
Simulation and Practice: A Hybrid

Experimentation Platform for TSN

Marcin Bosk, Filip Rezabek, Johannes Abel, Kilian Holzinger, Max Helm, Georg Carle, and JÈorg Ott

TUM School of Computation, Information, and Technology, Technical University of Munich, Germany

[bosk | rezabek | abel | holzingk | helm | carle | ott] @in.tum.de

AbstractÐReal-time systems rely on deterministic, reliable,
and low-latency networks. Ethernet with Time Sensitive Net-
working (TSN) is used to enhance these systems’ robustness while
fulfilling their increasing requirements. Instead of introducing a
single solution offering low latency, jitter, and packet loss, TSN
provides a set of mechanisms that can be selectively combined
for each specific use case. Having the means to assess various
TSN standards and their configuration is crucial for successful
deployments, with hardware (HW) infrastructure and simulators
being common approaches. Each method presents challenges,
which we aim to tackle with this work by unifying the experiment
configuration and its deployment in respective environments.
As a base, we use an open-source TSN framework called
EnGINE. We extend the framework’s functionality and provide
a replacement for its HW deployment using the OMNeT++
simulator. A simulated environment is integrated via a translation
layer that converts an EnGINE configuration into an OMNeT++
one. We provide design and implementation details and verify the
functionality of our approach by running initial experiments and
comparing them to previous results by the EnGINE authors. We
show that simulation generally achieves lower delay and jitter due
to its idealistic nature without typical system artifacts. However,
some HW infrastructure and software-dependent configurations
may unintentionally impact simulation results. Furthermore, we
open-source our contributions enabling an easy way to configure
once but evaluate twice while providing additional insights into
HW and simulator deployments.

Index TermsÐTSN, Open-Source, Simulation, Experiments

I. INTRODUCTION

Systems used for, e.g., autonomous driving or industrial

automation require reliable and high throughput networks

providing deterministic connectivity. Numerous solutions sup-

porting their requirements rely on Ethernet. However, the tech-

nology does not by default offer bounded latency, jitter, and

packet loss. Therefore, Ethernet is usually combined with a set

of Time Sensitive Networking (TSN) standards1, introducing

various mechanisms supporting real-time guarantees.

The capabilities of TSN are being actively researched using

Commercial off-the-Shelf (COTS) and professional Hardware

(HW), as well as simulation deployments. Each approach has

its advantages and disadvantages. Simulations mostly focus

on rapid iteration, e.g., for algorithm evaluation at scale,

ignoring the impact of various system artifacts or solution

Marcin Bosk and Filip Rezabek contributed equally to this paper.
All links are valid as of 30 January 2023.
ISBN 978-3-903176-57-7© 2023 IFIP
1https://www.ieee802.org/1/pages/tsn.html

TABLE I
COMPARISON OF SIMULATION, HARDWARE DEPLOYMENT, AND THIS

WORK CONTRIBUTIONS. ✓- YES, ◦- LIMITED.

Approach A
va

ila
bi

lit
y

R
ep

ro
du

ci
bi

lit
y

R
ea

lis
m

In
te

rp
re

ta
bi

lit
y

V
is
ib

ili
ty

Sca
la

bi
lit

y

Simulation ✓ ✓ ◦ ✓ ✓ ✓

Hardware ◦ ◦ ✓ ◦ ◦ ◦
This work ✓ ✓ ✓ ✓ ✓ ✓

costs. Conversely, HW deployments offer insights into a real-

world network and Operating System (OS) performance, with

challenges regarding their scalability, price, and complexity.

We omit emulation, e.g., Mininet2, in this work as it does not

yield additional insights compared to HW or simulation when

considering scalability, realism, and interpretability [1].

Table I shows a comparison of both approaches. Availability

focuses on the accessibility of hardware needed for experi-

mentation, being challenging for HW solutions and resulting

in difficulties with the reproducibility of the results [2]. Yet,

HW approaches better reflect the challenges faced in real

deployments [1]. This comes at the price of the results’ inter-

pretability, as other system artifacts may be present. Similarly,

obtaining visibility on artifact origins is difficult, especially

when dedicated tools might cause unwanted overhead. Simula-

tion further offers better scalability than HW infrastructure [1].

To combat the challenges of the HW approach, recently,

new TSN experimentation frameworks were introduced [1],

[2]. In recent work, we presented the EnGINE [2] framework

offering a reproducible infrastructure for TSN HW-based ex-

periments. EnGINE offers a generic and structured approach to

experiments, provides documentation and results [3], including

an open-source repository3. The approach still brings some

challenges, including network scalability, insights into OS

artifacts, e.g., queue levels, and detailed differentiation of

overhead caused by the OS and algorithms’ implementations.

To enhance the experimental and evaluation capabilities for

TSN experimentation, in this work, we extend the EnGINE

framework by the ability to support a simulation environment

in place of the HW deployment. We re-use the framework’s

structured experiment scenario campaigns and execution flow

2http://mininet.org/
3https://github.com/rezabfil-sec/engine-framework

so the definition of a given experiment campaign is done once

but can be used for both deployments. Using this approach,

we can combine the advantages of HW and simulation,

eliminating their significant disadvantages and simultaneously

improving the understanding of the HW-based results. In

addition, we can use this knowledge to improve the simulator’s

realism and realize all features outlined in Table I.

