

key objective is to estimate the robot’s position r = (x, y, z)
in real time. In many healthcare settings, movement is

predominantly on the ground, so height may be treated as

known; however, the formulation extends naturally to three-

dimensional (3D) deployments if vertical motion or multi-

floor environments must be considered.

Indoor 

Small Cells

Macro Base 

Station

Outdoor 

Small Cells

Size 50 to 200 

feet 

Size of a pizza 

box

Size of a 

paperback

Coverage 

Range

Miles 100 yards Home

Cost $200.000 Under 

$10.000

Around $100

Deployment U.S has 

200.000 

macrocells

5 to 10 times 

more than 

macrocells

Anyone can 

purchase for 

their home

Fig. 2: Various deployments in 5G heterogeneous networks.

B. Time-Based Localization

In 5G networks, the two primary time-based techniques

standardized by 3GPP for positioning are OTDoA and RTT.

Both methods seek to improve localization accuracy by

measuring signal travel times, but each tackles the device-

to-network synchronization challenge in distinct ways. In the

following subsections, we briefly outline their core princi-

ples and drawbacks. Later, we explain how REFINE builds

on these standard protocols to further enhance positioning

accuracy while reducing power consumption and complexity.

1) OTDoA: This method exploits the differences in signal

arrival times from multiple anchors to eliminate the unknown

UE clock bias. Suppose the i-th small cell transmits a PRS

signal si(t) at time t = 0. The UE receives this signal at

time:

ti = τi + τ0, (1)

where τi =
∥r−pi∥

c
is the one-way propagation delay (with c

the speed of light), and τ0 encapsulates the UE’s clock offset

relative to the network. Here, ∥·∥ denotes the Euclidean norm,

i.e., ∥r− pi∥ =
√
(x− xi)2 + (y − yi)2 + (z − zi)2, which

represents the Euclidean distance between the UE position

r = (x, y, z) and the anchor position pi = (xi, yi, zi).
Instead of computing absolute ToA, OTDoA calculates the

differences:

∆tij = ti − tj = (τi + τ0)− (τj + τ0) = τi − τj . (2)

Hence, the unknown τ0 cancels out, leaving only the differ-

ences in geometric propagation delays:

∆tij =
∥r− pi∥ − ∥r− pj∥

c
. (3)

Each ∆tij translates into a hyperbolic constraint in the spatial

domain. With measurements from at least four non-collinear

small cells, these hyperbolas intersect at the UE’s position in

three-dimensional space.

2) RTT: An alternative approach is round-trip time local-

ization, where the same anchor transmits a reference signal

and measures the time until it is received back. Denote tRTT,i

as the measured round-trip time between the i-th small cell
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and the UE. If the signal makes a forward and backward pass

over distance ∥r− pi∥, then:

tRTT,i = 2
∥r− pi∥

c
+ δi, (4)

where δi is any residual processing delay at the anchor or

the UE. Since both transmission and reception occur at the

small cell, the system can effectively calibrate out δi or treat

it as a fixed offset. Thus, the one-way distance is:

di = ∥r− pi∥ =
c

2

(
tRTT,i − δi

)
. (5)

According to several studies (e.g., [16]), RTT-based ranging

demonstrates a Cramér-Rao lower bound (CRLB) roughly

half that of OTDoA under comparable conditions, which

means they have better positioning accuracy. However, con-

ventional RTT requires the UE to actively transmit the

return signal making it power-demanding and increasing the

computational process.

C. REFINE Ranging Scheme

RIS technologies have emerged as a promising tool in

next-generation wireless systems to shape the radio propa-

gation environment. An RIS is typically a two-dimensional

(2D) metasurface composed of numerous sub-wavelength

elements, each capable of imposing a controllable phase

shift to incoming waves. In standard deployments, an RIS

is affixed to walls or ceilings, aiding coverage by reflecting

beams in desired directions. In [16], Famili et al. proposed

an unconventional method by placing the RIS on an aerial

drone hovering above the target area.

