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Abstract—The rapid evolution of 5G technology has
driven the expansion of user-plane services, with the N4
interface playing a crucial role in managing signaling
interactions between the control plane and the user plane.
However, the architectural openness of the 5G Core
Network (5GC) and the N4 interface’s dependency on
the Packet Forwarding Control Protocol (PFCP) expand
anomalous signaling attack surfaces. Existing anomaly de-
tection approaches for 5GC N4 interfaces focus on packet-
level features while overlooking contextual process infor-
mation, resulting in constrained detection effectiveness.
This paper proposes a Process-based Anomalous Signaling
Detection approach (PASD-5GC) that integrates PFCP
business logic with behavioral patterns. The core model of
PASD-5GC, termed DM-Net, is designed to capture both
local and global features of signaling sequences. Exten-
sive experiments demonstrated that, compared to existing
methods, PASD-5GC achieves up to a 34% improvement
in abnormal signaling detection accuracy, validating the
effectiveness and superiority of the proposed approach.

Index Terms—5G Core Network, N4 Interface, Anomaly
Detection, PFCP Session Process

I. INTRODUCTION

With the rapid advancement of Fifth Generation
Mobile Communication Technology (5G), the growing
demand for massive data access and large-scale con-
nectivity among users, machines, and devices imposes
increasingly stringent requirements on network perfor-
mance. As the data plane of the 5G core network, the
User Plane Function (UPF) is strategically deployed at
the network edge, in closer proximity to end-users. This
deployment facilitates rapid data forwarding, efficient
traffic scheduling, and robust user-plane session man-
agement, thereby delivering a high-performance, low-

This work is supported by the National Key Research and Develop-
ment Program of China under Grant No. 2022YFB2902204 and Grant
No. 2022YFB2902205.

latency, and high-bandwidth telecommunications-grade
service environment to users.

The N4 interface, the signaling transmission channel
for the User Plane Function (UPF), handles a substantial
volume of service data. Its inherent openness renders it
vulnerable to illicit signaling attacks. In the data plane,
signaling acts as the primary data carrier, facilitating
the conveyance of control information, including re-
source allocation, data transmission, connection man-
agement, and session management. In the context of the
N4 interface, the Packet Forwarding Control Protocol
(PFCP) is employed to enable signaling interactions
among various network elements associated with the
UPF. PFCP operates over the User Datagram Protocol
(UDP), which lacks built-in mechanisms for connection
establishment, flow control, and error correction. This
UDP-based transport mechanism makes PFCP signaling
packets susceptible to forgery, as attackers can exploit
the absence of authentication by simply guessing the cor-
rect Session Endpoint Identifier (SEID), as illustrated in
Fig. 1. By transmitting a falsified PFCP session deletion
or modification request, the attacker can induce the UPF
to erroneously delete or alter the PFCP session linked to
a specific User Equipment (UE). Such attacks can lead
to large-scale service disruptions or information leakage,
severely impacting UE communication and threatening
the stability and security of 5G networks.

Researchers have proposed various solutions to mit-
igate the risk of anomalous signaling attacks on core
network service interfaces. Prominent approaches in-
clude enhancing the architecture of the 5G core network,
implementing robust authentication mechanisms, and
developing advanced anomaly detection systems. For
instance, Manan et al. [1] advocated for integrating
additional Network Functions (NFs) into the 5G core
network to facilitate zero-trust access control, thereby
enhancing the security of 5G network interfaces. HaddadISBN 978-3-903176-72-0 © 2025 IFIP
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Fig. 1: PFCP signaling attack scenario, where a denotes PFCP Session
Deletion Attack, b denotes PFCP Session Establishment Flooding
Attack, c denotes PFCP Session Modification Attack (DROP), and
d denotes PFCP Session Modification Attack (DUPL).

et al. [2] introduced a blockchain-based authentication
scheme to ensure secure interface connections within 5G
networks. However, these solutions often involve sub-
stantial deployment costs and complex network manage-
ment requirements, potentially leading to compatibility
issues and service disruptions, particularly in large-scale
5G deployments. In contrast, Radoglou-Grammatikis et
al. [3] proposed a 5G core network intrusion detection
system, 5GCIDS, which employs machine learning and
deep learning techniques to detect anomalous signaling
attacks at the N4 interface. This flow-based anomaly
detection system effectively characterizes signaling be-
havior patterns and identifies anomalies, representing
a significant advancement in N4 interface security.
Nevertheless, further research is required to evaluate
the system’s adaptability and effectiveness in detecting
anomalous signaling attacks, specifically within the 5G
core network user plane.