To extend the EnGINE framework, we utilize its experiment

execution workflow and ensure the compatibility of both

approaches. Especially relevant are scenario definition and

execution, combined with service configuration. As a second

step, we design and extend the framework’s functionality

that translates the configuration for the simulator. Since the

focus is on TSN, we decided to use the OMNeT++ discrete

event simulator [4] with its INET Framework [5] supporting

numerous TSN standards. Lastly, we run initial experiments

to compare the results based on the HW infrastructure used by

EnGINE in [3] and the OMNeT++ simulator. Such comparison

allows for an initial assessment of the capabilities and a

verification of our approach. We provide the integration, shown

results, and documentation in EnGINE’s online repository4.

We present the following Key Contributions (KCs):

KC1 Comparison of HW-based and simulation environments

KC2 Design and extension of EnGINE framework to support

simulation alongside HW deployments

KC3 Comparison of HW and simulation capabilities

II. BACKGROUND

Performing TSN experiments using COTS HW and open-

source Software (SW), as well as simulation environments,

requires interplay of multiple technologies. This is especially

relevant if such an experimental system should achieve re-

quirements, e.g., as outlined in [6]. In the following, we briefly

introduce the relevant technologies and provide related work.

A. Time Sensitive Networking

Ethernet, by default, does not provide any guarantees for

delay and jitter that may be induced by the network. To

enable transmission of traffic requiring deterministic latencies,

the IEEE 802.1Q family of TSN standards was introduced

to Ethernet. These standards suggest packet policing and

scheduling mechanisms tailored towards achieving low delay

and jitter in time-sensitive systems. In this work, we focus

on TSN standards that are readily available in Linux systems

and can cooperate with COTS TSN HW, e.g., the Intel®

I210 Network Interface Card (NIC) mentioned in [2]. In the

following, we introduce the IEEE 802.1 Qav, Qbv, and AS

standards being supported by the EnGINE framework.

1) Time-Aware Priority Shaper: The IEEE 802.1Qbv stan-

dard [7], also known as Time-Aware Shaper (TAS) or in Linux

as Time Aware Priority Shaper (TAPRIO) queuing discipline

(qdisc), enables low latency and low jitter deterministic packet

delivery in Ethernet-based networks. The shaper fulfills these

requirements by defining transmission times for packets of

4See Footnote 3

multiple traffic classes (TCLs) and hardware queues within

one NIC. Packet scheduling is enforced using gates controlled

according to a user-defined window cycle, specifying dedi-

cated time-windows for each TCL. A packet can only be sent

when the corresponding gate is open.

Generally, TAPRIO is combined with other mechanisms,

e.g., the Earliest Time First (ETF) qdisc offering control over

packet transmission times. ETF is usually bound to a NIC

HW queue corresponding to a relevant TCL. The qdisc can

be configured in a strict or a deadline mode. The strict mode

precisely enforces the frame transmission time, whereas in

deadline mode the packet may be dequeued before the desired

transmission time. Some NICs enable hardware offload of

ETF, e.g., the Intel® I210 NIC with its launch-time feature.

In Linux, the TAPRIO qdisc can be configured via the traffic

control (tc) utility, including settings such as: base-time for

schedule alignment across the network, sched-entry for

cycle configuration, or txtime-delay enabling correction

for delay caused by the system. Furthermore, the qdisc can be

configured in TxTime mode, in which the packet transmission

time is set automatically, e.g., for applications that do not

support setting these times natively, or in offload mode where

the NIC runs TAPRIO instead of the OS.

2) Credit-Based Shaper: The IEEE 802.1Qav standard [7],

also known as Credit-Based Shaper (CBS), enables bandwidth

allocation to TCLs defined as Stream Reservation classes.

Their share is enforced using a system where packets are

scheduled from corresponding queues according to credits

available for each TCL. A frame can only be dequeued when

the TCL credit is ≥ 0, assuming no other frames are currently

transmitted by the NIC. With a configuration that matches the

expected traffic patterns, CBS provides some guarantees for

latency and jitter in policed TCLs.

When used in Linux, CBS is usually configured as child

qdisc under the Multiqueue Priority (MQPRIO) qdisc. Alter-

natively, it can also be used alongside TAPRIO. The MQPRIO

qdisc itself allows for frames of various TCLs to be mapped

to their corresponding NIC queues and priorities, and then be

policed by the child qdiscs accordingly. MQPRIO’s use is not

limited to CBS. It can also be used with qdiscs such as ETF

or the default pfifo fast, among others.

3) Precision Time Protocol: Accurate time synchronization

is required to achieve the desired low latency and jitter in

TSN. This can be achieved using Precision Time Protocol

(PTP) introduced with IEEE 1588 [8] standard and extended

by IEEE 802.1AS [9] in the form of generic Precision Time

Protocol (gPTP) for TSN systems. The clocks of participating

nodes synchronize with the help of PTP instances structured

in a master-slave hierarchy. These instances exchange timing

information that is used to calculate the clock offset and path

delay between participating nodes. The obtained values are

then used to synchronize the slave clock to the master clock.

Furthermore, a Grandmaster Clock (GM) clock is placed on

the top of the hierarchy, defining a reference time for the

network to which all other clocks are synchronized.