While their approach validates that RIS-based reflectors

can enhance localization by relaxing synchronization require-

ments, it also introduces complexities. Although the RIS can

redirect incoming waves toward any chosen angle, using

them solely as a mirror that reflects a signal back to its

source is unnecessarily complex and costly. Implementing

RIS entails added hardware, complex control of reflection

coefficients, and ongoing calibration to set desired angles,

which is overkill if the goal is simply to send the signal back

along the same path. Consequently, we propose REFINE as

a low-power, low-complexity alternative that eliminates these

overheads by leveraging inherently retroreflective hardware.

To circumvent the power-hungry nature of actively trans-

mitting UEs (as in RTT) or the heightened cost and com-

plexity of RIS-based approaches, REFINE leverages ultra-

low-power retroreflective tags built on the Van Atta array

principle, as shown in [31]. In a Van Atta configuration,

each antenna element has a paired element so that incom-

ing signals are re-radiated back along precisely the same

trajectory from which they arrived. This setup is shown in

Figure 3, where a robot is mounted with a retroreflective tag

so that any incoming signal is sent back on the incoming

angle. Concretely, if a plane wave from angle θ induces a

current In on the n-th array element, the array is wired such

that the re-radiated wave leaves at angle θ in the reverse

direction, retaining the incident signal’s phase relationships.

This “focused mirror” action ensures that reflected energy

naturally flows back toward its source, removing the need

for high-power active transmissions at the user side.

5G Small Cell

Robot with

Retroreflective Tag

Fig. 3: Retroreflective tag mounted on a robot for categorizing

the multipath components and the line of sight (LoS) path.

Signal Model for Retroreflection: Consider a small cell

located at pi transmitting a PRS signal:

xi(t) =
√
Pi s(t) e

j2πfbt, (6)

where Pi is transmit power and fb is the FR2 carrier

frequency. An incoming wave at the retroreflective tag excites

each antenna element n with:

rn(t) = αn,i xi

(
t− τn,i

)
, (7)

where αn,i captures path loss and element gain, and τn,i is

the propagation delay to element n. Van Atta wiring ensures

these waves re-radiate coherently back to pi, yielding:

yi(t) ≈ βi xi

(
t− 2τi

)
=

√
Pi s(t− 2τi) e

j2πfb(t−2τi), (8)

where τi =
∥r−pi∥

c
is the one-way delay, and βi includes the

total round-trip path loss and array gain. Notably, the robot’s

tag remains passive; the anchor alone measures the round-trip

time and computes di = ∥r− pi∥.

Synchronization and Multipath Reduction: Since the

small cell both transmits and receives, any clock offset at

the user side is irrelevant, reducing the typical synchro-

nization headache in ToA-based positioning. The small cell

simply time-stamps xi(t) and correlates it with yi(t) upon

reflection. Moreover, as shown in Figure 3, multipath signals

from environmental reflectors, such as walls, objects in the

hospital, clutter, and other obstructions, typically return to

their source rather than to the 5G small cell. For instance,

if a multipath component arises from the reflection of the

primary 5G PRS signal off a wall, the retroreflective tag

acts as a mirror, directing the reflected signal back toward

the wall instead of the small cell. Consequently, multipath

components from environmental reflectors rarely return along

the exact path needed to combine coherently. Thus, Van

Atta retroreflection inherently suppresses interference from

unintended surfaces. The result is a low-complexity, low-

power, and multipath-resilient alternative to sophisticated

RIS-based solutions, forming the cornerstone of REFINE’s

passive-RTT localization strategy.
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D. REFINE Trilateration

As mentioned earlier, we have N small cells located at

known coordinates on the ceiling pi = (xi, yi, zi), for i =
1, . . . , N , and the robot’s unknown location is denoted by

r = (x, y, z). Now, after accurately obtaining the ranging

information—thanks to the synchronization-free, multipath-

robust ranging scheme in REFINE—we have the distance di
between the robot and the i-th small cell and can write:

∥r− pi∥2 = d2i , i = 1, . . . , N. (9)

Expanding Equation (9) yields:

(x− xi)
2 + (y − yi)

2 + (z − zi)
2 = d2i . (10)

Defining a reference anchor (e.g., the N -th small cell) and

comparing each i-th with N leads to a set of linear equations

in (x, y, z). For i = 1, 2, . . . , (N − 1), we can write:

(
d2i − d2N

)
−
(
x2
i − x2

N + y2i − y2N + z2i − z2N
)
=

−2
[
(xi − xN )x+ (yi − yN ) y + (zi − zN ) z

]
. (11)

Collecting these into a matrix form Ax = b:

A =











A1,1 A1,2 A1,3

A2,1 A2,2 A2,3

.

.

.
.
.
.

.

.

.
AN−1,1 AN−1,2 AN−1,3











, x =





x

y

z



 , b =













b1

b2

.

.

.

bN−1













,

where x = rT = (x, y, z)T, and the elements of A and b are
as follows:

Ai,1 =− 2 (xi − xN ), Ai,2 = −2 (yi − yN ), Ai,3 = −2 (zi − zN ),

bi =
(

d2i − d2N
)

−
(

x2

i − x2

N + y2i − y2N + z2i − z2N
)

.

If the robot z coordinate is known; in other words, we

need to perform location estimation in 2D plane, N ≥ 3
anchors suffice. Otherwise, N ≥ 4 is required for a full 3D

space localization. A pseudo-inverse solution or least-squares

approach gives:

x̂ =
(
ATA

)−1
AT b. (12)

In practice, measurement noise implies a least-squares objec-

tive is often more robust:

min
x,y,z

N∑

i=1

(
∥r− pi∥ − di

)2

, (13)

which can be solved via iterative algorithms (e.g., Gauss-

Newton) when outliers or non-line-of-sight (NLoS) paths

are significant. Regardless, this linear or iterative framework

conveniently incorporates the REFINE distances di from each

small cell to the retroreflective tag, yielding a direct and

computationally efficient method for real-time localization.

IV. REFINE RANGING ERROR BOUNDS

In this section, we derive the CRLB to characterize the

achievable ranging accuracy of REFINE. As in classical

estimation theory, the CRLB provides a minimum-variance

threshold for any unbiased estimator, equivalently expressed

via the Fisher information matrix (FIM). Let θ be an unknown

parameter to be estimated from observations x with density

f(x; θ). Then the FIM is as follows and the variance of θ̂ is

bounded by the inverse of the FIM:

I(θ) = E

[(
∂ ln f(x |θ)

∂θ

)(
∂ ln f(x |θ)

∂θ

)T
]
,

var
(
θ̂
)

≥ 1

I(θ)
.

In a positioning scenario, we focus on the positioning error

bound (PEB), defined as the square root of the CRLB on the

user’s (x, y, z) location. Denoting the unknown coordinate

vector by ζ = [x y z]T, we can write:

PEB =

√
tr
(
I−1(ζ)

)
,

where I(ζ) is the FIM for those coordinates and tr(·) denotes

the matrix trace. In ranging-based localization, the PEB is

commonly viewed as the product of two factors: the per-

link ranging error σr and a geometric dilution of precision

(GDOP) factor that depends on anchor layout [33]:

PEB = σ(r) = σr · GDOP.

In this work, we do not address the GDOP arising from the

relative anchor–user layout. Instead, our primary objective is

to diminish the latter factor, the per-link ranging error σr. As

discussed earlier, we propose a passive RTT approach that

leverages retroreflective tags on the user with high-frequency

5G small cells installed on the ceiling.