The N4 interface is integral to the forwarding and
processing of large-scale user-facing services, necessitat-
ing strict compliance with standardized business process
protocols. Existing anomaly detection methods primarily
focus on identifying anomalies at the packet level or
as isolated events, often neglecting the contextual infor-
mation embedded within business processes and stan-
dardized signaling interactions. This limitation leads to
missed detections and false positives, particularly when
addressing complex temporal anomalies and disguised
anomalous behaviors, ultimately reducing detection ac-
curacy. Consequently, effectively integrating business
process information into anomaly detection frameworks
remains a critical challenge. Addressing this issue is
essential for enhancing the security of the N4 interface
within the 5G core network and ensuring robust anomaly
detection in an increasingly complex 5G environment.

The anomaly detection mechanism based on PFCP
process features effectively captures complex data cor-

relations and causal relationships that are challenging
to detect using conventional methods. As process in-
formation inherently represents global contextual data,
its modeling must adhere strictly to 3GPP standards to
ensure the accuracy and consistency of signaling inter-
actions. By comprehensively modeling PFCP signaling
flows at the N4 interface, the behavioral patterns of
session management can be fully characterized. Con-
sequently, the mechanism identifies anomalies within
individual packets. It detects inconsistencies in multi-
step signaling interactions, such as logical conflicts
induced by masquerade attacks or abnormal deviations
in signaling execution sequences. These capabilities en-
hance the accuracy and reliability of anomaly detection,
ensuring adaptability to the complex signaling dynamics
of evolving network environments.

The main contributions of this paper are summarized
as follows:

1) A novel anomaly detection mechanism for the N4
interface was proposed, integrating PFCP protocol
processes with behavioral patterns, significantly
enhancing detection accuracy over existing frame-
works.

2) Proposed the DM-Net model, which integrates
dilated convolution and a multi-head attention
mechanism. This model effectively captures local
and global features of sequential data, enabling
precise identification of anomalous signaling and
improving overall network anomaly detection ac-
curacy.

3) The proposed approach was evaluated on the N4
interface PFCP intrusion dataset. Extensive ex-
periments and comparative analyses showed that
the process-based anomalous signaling detection
mechanism outperformed conventional methods,
achieving superior detection performance.

II. RELATED WORKS

Numerous studies have investigated anomaly signal-
ing detection in the 5G core network environment. Some
of these studies collect packet capture (pcap) traffic
data between ports in the 5G core network and address
various anomaly detection challenges using machine
learning (ML) and deep learning (DL) techniques.

For instance, Kim et al. [4] proposed an intrusion
detection mechanism based on feature selection and
ML to identify potential cyberattacks in the 5G Core
Network. This study specifically focused on the General
Packet Radio Service (GPRS) Tunneling Protocol (GTP)
and employs four AI models—Decision Tree, Random
Forest, K-Nearest Neighbors (KNN), and Stacked Au-
toencoder—for anomaly detection, with the Random
Forest model achieving the highest detection accuracy.
Hu et al. [5] addressed the issue of an expanded attack
surface in the 5G core network due to the massive
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connectivity of IoT devices and proposed an intru-
sion detection mechanism utilizing a multiple-kernel
clustering (MKC) algorithm, which enhances clustering
accuracy for incompletely sampled data and mitigates
the sensitivity of anomaly detection model to feature
selection.

Additionally, Radivilova et al. [6] explored several
methods, including Decision Tree, DBSCAN (Density-
Based Spatial Clustering of Applications with Noise),
entropy, and time series analysis, to detect anomalies
such as DDoS attacks, UDP flooding, TCP SYN attacks,
ARP spoofing, and HTTP flooding. The results indicated
that the Decision Tree method is highly effective in
anomaly detection. Furthermore, Zhang et al. [7] focused
on behavioral analysis and characterized network func-
tional behavioral patterns through behavioral portraits.
This approach integrated learning algorithms, such as
RFECV (Recursive Feature Elimination with Cross-
Validation) for attribute feature selection and graph mod-
eling based on network function interactions, transform-
ing the anomaly detection problem into a graph node
classification task. Experimental results demonstrated
that this method outperforms traditional ML models
based on attribute feature analysis, graph embedding
models based on structural feature analysis, and several
existing 5G core network anomaly detection models.