Install Setup Scenario Process

Setup
Network
Stacks

Start +
Stop

Process,
Collect,
Cleanup

00-nodes.yml 01-network.yml 02-stack.yml 04-experiment.yml

Experiment

Fig. 1. EnGINE experiment campaign configuration and execution
overview [2]

B. EnGINE Framework

The Environment for Generic In-vehicular Network Exper-

iments (EnGINE) [2] is a framework tailored towards TSN

experimentation with a special focus on Intra-Vehicular Net-

works (IVNs). It provides an open-source5, flexible experiment

orchestration tool written in Ansible6 that can be used in

combination with COTS HW. The framework is further part

of a more generalized experimentation methodology tailored

towards repeatable, replicable, and reproducible experimenta-

tion [3]. EnGINE employs the Linux networking stack within

experiments and uses open-source SW for other required func-

tions, e.g., Iperf3 for traffic generation. The framework also

supports extensive data collection via hardware-timestamped

packet captures and provides a post-processing pipeline. The

result evaluation capabilities are specifically tailored towards

TSN relevant statistics such as latency or jitter, among oth-

ers. EnGINE natively supports several TSN standards readily

available for the Linux environment. These include TAPRIO

and CBS qdiscs, and PTP.

The experiments in EnGINE are performed inside of cam-

paigns orchestrated via a management node. Each consists of

four main phases as shown in Figure 1. In the first two phases,

install and setup, the nodes taking part in an experiment are

prepared. In the install phase, the OS of choice is deployed

on the machines, while in setup, all required dependencies

are installed. After the setup, the actual experiments are

performed in the scenario phase, covering all experiments

within a campaign. Firstly, the network for each experiment is

prepared, with applications used for traffic generation and data

collection being readied for execution. An experiment is then

started and stopped. This cycle continues until all experiments

defined for the scenario are complete. The created results are

parsed in the final, process, phase. The scenario is configured

via five Ansible configuration files:

• 00-nodes.yml define nodes for experiment campaign

• 01-network.yml specify network topology of each

individual experiment run

• 02-stacks.yml define applications and services to be

run during individual experiments

• 03-actions.yml is currently unused [2], [3]

• 04-experiment.yml specify campaign experiments

5See Footnote 3
6https://www.ansible.com

C. OMNeT++ Discrete Event Simulator

Open Modular Network Testbed in C++ (OMNeT++) [4]

is an open-source discrete event simulation framework and

environment tailored towards network simulation. It was de-

signed with computer networks in mind. However, it can be

used to simulate any type of network, examples including

on-chip or queuing networks. OMNeT++ itself provides a

simulation kernel library written in C++, includes a graphical

and command-line interface, and some supporting utility tools.

The functions, protocols, and other building blocks needed

for network system simulation are built based on simple

and compound modules. Simple modules implement basic

functions, while the compound modules combine the simple

modules to realize more complex functionality. The modules

are usually connected via gates and channels realizing the net-

work. The module structure is defined using a NED description

language, with its functionality implemented in C++ classes.

The simulation itself is configured with an INI file named after

the scenario, defining parameters for all its experiments.

Domain-specific functionality is provided using frameworks

that utilize the modular nature of OMNeT++. Notable exam-

ples include the INET Framework [5] used for the simulation

of computer networks, or Simu5G [10] enabling simulation

of 5G mobile networks. In this work, we focus on and utilize

functionality introduced by the INET Framework7. The frame-

work provides abstractions for many protocols of the TCP/IP

stack. In its latest version, it also includes TSN standards,

previously enabled only by additional frameworks such as

NeSTiNg [11] or Core4INET [12]. The INET Framework

currently includes an implementation of TSN standards such

as: PTP [9], CBS [7], and TAPRIO [7], also including IEEE

802.1Qbu [7], IEEE 802.1Qcr [13], and IEEE 802.1CB [14].

D. Related Work

Over the past years, various evaluation setups that focus on

TSN standards using HW and simulation deployments have

been published [15]±[17]. Especially when focusing on the

simulations, we see evaluation relying on the Real-Time at

Work Pegase (RTaW) commercial solution8 and also the open-

source discrete simulator OMNeT++. Several publications rely

on RTaW to evaluate CBS and TAPRIO standards [18], [19].

As outlined in [1], none of the available simulators include all

of the TSN standards. Even if some provide many, evaluation

and validation are lacking. Nevertheless, a similar limitation

also applies to HW deployments.

Few publications combine both simulation and HW deploy-

ments into a single orchestration framework. Recent work

mostly focuses on HW deployments [1], [15], [20] and de-

scribes various approaches to TSN evaluation. They rely on

COTS HW that supports TSN standards and in some cases

also special purpose HW. Their focus is on the evaluation

instead of designing a larger scale platform or introducing

7https://inet.omnetpp.org
8https://www.realtimeatwork.com/rtaw-pegase/

methodology for TSN assessment, as is the case for the

EnGINE framework [3].

Without TSN in mind, [21] is an older publication that

compares constant bitrate traffic and File Transfer Protocol

traffic in two simulators and an experimental testbed. The

authors note that choosing the correct simulation parameters

to achieve similar results as in the testbed is a hard task.

Validation of a network simulator and emulator against

experiments in wireless communications is conducted in [22].