To start, consider the single-link CRLB for distance. Let d
be the unknown anchor-to-user distance, d̂ its estimate, and

τ̂ the estimated one-way ToA. We have

CRLB
(
d̂
)

= c2 · CRLB
(
τ̂
)
,

where c is the speed of light. Thus, we first examine

CRLB(τ̂) under typical 5G PRS. In 3GPP Rel. 16 and

beyond, PRS is often an OFDM-modulated signal spanning

subcarrier spacing ∆f . Let the OFDM-modulated PRS signal

be as follows:

si(t) =
1√
N

N
2 −1∑

k=−
N
2

Si[k] e
j 2π k∆f t,

where N is the total number of subcarriers, ∆f = 1/(N Ts)
is the subcarrier spacing (effective bandwidth per subcarrier),

the parameter Ts represents the OFDM symbol duration

(without cyclic prefix), and Si[k] are the symbols. After a

channel-induced delay τ plus noise, the receiver samples the

incoming signal at discrete time instances t = nT , where T
is the sampling interval, resulting in a discrete-time received

signal:

yi[n] = sR,i[n] + ni[n], ni[n]∼CN (0, σ2
n),

where CN (0, σ2
n) represents complex Gaussian noise with

zero mean and variance σ2
n, and

sR,i[n] = si
(
nT − τ

)
=

1√
N

N
2 −1∑

k=−
N
2

Si[k] e
j 2π k∆f (nT−τ).

IFIP Networking 2025 - Limassol, Cyprus - 26-30 May 2025

606



If the probability distribution function (PDF) of y given τ is

represented as p(y | τ), then the variance of the time-delay

estimate is bounded by the CRLB, given by:

var
(
τ̂
)

≥ 1

E
[(

∂
∂τ

ln p(y | τ)
)2] .

Under high signal-to-noise ratio (SNR) and uncorrelated

subcarriers, we can write it as follows:

var
(
τ̂
)

≥ 1

8π2 (∆f)2 K ,

where K = 1
σ2
n

Nsymbol−1∑

i=0

N
2 −1∑

k=−
N
2

k2 Si[k]
2, and Nsymbol is the

number of OFDM symbols.

Mapping τ → d = cτ scales the variance by c2, resulting in

the single-link distance bound under perfect synchronization

between the user and anchor as follows:

CRLB
(
d̂
)
=

c2

8π2 (∆f)2 K ,

σr ≥
√

CRLB
(
d̂
)
=

c

2
√
2π∆f

√
1

K .

As described earlier, 5G commonly adopts one of two

techniques for managing user clock offsets in time-based

positioning: OTDoA and RTT. In OTDoA, the user subtracts

the arrival time at one anchor from that at another, eliminating

the common synchronization bias but doubling the variance

of ranging error. If the baseline single-link ranging variance is

σ2
r and assuming perfect synchronization among positioning

anchors, then OTDoA’s variance becomes 2σ2
r . By contrast,

RTT centralizes timing at the anchor, which halves the

variance, i.e., σ2
r,RTT is about 1/2 times σ2

r [34].

Our proposed REFINE system follows the distance-

measurement principle of RTT without requiring an active

uplink transmitter at the user side. Consequently, σREFINE

matches σr,RTT, without the requirement of perfect syn-

chronization among anchors, which is required in OTDoA

systems. Specifically, to derive the ranging error bound for

our retroreflective-based design, we replace si(nT − τ) with

si(nT − 2τ), since the flight time doubles when the wave

is reflected back to the same anchor. Repeating the partial-

derivative steps for τ reveals that:

σREFINE =
1

√

2
σr ≥

√

CRLB
(

d̂REFINE

)

=
c

4π∆f

√

1

K
.

Thus, under the same bandwidth ∆f and SNR, and without

requiring stringent synchronization—either between the user

and anchor or between anchors (as in OTDoA)—the REFINE

design halves the per-link distance ranging error compared to

OTDoA. Finally, from PEB = σr ×GDOP, this halving of

σr carries over directly to the final positioning bound, leading

to improved localization accuracy.