Despite the significant contributions of the afore-
mentioned studies in identifying and mitigating various
security threats to the 5G core network architecture, they
largely overlook anomaly detection related to the N4
interface and the Packet Forwarding Control Protocol
(PFCP). Makondo et al. [8] highlighted that deploying
the UPF as an independent node at the network edge
exposes the PFCP protocol to cybersecurity threats. The
study categorized various attack types targeting PFCP
and provided recommendations and future research di-
rections to mitigate these risks.

To facilitate further research on PFCP protocol at-
tacks, Amponis et al. [9] introduced a labeled dataset, the
5GC PFCP Intrusion Detection Dataset, designed to sup-
port anomaly detection efforts in the 5G core network.
Expanding upon this dataset, Radoglou-Grammatikis et
al. [3] employed artificial intelligence (AI) techniques to
detect multiple cyber-attacks against the PFCP protocol.
However, this study only explored the fundamental de-
sign of an anomaly detection architecture and conducted
preliminary ML and DL model evaluations, with the
Decision Tree model achieving the highest detection ac-
curacy of 64.1%. Furthermore, Pell et al. [10] employed
a Long Short-Term Memory (LSTM) model to predict
traffic patterns and detect PFCP-related attacks. The
model was trained on a benign dataset and tested on a
dataset containing PFCP signaling attacks. Experimental
results demonstrated that the LSTM model successfully
identifies anomalous packets associated with PFCP ses-

sion modification attacks with an accuracy of 95%.
Existing research on risk issues and anomaly detec-

tion for N4 interfaces remains limited in scope. [10]
focused solely on a single attack scenario—the PFCP
session modification attack, while [3] fails to incorporate
standard business process information, which plays a
critical role in anomaly detection modeling. Moreover,
the detection performance of the proposed solutions
still leaves room for improvement. Therefore, there is
a pressing need to develop a novel anomaly signaling
detection mechanism for the N4 interface threat model,
integrating the standard operational process of the PFCP
protocol.

III. THREAT MODEL

Based on the PFCP protocol message information
and the actual networking architecture between the SMF
(Session Management Function) and UPF, this section
presents a risk threat model for the PFCP protocol,
including the following four typical risk scenarios, as
illustrated in Fig. 1.

a) PFCP Session Deletion Attack: The attacker
exploits the SEID (Session Endpoint Identifier)
generation rules and range of PDU (Packet Data
Unit) sessions to craft a large volume of forged
PFCP session deletion requests, which are then
transmitted to the target network element, the
UPF. This attack aims to disrupt the PDU session
connectivity between the targeted User Equipment
(UE) and the Data Network (DN). By forcing the
target UE to disconnect from the DN, the attacker
induces widespread service disruptions, affecting
multiple UEs served by the target UPF.

b) PFCP Session Establishment Flooding Attack:
The attacker exploits an unauthorized and forged
SMF to send a high volume of illegitimate PFCP
session establishment requests to the target UPF.
The primary objective is to overwhelm the UPF
with excessive requests, thereby impeding legiti-
mate session establishment attempts and deplet-
ing the UPF’s resources. This disrupts normal
PDU session establishment processes, leading to
resource exhaustion at the target UPF and prevent-
ing legitimate user equipment from accessing the
network.

c) PFCP Session Modification Attack (DROP):
The attacker generates a large volume of PFCP
session modification requests by manipulating
Forwarding Action Rules (FARs) and configuring
the Apply Action field to the DROP flag. The
objective is to compel the target UPF to remove
the Tunnel Endpoint Identifier (TEID) and IP
address associated with the gNB (Next-Generation
NodeB), thereby blocking access to the Data Net-
work (DN). This disrupts network services for
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multiple user devices connected to the target UPF,
leading to widespread service interruptions.

d) PFCP Session Modification Attack (DUPL):
The attacker generates unauthorized PFCP session
modification requests by modifying the DUPL
(Duplicate) flag bit in the Apply Action field. The
objective is to establish multiple packet forwarding
paths for data originating from a single source,
generating redundant duplicate packets at the DN.
This uncontrolled packet duplication gradually
depletes the UPF’s packet-processing resources,
ultimately leading to performance degradation and
impaired network functionality.

IV. PASD-5GC ARCHITECTURE

A. Overall architecture

As depicted in Fig. 2, the system architecture consists
of two core modules: the Sequence Modeling Module
and the Abnormal Signaling Detection Module. 1)Se-
quence Modeling Module: This module constructs sig-
naling sequences, either normal or anomalous, based on
the PFCP session flow management specifications and
predefined behavioral patterns. 2)Abnormal Signaling
Detection Module: Following the sequence modeling,
this module evaluates the sequences to determine their
normality or abnormality, ultimately generating the de-
tection results.