There, the main finding is that predicting delay requires careful

modeling of various details such as the network stack. [23]

evaluates TAS in an emulated environment utilizing virtual

interfaces, showing that precise measurements become prob-

lematic when scaling the topology size.

The most similar approach to our work is introduced in

[24]. The authors combine TSN hardware and simulation

and present a fixed hardware setup that is represented in the

simulator. The obtained results are used to provide additional

realism. Nevertheless, many of the important aspects, such

as scale, flexibility, and reproducibility, are not shown. This

confirms our approach of combining simulation and HW

infrastructure into one solution as viable. There is a variety

of previous work that can be evaluated in both deployments

and a multitude of additional evaluations to be done.

Based on the available related work, we identified

OMNeT++ as a suitable simulator. It provides support for

various TSN standards, is open-source for academic purposes,

and has a large user community.

III. DESIGN AND IMPLEMENTATION

To support the capabilities offered by EnGINE we devise

and develop an abstraction of its HW and SW deployment that

can be applied to OMNeT++. Such approach brings several

benefits for TSN experimentation. It enables researchers to

prepare only one configuration for both HW experiments and

simulation. Further, it enables experimentation without access

to TSN capable HW, while maintaining the possibility of

collaboration with others that might have such access.

For the successful design and implementation of the given

abstraction, we devise the following requirements:

R1 Use the same scenario configuration format of EnGINE

R2 Integrate seamlessly to the EnGINE framework

R3 Replicate the physical HW deployment of EnGINE as

outlined in [2]

R4 Support the applications/stacks as introduced in [2]

As we are building on top of the requirements we previously

defined for EnGINE, here we focus only on the techni-

cal aspects needed to mitigate the shortcomings of HW or

simulation-only based approaches. The outlined requirements

aim at enabling integration of the OMNeT++ simulation en-

vironment with EnGINE compliant configuration capabilities.

To satisfy these requirements, we utilize the phase struc-

ture of EnGINE. The framework uses Ansible playbooks for

installation and scenario independent setup, with a separate

playbook for scenario specific setup and execution of experi-

ments based on user-defined variable files. For the simulation,

Fig. 2. EnGINE network topology from [2] built in OMNeT++

the former can be realized via default parameters used in

combination with custom NED modules. In this way, we

can prepare a simulation environment that corresponds to

the HW deployment of the framework while fulfilling R3.

The exact configuration of applications, network, and TSN

traffic policing can be realized via scenario specific INI-files

using these custom NED modules. We provide a translation

framework that can transform the configuration playbooks

outlined in Section II-B into the necessary INI configuration

and thus fulfill R1. Further, we devise an implementation of

traffic generation and data recording software by implementing

those as OMNeT++ modules, which combined with native

OMNeT++ statistics collection fulfills R4 while enhancing the

data collection capabilities. The entire translation framework

is integrated into EnGINE, enabling simultaneous execution of

HW emulated and simulated experiments while fulfilling R2.

In the following, we outline the specific design and implemen-

tation choices enabling the fulfillment of all requirements.

A. Abstraction of EnGINE HW deployment in OMNeT++

The EnGINE HW deployment generally consists of a set

of nodes differing in the quantity and quality of NICs. The

wiring for the network topology remains consistent between

experiments. To fulfill R3, an OMNeT++ abstraction of such

deployment is realized by defining appropriate modules re-

alizing the individual nodes and their connections, as well

as network modules combining them to realize the actual

topology. These modules are linked via EngineLink channels,

derived from the INET Framework’s EthernetLink. Based

on [2] and aforementioned components a network topology

resembling a HW setup, as shown in Figure 2, is built.

1) EnGINE Node Implementation: The custom module

EngineNode realizes an individual node within OMNeT++. It

is based on INET Framework’s TsnDevice to generate traffic

and TsnSwitch to enable multiple Layer 2 flows originating

on one node. A flow corresponds to a connection between two

end-points and may contain traffic of multiple applications.

EngineNode combines these two modules by defining them

as submodule device of type EngineDevice and switch

of type EngineSwitch. The parameter numFlows defines the

number of interfaces and links between the EngineDevice

and EngineSwitch module within an EngineNode. Such con-

figuration enables the setup of the per flow addresses and

forwarding, as defined within the EnGINE framework. The two

submodules device and switch are connected as needed

via a custom channel per flow for which the node is an

end point. The custom channel extends the DatarateChannel,

adding no delay and having infinite bandwidth. To enable

a multi-NIC deployment of a HW node, the switch has

additional interfaces that are connected to the modules gates.

The EngineDevice extends the functionality of TsnDevice

and enables some of its TSN related submodules. These may

be used to apply VLAN tags with the intended VLAN IDs and

Priority Code Point (PCP) values for packets generated by the

applications. In addition, other default settings are applied.

EngineSwitch extends TsnSwitch and also enables some of

its TSN-related submodules. The TsnSwitch already includes

the gptp and clock submodules facilitating the set up of

time synchronization via gPTP between EngineNode modules.

Furthermore, it contains egress traffic shaping, enabling the

configuration of various shapers based on the queues asso-

ciated with the interface. The settings of this queue mod-

ule mimic those of the NIC queues found in the EnGINE

framework. These include a default queue setup for interfaces,

reference of correct clock submodule, or use of customized

submodules enabling packet trace capture. To better mimic the

capabilities of NICs used on HW EnGINE nodes, additional

switch types extending EngineSwitch are introduced. These

modules set the relevant number of interfaces, with their spe-

cific bandwidths and queues, for each node type available in a

HW EnGINE deployment. Based on EngineNode’s parameter

type, the respective module is chosen.