V. PERFORMANCE EVALUATION

In this section, we assess the performance of REFINE

in a realistic hospital-oriented indoor environment. First,

we describe the simulation setup in Section V-A. Then, in

Section V-B, we provide the overall evaluation results.

A. Simulation Setup

We implement our simulation campaign in MATLAB on

a MacBook Pro computer equipped with 64 GB RAM and

an Apple M3 Max processor. The scenario mimics a typical

hospital floor plan, featuring all the typical clutter and objects

in a healthcare environment, with positioning nodes (5G

small cells) located on the ceiling to maximize LoS coverage.

In most experiments, we model an indoor space with size

of 20 m× 20 m× 3 m, although the framework can handle

different dimensions for broader assessments.

To maintain realism, we employ the 5G Toolbox in MAT-

LAB to generate downlink PRS and configure the channel.

System parameters (e.g., subcarrier spacing, OFDM symbol

configuration, PRS frame structure) adhere to 3GPP guide-

lines. We also set the path-loss and fading characteristics to a

cluttered-yet-line-of-sight indoor environment, approximating

hospital corridors and open wards. The exact profile—InH

configuration, which is designed for indoor hotspot or simi-

lar configurations—ensures that simulations reflect plausible

multipath effects while still allowing a dominant direct path

from anchors on the ceiling.

Each small cell transmits in the FR2 band, where broader

allocations facilitate fine time resolution. Specifically, we

evaluate three representative frequencies:

• 26 GHz, widely deployed across parts of Asia and Eu-

rope,

• 28 GHz, a popular choice in North America,

• 39 GHz, another common mmWave band with large

contiguous blocks.

These allow us to showcase how higher frequencies, coupled

with wider bandwidth, can yield improved ranging accuracy

in REFINE, especially when compared to lower-frequency

sub-6 GHz systems.

To capture the effect of signal reflection in our passive

retroreflective tags, we simulate the two-hop propagation

(anchor→tag→anchor) and include small-fading variations.

With ceiling-mounted anchors ensuring predominant LoS, we

achieve better coverage to measure for each anchor–tag pair.

B. Overall Results

This part presents the evaluation outcomes for our pro-

posed REFINE scheme. We begin by plotting the local-

ization error’s cumulative distribution functions (CDFs) in

Figure 4. As discussed previously, REFINE operates at high

frequencies in the FR2 range in order to exploit the large

available bandwidth for higher timing resolution. Specifically,

we use three representative carriers in FR2, namely 26 GHz,

28 GHz, and 39 GHz, all of which are commonly adopted

worldwide for 5G mmWave deployments. Each subplot in

Figure 4 compares the performance of REFINE at all of

these three frequencies, allowing us to observe how the

error distribution shifts with different carrier bands and their

respective bandwidths.

To assess errors along different coordinates, we present

three separate subplots: one for the absolute error along the

x-axis, one for the y-axis, and one for the resulting 2D planar

localization error. We assume the healthcare robot remains

on the floor at a known height, thus we did not provide

the z-axis estimation. Nonetheless, our framework supports
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Fig. 4: CDF plots of localization error for (a) the x-axis, (b) the y-axis, and (c) the overall 2D plane. Each plot compares

the results from three FR2 carrier frequencies (26 GHz, 28 GHz, and 39 GHz). All errors are reported in centimeters.
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Fig. 5: Boxplots illustrating the localization error for (a) the x-axis, (b) the y-axis, and (c) the overall 2D plane. Each plot

compares three FR2 carrier frequencies (26 GHz, 28 GHz, and 39 GHz). Errors are reported in centimeters.

3D positioning if required, as mentioned earlier. At each

point in the simulation, we estimate the robot’s location using

REFINE and compare it against the ground-truth coordinates

at that instant; the absolute discrepancy between these two

positions defines the error for that point. By aggregating

these per-point errors into a CDF, we can readily visualize

how frequently REFINE meets specific accuracy thresholds,

thereby validating its mmWave-based precision in realistic

hospital layouts.