To elaborate, consider the input data X ∈RN×m, where
N denotes the total number of input instances, and m
represents the dimensionality of the data features. The
output of the sequence modeling process is given by
S ∈Rn×k×m, where n denotes the number of sequences,
k the sequence length, and m the feature dimension.
These sequences are constructed by session management
process specifications and subsequently fed into the ab-
normal signaling detection module. Within this module,
sequence features are extracted at both local and global
levels using techniques such as dilated convolution and
the multi-head attention mechanism. The final output is
expressed as Y ∈Rn×l , where l represents the number of
classification labels. The model is trained using a cross-
entropy loss function to optimize detection accuracy. By
integrating structured sequence modeling with advanced
feature extraction, PASD-5GC provides a robust and
effective framework for identifying signaling anomalies
in 5G networks.

B. Sequence Modeling

The session management process within the N4 in-
terface can be categorized into three primary phases:
the session establishment phase, the session modification
phase, and the session deletion phase. The coordinated
execution of these phases forms the cornerstone of
session management, ensuring both network flexibility
and the efficient utilization of resources.

Fig. 2: Process-based Anomalous Signaling Detection System for
5G core network, where ➀ denotes Sequence Modeling Module, ➁
denotes Abnormal Signaling Detection Module, a denotes dilated
convolution, and b denotes multi-head attention. N denotes the total
number of input instances, n denotes the number of sequences, k the
sequence length, and m the feature dimension.

In accordance with the N4 interface session process
specifications, this study employs a structured method-
ology to model and define the data flow exchanged
between NFs as follows:

1) Session Message: The ith session message, de-
noted as Xi, is defined as a unidirectionally trans-
mitted message between the SMF and UPF over
the N4 interface. It is formally expressed as:

Xi : NFori
f eature−→ NFdes, (1)

where NFori and NFdes denote the original and
destination NFs of the message, respectively,
and f eature denotes the session features, which
contain information such as the SEID of the
session message and the session phase stage.
Each session message is represented as Xi ∈
(NFori,NFdes, f eature).

2) Session Sequence: The jth sequence S j is defined
as an ordered collection of k consecutive session
messages within the same session:

S j = [X1,X2, . . . ,Xk], (2)

where k denotes the length of the sequence, which
can vary between different sessions. The session
messages X1 to Xk are arranged chronologically
within the same session, and each sequence S j
describes a complete session process.

C. Abnormal Signaling Detection

To address the dual requirements of detecting both
signaling timing anomalies and individual signaling
anomalies, this paper proposes DM-Net (Dilated Con-
volution and Multi-Head Attention Improved Network).
The proposed model integrates single signaling features
with process context features by combining a dilated
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convolutional neural network with a multi-head attention
mechanism, both of which are jointly optimized. Fur-
thermore, DM-Net enables the classification of normal
and anomalous sequences across different session stages,
as represented by the abnormal signaling detection mod-
ule in Fig. 2.

In sequence data processing, traditional convolution
operations struggle to capture long-range dependen-
cies due to the inherent limitations of receptive fields.
To address this challenge, this paper employs dilated
convolution to extract long-term dependency features
across multiple phases efficiently. Additionally, a multi-
head attention mechanism enhances sensitivity to local
anomalies by dynamically emphasizing key features at
different temporal scales. By integrating dilated convo-
lution with multi-head attention, the proposed model
significantly improves the ability to detect anomalous
signaling.

A multilayer dilated convolution network is employed
to extract long-range dependency features from input
sequences. By capturing multi-scale features at varying
dilation rates, dilated convolution allows the model to
expand its receptive field while preserving computa-
tional efficiency. This effectively alleviates information
loss in sequential data and improves the ability of the
model to extract critical information on multiple scales.
Specifically, for the input data X (0) = S ∈ Rn×k×m:

X (n) =
M−1

∑
m=0

X (n−1)(i+m ·dn) ·Kn(m),n = 1,2,3 (3)

where X (n) denotes the output of the nth layer convolu-
tion, i denotes the index position of the output sequence,
Kn denotes the nth convolution kernel weight, dn denotes
the dilation rate of the nth layer convolution, and M
denotes the convolution kernel size.