2) Network Generation and Configuration: To facilitate

automatic network generation mimicking a HW deployment,

we choose a three-level inheritance hierarchy for the custom

network modules. Such an approach allows us to easily update

the abstracted network nodes and connections in case of

network topology changes. On the first level, we utilize the

EngineNetworkBase for general definitions, independent of

the actual HW nodes and their connections. The base module

extends TsnNetworkBase, exposing its optional configuration

submodules and disabling modules interfering with the setup

of scenario specific flows, i.e., the setup of default routes.

Further, we extend EngineNetworkBase with submodules

for the HW nodes that are available. EngineNetworkNodes

defines an optional submodule of type EngineNode for each

of the hosts outlined in [2]. The number and type of interfaces

and their respective MAC addresses are set based on the

information from the EnGINE framework’s host definition

files. Lastly, we define specific channels corresponding to the

cabling available within the EnGINE’s HW deployment.

The support for TSN qdiscs is ensured by applying

specific queue submodules to interfaces of EngineNode .

Considering the specific structure of the EngineNode

consisting of EngineSwitch and EngineDevice, the traf-

fic shapers are applied on the outgoing interfaces of

EngineSwitch used to connect with other nodes in

the network. Two qdiscs are supported within our im-

plementation, which is the same as by the EnGINE

framework. These include Ieee8021qTimeAwareShaper and

Ieee8021qCreditBasedShaper, corresponding to the IEEE

802.1Qbv and IEEE 802.1Qav standards, respectively. How-

ever, the INET Framework does not support the ETF qdisc. We

overcome this by generating packets at precise times, which

combined with comparatively low load in our considered

scenarios, enables us to resemble ETF functionality.

B. Application/Stack Implementation

In the HW deployment, services abstract the use of appli-

cations during experiment runs by invoking respective com-

mands at certain steps of the experiment preparation, run,

and initial processing. These commands are contained within

Ansible task files. In general, the service specific task file

main.yml prepares variables and files required for the service

and starts it via a custom script, enabling application control

during the run of the experiment. To fulfill R4, for the

simulation, services are realized via custom traffic generation

or monitoring modules instantiated using the app vector of

EngineDevice. The selected applications can be configured

accordingly via scenario-specific INI configuration files.

The VLAN priority specific to each application can be

applied via the bridging submodule of type BridgingLayer.

This is realized via its submodule StreamIdentifier enabling

setting of a streamIdentifier that can be used to assign

packets to streams via its parameter mapping that accepts pairs

of packet filters and packets. An appropriate filter has to be

applied to match only the packets of those services for which

the priority should be applied.

Assignment of an application to a flow can be realized via

the respective remote and local IP addresses. In more detail,

the destAddress parameter of the applications is used to

select the destination endpoint of the corresponding flow and

localAddress as the source of the flow. Similarly, the

local or remote port assignment can be accomplished via the

localPort and destPort, respectively.

The EnGINE framework stops the services and then per-

forms initial processing via the stop.yml, process.yml, and

collect.yml playbooks. The functionality of stop.yml is not

required in simulation, as experiment execution is governed by

the simulation kernel. Separate task files are utilized to perform

service specific result processing and move result files to the

persistent storage on the management node. However, parts

of processing need to be adjusted to reflect the OMNeT++

statistics collection format.

With our implementation, all services/stacks provided by

the EnGINE framework [2] and its implementation are sup-

ported in simulation. These include, among others gPTP en-

abling time synchronization between the nodes, utilizing gptp

and clock submodules of EngineSwitch. tcpdump used for

packet capture recording is realized via the pcapRecorder

module. iperf3 used for periodic traffic generation has its

client implemented with a custom Iperf3LikePacketSource

extending ActivePacketSource. send udp used for periodic

traffic generation with ETF qdisc is integrated using the

UdpSourceApp. Since the ETF qdisc is not available within

the INET framework, the program’s functionality can only

be realized to a certain degree, i.e., the order of packets in

presence of interfering traffic on the same node cannot be

directly influenced.

Install Setup Scenario Process

Generate
configuration Simulation

Process,
Collect,
Cleanup

00-nodes.yml 01-network.yml 02-stack.yml 04-experiment.yml

Custom
NED file

Configuration
INI file

Experiment

Fig. 3. Simulated EnGINE experiment campaign configuration and execution
overview

C. Experiment Execution

As outlined in Figure 3, simulated experiment execution

follows the order introduced by the EnGINE framework. Due

to the nature of OMNeT++ some elements of the campaign

phases need to be modified.

1) Installation and Setup: The allocation of nodes and

installation of OS images is not required, as OMNeT++

simulations are self-contained and only rely on a host OS

where the simulator is installed. No software setup is required

for the simulation since the modules will be initiated at

the start of a simulation run. The default parameter values

provided for the NED files are sufficient for campaign specific

experiment configurations. The module instantiation happens

automatically during a simulation run.