As shown in Figure 4, operating at 26 GHz or 28 GHz

(yielding similar performance) keeps 95% of all 2D localiza-

tion errors under 5 cm. Leveraging the even wider bandwidth

at 39 GHz reduces that error threshold to about 2.5 cm. This

improvement stands well above the performance of state-of-

the-art solutions, enabled by REFINE’s innovative approach

to mitigate multipath and relax synchronization requirements.

To provide a more detailed view of REFINE’s localization

accuracy—covering the minimum and maximum error, dis-

tribution shape, and notable outliers—we present Figure 5.

These boxplots incorporate different carrier frequencies as

well as error measurements along each axis and the overall

2D positioning, extending the analysis initiated by Figure 4.

In each boxplot, the lower and upper edges correspond

to the 25th and 75th percentiles, respectively, capturing the

middle 50%, interquartile range (IQR), of the data. The

horizontal line within the box denotes the median, illustrating

the central tendency. Whiskers extend up to 1.5 times the

IQR beyond the box, while any points beyond this range

are plotted individually as outliers—highlighting extreme

deviations in accuracy. As seen in Figure 5, the median

2D localization error for both 26 GHz and 28 GHz clusters

around 3 cm (specifically 2.8 cm at 26 GHz and 2.6 cm at

28 GHz), whereas moving to 39 GHz reduces the median

error below 2 cm (down to about 1.9 cm).

Figure 6 compares our proposed REFINE system with

the OFDRA system presented in [16], which leverages RIS

for localization, and a standard 5G system operating in

the sub-6 GHz (FR1) band using RTT for localization. To

ensure a fair comparison, we implement both OFDRA and

the conventional 5G system in the same environment as

REFINE, maintaining identical multipath effects and envi-

ronmental noise. In other words, all environmental factors—

ranging from the size of the indoor healthcare space to the

adverse channel effects of noise, multipath, and clutter in

the hospital—are kept consistent. Additionally, we maintain

uniform conditions for the number of locations where robot

position data is collected, the placement of small cells on

the ceiling, and all other experimental parameters. This setup

guarantees that our comparison accurately reflects the true

performance differences between REFINE and other state-

of-the-art systems.

As previously discussed, REFINE is designed to operate

in the FR2 band and is not restricted to a single carrier

frequency. To demonstrate its adaptability, we evaluate RE-

FINE at three widely used and readily available frequencies

that do not require additional infrastructure modifications.

As shown in Figure 6, REFINE significantly outperforms

both OFDRA and the standard 5G RTT system, regardless

of the carrier frequency used. Specifically, REFINE achieves

an overall 2D localization accuracy of less than 10 cm

across all data points. In contrast, the RIS-based localization

system proposed in [16] exhibits a localization accuracy of

approximately 60 cm, six times worse than REFINE. This

discrepancy arises from REFINE’s use of a much simpler

structure (a Van Atta array for retroreflectivity), which not

only reduces error but also makes the system considerably

less complex and significantly more power-efficient compared

to the computationally intensive RIS-based approach.
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Fig. 6: CDF plots comparing the performance of REFINE, OFDRA [16], and 5G FR1 RTT: (a) along the x-axis, (b) along

the y-axis, and (c) in the overall 2D plane. Each plot presents results for three FR2 carrier frequencies (26 GHz, 28 GHz,

and 39 GHz) explored in REFINE, compared to OFDRA [16] and a standard 5G system operating in the sub-6 GHz band

and using the RTT technique for positioning. All errors are reported in centimeters.

(a) (b) (c)

Fig. 7: Bar plots illustrating the average error of REFINE, OFDRA [16], and 5G FR1 RTT: (a) in the x-axis component,

(b) in the y-axis component, and (c) in the overall 2D space. Each plot depicts results for three FR2 carrier frequencies

(26 GHz, 28 GHz, and 39 GHz) analyzed in REFINE, alongside a comparison with OFDRA [16] and a conventional 5G

system operating in the sub-6 GHz band that employs RTT for positioning. All error values are expressed in centimeters.