Beyond capturing long-range dependencies in se-
quences using dilated convolution, it is equally essential
to establish correlations between local and global fea-
tures within signaling sequences. To this end, this paper
incorporates Multi-Head Attention, enabling the model
to simultaneously focus on local and global features
across multiple temporal scales. This facilitates a more
comprehensive understanding of intricate patterns in
signaling data, as expressed mathematically by:

X ′ =C

(
S

(
X (3)W1(X (3)W2)

T
√

d

)
X (3)W3

)
WO, (4)

where W1,W2,W3,WO are the learnable transformation
matrices, d is the attention dimension. C represents the
concat operation and S represents the softmax operation.
The formula performs adaptive transformation and fea-
ture combination on the input features X (3) to generate
the fused feature representation X ′.

Building upon this foundation, residual connections
are introduced to retain the original information, while
normalization is applied to ensure numerical stability.
Subsequently, a feed-forward neural network (FFN) is
employed to perform additional nonlinear transforma-
tions, further enhancing the representation of extracted
features. This process is mathematically expressed as:

X f inal = LN(FFN(LN(X ′+X (3)))+LN(X ′+X (3))),
(5)

where LN denotes the normalization operation, FFN
denotes the Feed-Forward Neural Network, X ′ + X (3)

denotes the Residual Connection.
Finally, the extracted feature vector X f inal is input

into a linear classification layer to perform multi-class
prediction, thereby yielding the anomaly detection clas-
sification results Y ∈ Rn×l :

Y = So f tmax(ReLU(X f inalW +b)Wout +bout) (6)

By integrating the multi-scale feature extraction capa-
bility of dilated convolution with the global information
modeling capacity of multi-head attention, the proposed
model effectively captures both local features and global
dependencies within sequence data. This makes it well-
suited for classifying high-dimensional, non-uniform,
and complex temporal data, particularly excelling in
the communication data scenario involving PFCP packet
sequences.

D. PASD-5GC training and testing process

According to the session management process specifi-
cation, each phase of messages within a session follows
a specific order constraint. In the anomaly detection pro-
cess, each session message Xi in the sequence Si is first
examined independently to verify its compliance with
the characteristic specifications of individual messages.
Subsequently, the overall sequence Si is analyzed to
determine whether it adheres to the predefined process
constraints. The sequence is classified as anomalous if
the messages within sequence Si deviate from these
standard constraints. The detailed procedure is presented
in Algorithm 1.

V. EXPERIMENTAL EVALUATION AND RESULT
ANALYSIS

A. Dataset Construction and Sequence Modeling

To evaluate the accuracy and effectiveness of the
proposed PASD-5GC and DM-Net models in anomaly
detection, this paper utilizes the PFCP Intrusion Detec-
tion Dataset collected at the UPF, as referenced in [9],
for simulation experiments.

The publicly available dataset comprises four types
of abnormal signaling and normal signaling recorded by
Amponis at various time intervals (15s, 20s, 60s, 120s,
and 240s) during simulated attacks over the N4 interface.
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Algorithm 1 PASD-5GC

Input: Signaling data {X1,X2, . . . ,Xi}N
1 ; Batch_size of

model training and testing b; DM-Net parameters
model(θ); Training epoch E; Number of sequence
classification labels l.

Output: Abnormal detection results {Y1,Y2, . . . ,Yi}n
1

/* Sequence Modeling */
1: Model the signaling data {X1,X2, . . . ,XN} as se-

quence data S = {S1,S2, . . . ,S2n} and corresponding
labels {y1,y2, . . . ,y2n}

2: Sample the modeling data 1:1 to form Strain,Stest
/* Model Training */

3: Initialize model(θ)
4: for 1≤ i≤ E do
5: Perform forward propagation to obtain predicted

score {Ŷ (1),Ŷ (2), . . . ,Ŷ (b)}
6: Update loss←−∑

l
j=1 Ctrain_ilog(Ŷ (b)

j )
7: Optimize model parameters model : θ ′← θ after

backpropagation
8: end for

/* Model Test */
9: for 1≤ i≤ n do

10: Obtain results {Ŷ (1),Ŷ (2), . . . ,Ŷ (n)} through the
parameters model(θ)

11: Obtain the highest probability dis-
tribution as the predictive label Y ←
classi f ication(Ŷ (1),Ŷ (2), . . . ,Ŷ (n))

12: end for
Return anomaly detection results {Y1,Y2, . . . ,Yn}

The signaling data characteristics vary depending on
the selected time intervals. Shorter time intervals allow
for the capture of finer-grained signaling patterns, en-
hancing local feature prominence and strengthening the
correlation of process context information. Conversely,
in longer time windows, extended signaling intervals
may result in "information loss" within the feature space,
leading to more dispersed contextual information. Given
these variations, it is essential to conduct experimental
evaluations on datasets with different time intervals to
ensure comprehensive model assessment.