2) Scenario and Experiments: Each scenario requires spe-

cific stack and network configurations to achieve various

experiment goals. This setup is realized within a single INI file,

using one Config per experiment. The OMNeT++ mechanism

for inheriting specific INI Configs allows us to follow the

structure of scenario specific EnGINE configuration files, as

further explained in Section III-D. The resulting INI file

enables and prepares appropriate modules needed to facilitate

the network topology, traffic generation, and data collection,

among others. The entire configuration needs to be performed

before the experiment starts, as certain parameters cannot be

dynamically set during simulation. As an example, IP ad-

dresses have to be provided in advance as the stack configura-

tion depends on the actual network used in the experiment. We

also provide additional parameters enabling similar behavior

to the HW deployments, e.g., the warmup-period that is

used to stabilize the system.

3) Process: The post-processing of artifacts in the EnGINE

framework happens in two stages. Firstly, directly after each

individual experiment, all results are pre-processed and copied

to the management node. After the experimental campaign

is complete, the second stage of processing occurs, where

collected artifacts are parsed and evaluation plots are prepared.

In our implementation, we follow a similar approach. While

OMNeT++ supports accurate packet trace recording, we ex-

tensively utilize the simulator’s native statistics, giving us a

lightweight representation of the results. These statistics have

Step 1: Load variables from Scenario playbooks

Step 3: Prepare scenario INI file

00-nodes.yml 01-network.yml 02-stack.yml

flow
definitions

interface TSN
configuration

traffic
generation data collectionused nodes

configuration

04-experiment.yml

network
configuration

stacks
configuration

experiment
configuration

Node
Definitions

Network
Definitions

Applications
and Recorders

Experiment
Definitions

Step 2: Process variables from Scenario playbooks

Fig. 4. Simulation configuration generation and configuration section inher-
itance overview

the same source as the packet traces and provide identical

information. These are directly extracted and parsed from

OMNeT++’s result files using opp scavetool command. Such

an approach enables us to simplify some aspects of the post-

processing pipeline by not having to parse packet traces

without compromising accuracy. To ensure compatibility with

EnGINE’s result evaluation capabilities, we utilize the same

format for the CSV files as defined in the framework. The

second stage remains exactly the same as in the original

EnGINE implementation and can be directly used to post-

process any type of experiment.

D. EnGINE Configuration Translation

OMNeT++ uses its own INI file experiment parameter

configuration format. To achieve R1, we introduce the transla-

tion of the EnGINE experiment configuration into appropriate

OMNeT++ configuration files. As indicated in Figure 3, those

files are generated based on playbooks shown in Section II-B

and consider module descriptions introduced in Sections III-A

and III-B. The translation is performed individually for each

experiment campaign definition and occurs during runtime.

An overview of the configuration generation steps

is shown in Figure 4. Firstly, the variables generally

used by EnGINE during experiments are loaded via a

Python script. These include the scenario-specific pa-

rameters contained within the four Ansible playbooks

00-nodes.yml, 01-network.yml, 02-stacks.yml,

and 04-experiment.yml. The definitions are then pre-

processed into a format suitable for Jinja2 templates, where

node, network, applications, and data collection recorders, and

experiment definitions are derived, respectively. This step is

performed to simplify the template structure as some param-

eter transformations are applied by the pre-processing script.

Finally, the OMNeT++ INI configuration file is prepared

using the aforementioned information and with the help of

Jinja2 templates. Several configuration sections are generated.

These configurations are used as building blocks for individual

experiments and help avoid redundant configuration if, e.g.,

multiple experiments use the same network. As indicated by

arrows with dashed lines in Figure 4, the sections correspond

to the structure of scenario playbooks. The figure further shows

the inheritance structure of these configurations obtained in

step 3, as indicated by the arrows with solid lines. The final

experiment configuration section extends all other sections and

contains the definition of each individual experiment. The

configuration sections for the entire scenario are contained

within one INI file.

E. Integration into EnGINE Framework Execution Workflow

Supporting R2 and the automatic nature of experiment

execution in EnGINE, we integrate the execution of simula-

tion runs into experiment phases, as indicated in Figure 3.

Similar to the HW-based experiments, OMNeT++ requires

some preparation steps to run simulations. The setup involves

installing the OS and necessary dependencies on a node

dedicated to simulated experiments. Since this preparation is

similar to install and setup phases of an EnGINE experiment,

we create similar playbooks to facilitate the requirements

of OMNeT++. These, and the simulations themselves, are

executed if the simulation mode of EnGINE is selected. Im-

portantly, during the install phase, OMNeT++, the supporting

INET Framework, as well as the project containing EnGINE-

specific module definitions and implementation are compiled.

As a result, an executable binary for the project is created.

With the node being ready, the experiment preparation and

execution are performed as part of the scenario phase. As

Ansible variable files are available at the management node,

the scenario playbook generates the scenario-specific configu-

ration based on the scripts and templates there, subsequently

moving the resulting INI file to the simulation node. The

framework then sequentially executes experiments from the

indicated experiment INI file section, via the executable binary

created for the engine project during install phase. The exper-

iments are generally run in command line mode, however, a

graphical environment is also available. As described in Sec-

tion III-C3, similarly to a HW EnGINE experiment, generated

artifacts are copied after each experiment run. Finally, after a

campaign is complete, the results are processed using already

existing EnGINE post-processing capabilities.