Furthermore, leveraging the 5G mmWave band provides

REFINE with a larger bandwidth, which translates to im-

proved timing resolution and higher ranging accuracy. Fi-

nally, when comparing REFINE to the conventional 5G

system operating in the sub-6 GHz band with RTT, we

observe additional disadvantages in the latter. First, it requires

an active user on the robot side, necessitating continuous

active transmissions to the small cells. Second, it suffers

more significantly from multipath effects compared to our

proposed system. As a result, the 2D localization accuracy

threshold for the majority of the data in the CDF plot exceeds

120 cm, twelve times worse than what REFINE provides.

Therefore, REFINE enhances localization accuracy compared

to the state-of-the-art RTT-based positioning scheme in 5G

NR by more than an order of magnitude.

Figure 7 presents a comparison of the average ranging

error for REFINE, OFDRA [16], and 5G FR1 RTT across

different localization dimensions. From left to right, the

subfigures represent: (a) the average ranging error for the x-

axis estimation, (b) the same metric for the y-axis estimation,

and (c) the overall 2D localization error.

To compute the average error, we first estimate the robot’s

position using the REFINE architecture and then compare

it against the ground-truth location at each test point. The

average error for the x-axis also known as x-axis mean

absolute error (MAE) is calculated as:

ex,avg =
1

NT

NT∑

i=1

√
(xREFINE,i − xGT,i)2,

where NT represents the total number of locations at which

the robot’s position is estimated, xREFINE,i is the estimated

x-coordinate at location i, and xGT,i is the corresponding

ground-truth x-coordinate. A similar formula applies to the

y-axis:

ey,avg =
1

NT

NT∑

i=1

√
(yREFINE,i − yGT,i)2.

For the overall 2D average error, the formula to calculate

e2D, avg extends as follows:

1

NT

NT∑

i=1

√
(xREFINE,i − xGT,i)2 + (yREFINE,i − yGT,i)2.

Similar to Figure 6, we ensure that all environmental

conditions remain identical across all systems to provide a

fair comparison. This includes maintaining the same indoor

healthcare environment, multipath effects, noise levels, small

cell placements, and the number of data collection points.

As observed in Figure 7, REFINE significantly outper-

forms both OFDRA and the standard 5G FR1 RTT-based

positioning systems. The overall 2D average error for RE-

FINE is approximately 3 cm, whereas OFDRA exhibits an

average error of 19 cm, and the 5G FR1 RTT-based system

results in an average error of 38 cm.

VI. CONCLUSION AND FUTURE WORK

Conclusion. In this paper, we introduced REFINE, a

high-accuracy localization scheme designed for robotic and
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automation use cases in healthcare facilities. By installing 5G

small cells on the ceiling and mounting retroreflective tags

on indoor robots, REFINE enables the direct mirroring of

5G PRS back to their respective transmitters. This approach

addresses two major limitations of conventional 5G position-

ing. First, it relaxes the need for tight synchronization on the

robot side, since the anchor (small cell) alone performs RTT

measurements. Second, it substantially mitigates multipath, as

only the strongest direct path is re-radiated coherently toward

the same anchor, while off-angle reflections return to other

unintended sources and thus remain largely inconsequential.

Through an extensive simulation campaign using realistic 5G

NR parameters and three representative frequencies in the

FR2 band, we showed that REFINE achieves significantly

lower positioning errors than state-of-the-art baselines.

Future Work. Currently, we are building an extensive 5G

testbed in our laboratory, which now operates at sub-6 GHz

frequencies using OpenAirInterface [35]. Our next step is to

adapt this infrastructure for FR2 mmWave, enabling a deeper

real-world evaluation of REFINE beyond simulations.
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