The dataset comprises 35 features, including flow ID,
source IP, destination IP, source port, destination port,
protocol, duration, fwd_packets, bwd_packets, among
others. Given that this study focuses on PFCP session
attacks and flow modeling, user-level message features
play a more significant role in the analysis. Conse-
quently, it is necessary to filter the dataset accordingly.
Specifically, feature information related to association
establishment between the SMF and UPF operates at the
NF level, whereas request/response messages pertaining
to PFCP sessions correspond to the user level. There-
fore, only session flow-related features are retained for

subsequent sequence modeling and anomaly detection,
as summarized in Table I.

TABLE I: SESSION FLOW-RELATED FEATURES OF THE DATASET

Feature Description

flow ID Flow identifier
duration Length of time flow was active
Fwd_packets Number of forward packets
Bwd_packets Number of backward packets
PFCPHeartbeat
Request_counter

Number of PFCP Heartbeat Re-
quest messages

PFCPHeartbeat
Response_counter

Number of PFCP Heartbeat Re-
sponse messages

PFCPSessionEstablishment
Request_counter

Number of PFCP Session Estab-
lishment Request messages

PFCPSessionEstablishment
Response_counter

Number of PFCP Session Estab-
lishment Response messages

PFCPSessionModification
Request_counter

Number of PFCP Session Modifi-
cation Request messages

PFCPSessionModification
Response_counter

Number of PFCP Session Modifi-
cation Response messages

PFCPSessionDeletion
Request_counter

Number of PFCP Session Deletion
Request messages

PFCPSessionDeletion
Response_counter

Number of PFCP Session Deletion
Response messages

Label Flow label (e.g. benign or mali-
cious)

In the session flow of the N4 interface, a
predefined sequence specification exists, such as
⟨est→ mod→ del⟩ or ⟨est→ del⟩, which dictates the
order of session establishment, modification, and dele-
tion phases. Based on this specification, this study
constructs different sequences by grouping individual
data points according to normal and abnormal session
flows. Additionally, abnormal signaling is deliberately
introduced into certain sequences. The dataset is then
partitioned into training and testing sets in a 1:1 ratio to
evaluate the model’s effectiveness in detecting individual
signaling anomalies and process-related abnormalities.

TABLE II: SEQUENCE COMBINATION METHODS

S1 S2 S3 Label

Normal-est Normal-mod Normal-del 0
Normal-est 0xxx Normal-del 0
Normal-est Normal-mod Abnormal-del 1
Normal-est Normal-mod Abnormal-mod 2
Normal-est Normal-mod Abnormal-est 3
Normal-est Normal-mod Normal-est 4
Normal-est Normal-mod Normal-mod 5
Normal-est Normal-est 0xxx 6
Normal-est Abnormal-est 0xxx 7
Normal-est Abnormal-mod 0xxx 8
Normal-est Abnormal-del 0xxx 9
Normal-mod 0xxx 0xxx 10
Normal-del 0xxx 0xxx 11
Abnormal-est 0xxx 0xxx 12
Abnormal-mod 0xxx 0xxx 13
Abnormal-del 0xxx 0xxx 14

The detailed composition of normal and abnormal
sequences is presented in Table II, which includes two
normal sequences (labeled 0) and fourteen abnormal
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sequences (labeled 1–14), where Sn represents the nth

packet in each sequence. 0xxx indicates that the se-
quence packet is empty, while est, mod, and del rep-
resent signaling for establishment, modification, and
deletion, respectively.

B. Comparing baselines and evaluation indicators

1) Comparing baselines: To comprehensively evalu-
ate the detection performance of PASD-5GC, this paper
selects 5GCIDS [3] as a comparative benchmark to
validate the effectiveness and accuracy of the proposed
architecture. The 5GCIDS framework conducts anomaly
detection without differentiating between anomalous
signaling events within specific processes; instead, it
directly performs overall feature learning and anomaly
detection. In contrast, the proposed architecture first
applies sequence modeling to transform isolated sig-
naling data into structured sequence data before exe-
cuting anomaly detection. Furthermore, to assess the
effectiveness of the DM-Net model, this study also con-
ducts comparative experiments against traditional ma-
chine learning and deep learning models utilized in [3].
The baseline models include Decision Tree(DT) [11],
Random Forest(RF) [12], K-Nearest Neighbors (KNN)
[13], Support Vector Machine (SVM) [14], AdaBoost
[15], Gradient Boosting(GB) [11], Extra Tree(ET) [16],
XGBoost [17], LightGBM [18], and Multilayer Percep-
tron (MLP) [19].