IV. VERIFICATION EXPERIMENTS AND RESULTS

With the previous work done on the EnGINE framework,

we provided several artifacts we now use to reproduce its HW

deployment and experiments in the simulation environment we

introduce with this work. We utilize the following information:

A1 The EnGINE framework node definitions9

A2 The network topology as introduced in [2], [3] with

additional insights from [25]

A3 Previously introduced experiment descriptions10

A4 Previously introduced experiment configurations11

A5 Previously introduced results12 of [3]

Using A1 and A2, we abstract the HW deployment of

EnGINE outlined in [2], [3] into OMNeT++. We appropriately

9https://github.com/rezabfil-sec/engine-framework/tree/main/host vars
10https://github.com/rezabfil-sec/engine-framework#experiments
11https://github.com/rezabfil-sec/engine-framework/tree/main/scenarios
12https://nextcloud.in.tum.de/index.php/s/sWxadG8JeJss2Sy

HwSim HwSim HwSim HwSim

0.1

1.0

0.2

0.5

2.0

CBSHi CBSLo TAST TASW

Experiment Type

D
el
ay

[m
s]

Mean

Max

Min

Fig. 5. Delay comparison between HW-based and simulated results

HwSim HwSim HwSim HwSim

-1000
-100
-10
-1
1

10
100
1000

CBSHi CBSLo TAST TASW

Experiment Type

J
it
te
r
[u
s]

Mean

Max

Min

Fig. 6. Jitter comparison between HW-based and simulated results

define all network nodes as EngineNode modules and mimic

the links between them via EngineLink channels. We use

this network, together with A3, A4, and A5, to validate our

simulation integration for the framework. For comparison,

we utilize a small subset of the aforementioned results. We

firstly focus on experiment EXCM2 of [3], investigating

the functionality of the CBS qdisc. We further extend our

validation with experiments EXTS−T and EXTS−W without

offload of [3], focusing on the TAPRIO qdisc. We use those to

verify the functionality of our solution in a line topology with

seven hops and eight network nodes. The traffic is generated on

the first and forwarded towards the last node in the line, with

traffic shaping applied on each hop in the investigated network.

To perform an accurate representation of the two experiments

in simulation, we use the configurations provided via A4 with

scenarios Figure-23-24 EX CM2 and Figure-25ab EX TS-

T,EX TS-W. Our results are then compared against those from

A5, which are visualized in Figures 24 and 26 of [3].

We, therefore, devise three scenarios CBS, TAST , and

TASW , corresponding to, in order, the previously mentioned

experiments. CBS experiment uses CBS on two queues polic-

ing traffic of two flows, with their bitrates and corresponding

qdisc parameters configured for 100Mbit/s each. In parallel,

to saturate the link, two other flows are configured on best-

effort priorities. For evaluation, we consider only the CBS

policed flows for the highest and second highest priorities, in

the following referred to as CBSHi and CBSLo, respectively.

In contrast, both TAS experiments include only one flow.

TAST tests larger TAPRIO window cycle of 1ms, with

packets generated every 1ms. TASW performs a similar test

with smaller TAPRIO window cycle of 100 µs, with packets

created according to that cycle.

Figures 5 and 6 show box plots of the delay and jitter

measured in CBS and TAS experiments for both experiment

types, the HW-based (Hw) from [3], as well as the corre-

sponding simulation (Sim) runs. For each individual experi-

ment, the plots feature the measured minimum, maximum, and

average values. This is in addition to the median, inter-quartile

range, the extent of the data, and outliers, which are standard

for a box plot, providing additional insights into the results.

For CBSHi and CBSLo, we observe similar delays within

their respective experiment types. In both cases, the delay

measured in Sim is significantly lower compared to Hw.

While CBS in Hw shows an average delay of roughly

2.40ms, Sim yields an average latency of roughly 0.15ms.

This discrepancy is a result of the processing delay currently

not being modeled in our simulation environment.

Similarly, for the jitter of CBS experiments shown in Fig-

ure 6, we observe significantly lower jitter in Sim compared

to Hw. Again, the flows on two different priorities are similar

within their respective experiment types. While in Hw we see

a maximum absolute jitter value of approx. 1400 µs, for Sim
this value drops significantly to just 8 µs. Again, here we also

see the limitation of the simulation approach, where clock drift

and external influences are not fully modeled.

For the delay of TAST and TASW , shown in Figure 5,

we observe significant differences comparing Hw with Sim.

With TAST , we observe a comparable mean delay in both

experiment types, with that of Sim equal to 1.20ms being

somewhat higher than the one in Hw of 1.00ms. In contrast,

TASW shows similar behavior as seen in the CBS experi-

ments, with Sim latency being significantly lower than that of

Hw. The HW-based experiment type shows an average delay

of 1.17ms, while simulation yields only 0.13ms.

Both TAS experiments let us observe an interesting case

where simulation might be beneficial to determine optimal

window settings for the TAPRIO qdisc. TAST applies an

offset to the gate schedule of 200 µs per hop. This is in line

with the expected processing delay per hop in the HW-based

experiments, resulting in a delay increase of roughly 200 µs

per hop and, therefore, an optimal configuration of TAPRIO

windows in the network as described in [3]. This processing

delay is not present in Sim, with packets arriving before their

gate opens on every hop node. This results in the increase in

delay by roughly 200 µs on each hop while the packets need to

wait for their window to open. Such observations, combined

with the ability to model processing delay, in the future may

be used to define optimal TAPRIO windows based on varying

processing abilities of different nodes.