2) Evaluation indicators: To assess the experimental
results quantitatively, this study employs five evaluation
metrics: Accuracy, Recall, False Positive Rate (FPR), F1
Score, and Precision, as defined in Equation 7.

Accuracy =
T P+T N

T P+T N +FP+FN

Recall =
T P

T P+FN

FPR =
FP

FP+T N

F1 =
2×T P

2×T P+FP+FN

Pre =
T P

T P+FP

(7)

C. Experimental results and analysis

1) Comparison of PASD-5GC and 5GCIDS: To eval-
uate the effectiveness of the PASD-5GC architecture,
this study selects the 5GCIDS architecture for com-
parative experiments using the 15s dataset, with the
results presented in Fig. 3 and Table III. The ex-
perimental findings indicate a significant improvement
in anomaly detection accuracy under the PASD-5GC
architecture compared to the 5GCIDS architecture. Ben-
efiting from sequence modeling, the Support Vector
Machine (SVM) model, a conventional machine learning
approach, achieves a 38% increase in accuracy relative

to the 5GCIDS architecture. Similarly, the Multilayer
Perceptron (MLP) model improves its accuracy from
54% to 88%, representing a 34% enhancement. Other
models also exhibit substantial improvements in detec-
tion performance. The superiority of PASD-5GC over
the traditional 5GCIDS architecture in detecting indi-
vidual signaling packets stems from its explicit sequence
modeling of the PFCP session management process and
its behavioral patterns. By incorporating process context
information and effectively integrating local signaling
features with global sequence-level features, PASD-5GC
achieves more robust anomaly detection.

DT RF KNN SVM Ada GB ET XGB LGBM MLP
Model
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Fig. 3: Comparison of the Accuracy of PASD-5GC and 5GCIDS of
Models in 15s-Timeout Dataset

TABLE III: COMPARISON OF RECALL, FPR, AND F1-SCORE FOR
MODELS IN TWO ARCHITECTURES IN THE 15S-TIMEOUT DATASET

Models PASD-5GC 5GCIDS
Recall FPR F1-Score Recall FPR F1-Score

DT 0.930 0.005 0.910 0.639 0.090 0.642
RF 0.887 0.008 0.865 0.627 0.093 0.633
KNN 0.924 0.005 0.898 0.61 0.097 0.614
SVM 0.907 0.007 0.897 0.529 0.117 0.482
Ada 0.902 0.007 0.871 0.618 0.095 0.627
GB 0.896 0.007 0.871 0.618 0.095 0.629
ET 0.917 0.006 0.911 0.631 0.092 0.641
XGB 0.899 0.007 0.899 0.601 0.099 0.612
LGBM 0.872 0.009 0.870 0.563 0.108 0.579
MLP 0.879 0.009 0.861 0.533 0.116 0.486

2) Comparison of results between DM-Net model and
other models in PASD-5GC: To validate the effec-
tiveness of the proposed DM-Net model in accurately
categorizing different anomaly types in the detection
process, this study selects the four baseline models
with the highest accuracy, along with Dilated Con-
volution(DC), Multi-Head Attention(MHA) and Long
Short-Term Memory(LSTM) models, for comparison.
The evaluation is conducted using Accuracy, Recall,
FPR, and F1 Score metrics. The experimental results
demonstrate that the DM-Net model effectively balances
high detection completeness and accuracy, achieving
significant improvements in accuracy and F1 Score
compared to other models. As presented in Table IV, the
DM-Net model exhibits superior performance. Specifi-
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cally, compared to the decision tree model, the DM-Net
model improves accuracy by 5.4%, while achieving a
7.4% increase in F1 Score over the extra tree model.
Furthermore, compared to the DC model, DM-Net en-
hances accuracy by 12.8% and F1 Score by 14.6%. In
comparison with the MHA model, DM-Net improves
accuracy by 4.0% and F1 Score by 4.5%. In comparison
with the LSTM model, DM-Net improves accuracy by
6.0% and F1 Score by 8.1%.

By integrating dilated convolution to extract key se-
quence information at multiple scales and employing the
multi-head attention mechanism to focus concurrently
on sequence patterns across different time scales, the
DM-Net model demonstrates a more substantial capacity
to adapt to complex data structures and enhance anomaly
detection performance.

TABLE IV: COMPARISON OF ACCURACY, RECALL, FPR, AND F1
SCORE OF MODELS IN 15S-TIMEOUT DATASET

Model Accuracy Recall FPR F1-Score
DT 0.931 0.930 0.005 0.910
KNN 0.924 0.924 0.005 0.898
ET 0.918 0.917 0.006 0.911
SVM 0.907 0.907 0.007 0.897
DC 0.857 0.857 0.010 0.839
MHA 0.945 0.945 0.004 0.940
LSTM 0.925 0.925 0.005 0.904
DM-Net 0.985 0.985 0.001 0.985

3) Comparison of results in the expanded datasets:
To evaluate the generalization capability of the proposed
DM-Net model in anomaly signaling detection across
datasets with different time intervals, this study selects
datasets with 20, 60, 120, and 240-second timeouts
from the 5GC PFCP Intrusion Detection Dataset. Ad-
ditionally, for comparison, the best-performing baseline
models for each dataset, Decision Tree, Random Forest,
SVM, and AdaBoost, are selected for experimentation.

The experimental results indicate that as the dataset
time interval increases, the accuracy advantage of the
DM-Net model over traditional machine learning models
becomes more pronounced. As illustrated in Fig. 4, in
the 20s-Timeout dataset, the DM-Net model achieved
a 4.6% improvement in accuracy and recall, a 3.2%
increase in precision, and a 4.4% enhancement in the F1-
score compared to the Decision Tree model. In the 60s-
Timeout dataset, the DM-Net model outperformed the
Random Forest model with a 5.6% increase in accuracy,
a 6.3% improvement in precision, a 5.1% enhancement
in recall, and a 5.7% increase in the F1-score. In
the 120s-Timeout dataset, the DM-Net model exhibited
a 7.6% improvement in accuracy and recall, a 9.4%
increase in precision, and a 9.0% enhancement in the
F1-score compared to the Decision Tree model. In the
240s-Timeout dataset, the DM-Net model demonstrated
an 8.9% improvement in accuracy, a 9.1% increase in
precision, a 9.4% enhancement in recall, and a 9.7%
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Fig. 4: Anomaly Detection Metrics of models in Expanded Datasets
of Different Time Intervals

improvement in the F1-score compared to the Decision
Tree model.

This performance enhancement is attributed to the
combination of dilated convolution and the multi-head
attention mechanism, enabling the model to extract and
learn local and global features effectively. As a result,
the DM-Net model exhibits a superior understanding
of complex temporal patterns. Even when the dataset
contains dispersed sequence context information, the
model can accurately capture signaling behavioral pat-
terns, maintain high anomaly detection accuracy, and
demonstrate strong robustness across varying data distri-
butions and signaling scenarios. This adaptability allows
the model to effectively accommodate the diverse traffic
characteristics of the 5G core network.

VI. PASD-5GC DEPLOYMENT

To enable seamless integration of PASD-5GC for
PFCP anomaly detection within the 5G core network,
we propose its deployment as a functional component
of the Network Data Analytics Function (NWDAF), as
standardized by 3GPP. NWDAF is specifically designed
to aggregate data from 5G network functions (NFs) to
support machine learning-based analytics and decision-
making. By embedding PASD-5GC within NWDAF, the
model can leverage existing data pipelines without intro-
ducing additional monitoring burdens. This architectural
integration facilitates real-time anomaly detection on
the N4 interface while preserving system efficiency.

IFIP Networking 2025 - Limassol, Cyprus - 26-30 May 2025

317



Furthermore, hosting PASD-5GC within NWDAF en-
sures model lifecycle manageability—enabling routine
retraining, performance monitoring, and integration with
NWDAF’s mechanisms for accuracy assessment and
model degradation mitigation.

VII. CONCLUSION

In this paper, we propose a process-based anoma-
lous signaling detection approach for 5GC N4 inter-
faces, called PASD-5GC, which accurately characterizes
normal signaling behavior and identifies anomalies by
sequentially modelling the signaling flow of the PFCP
protocol while fully leveraging its global contextual
information. Furthermore, we design a deep learning
model that integrates dilated convolution and a multi-
head attention mechanism, enabling the simultaneous
extraction of local features and modelling of global
dependencies. This approach enhances the ability to
represent complex temporal patterns, thereby improving
the accuracy and robustness of anomaly detection. Ex-
perimental results on the 5GC PFCP intrusion detection
dataset demonstrate that the proposed approach signif-
icantly outperforms the existing method regarding ac-
curacy and recall, validating its effectiveness. In Future
research, we will focus on further optimizing the model
architecture to accommodate more protocol interfaces
and exploring its potential deployment in real-world 5G
core network environments.
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