The jitter in TAS experiments shown in Figure 6, also

indicates a limitation of the simulation approach. For both

TAST and TASW in Sim we see no jitter whatsoever, while

Hw lets us observe absolute jitter values of up to 1000 µs.

This, again, indicates that certain realism aspects are omitted in

the simulation approach. In summary, we observe differences

between the simulated and HW-based results, showing the

discrepancy between near-ideal simulation and real-world,

which might also result from HW or SW implementations.

The results indicate more modeling work is needed to narrow

down which properties result in these unique artifacts.

V. LIMITATIONS

While our approach extends the capabilities of HW-based

TSN experiments by adding additional insights via simulation,

it still has several limitations. These reflect the general lim-

itations of discrete-event simulators such as OMNeT++ and

others used to simulate computer networks. The first major

limitation concerns the availability of ETF qdisc in the simu-

lator. Currently, it is not supported by the INET Framework.

This somewhat limits the variety of experiments involving

the combination of TAPRIO and ETF, since OMNeT++ does

not differentiate between the deadline and strict modes and

supports only the strict mode.

Further, the implementation of PTP in the INET Framework

requires a pre-defined PTP hierarchy and does not support

its dynamic creation. Our implementation pre-computes the

same hierarchy as the Best Master Clock Algorithm for our

particular setup. In OMNeT++, the PTP currently does not

have a significant impact on the accuracy of the clocks in the

network. The used clocks provide the capability to configure

various types of clock drift. However, currently these features

are not heavily utilized and require further investigation in

order to provide a realistic clock behavior.

The EnGINE framework, as well as this implementation,

supports only a number of TSN traffic shapers. These are

limited to CBS, TAPRIO, and ETF (for EnGINE), dictated

by the small number of corresponding qdisc implementations

being available for both Linux and OMNeT++. Both the

framework and our simulation environment can be extended

by additional qdiscs if new implementations become available.

Additionally, there are some functional differences between

the Linux-based applications used within HW-based EnGINE

deployment and their corresponding OMNeT++ modules. As

an example, the Iperf3 application may be configured to send

at a non-limited rate which would saturate the remaining

bandwidth of the network. Such functionality is not supported

by the application module within the simulation environment.

To achieve link saturation in the simulation, the unlimited

bitrate flows require an additional step in the configuration,

where an appropriate bitrate is set. Supported applications also

need to be actively maintained. If applications are modified

or new ones are added into the EnGINE framework, to

maintain compatibility, these applications would also need to

be implemented into the OMNeT++ simulator.

VI. CONCLUSION & FUTURE WORK

In this work, we introduce and verify an approach enabling

experimentation using both HW-based and simulated environ-

ments. We achieve this by using an open-source framework

called EnGINE and mirroring its configuration and deploy-

ment in the open-source OMNeT++ simulator. The mapping

happens for each defined experiment scenario, allowing the

same configuration to be run on hardware and in simulation.

Combining both results enables the collection of additional

insights from each environment without their individual limi-

tations. The results can be used in both directions ± improving

the understanding of HW-based results or validating the sim-

ulator’s features, enhancing its realism. We provide a detailed

description of how the functionality mapping is designed and

provide a set of verification results. These results are compared

with ones we previously provided with EnGINE and serve as

initial motivation for future work possibilities.

We see potential for valuable insights into TSN standards

when they can be evaluated using HW together with a simu-

lator in the loop. Modeling differences between the two types

of deployments could help to have a better understanding of

how the simulation differs from real-world deployments. Such

experience can also be used in reverse, where the hardware

model can be applied to simulation results, e.g., for evaluation

of a new TSN standard only supported in the simulator. We

show that simulation achieves lower delay and jitter due to the

absence of typical system artifacts.

In the future, we plan to look in more detail at the as-

sessment of the CBS and TAPRIO qdiscs, comparing the two

types of results and modeling the differences. As a part of that,

we want to investigate various network calculus approaches

and verify their behavior in both deployments. We plan to

also evaluate additional aspects such as the PTP clock drift.

In addition, the translation framework can be extended to

support new tools, e.g., traffic generators or analyzers, with

the potential to include real applications in the simulation

environment. Last, since the solution is open-sourced, it could

serve as a collaboration platform among various researchers,

where some have the HW capabilities and experience, while

others focus on simulation.

ACKNOWLEDGMENT

This work has been partially supported by the Federal Min-

istry of Education and Research of Germany (BMBF) project

6G-Life (16KISK002) and Algorand Centres of Excellence

(ACE) Programme (https://www.algorand.foundation/ace).

REFERENCES

[1] M. Ulbricht, S. Senk, H. K. Nazari, H.-H. Liu, M. Reisslein, G. T.
Nguyen, and F. H. Fitzek, ªTsn-flextest: Flexible tsn measurement
testbed (extended version),º arXiv preprint arXiv:2211.10413, 2022.

[2] F. Rezabek, M. Bosk, T. Paul, K. Holzinger, S. GallenmÈuller, A. Gon-
zalez, A. Kane, F. Fons, Z. Haigang, G. Carle, and J. Ott, ªEngine:
Flexible research infrastructure for reliable and scalable time sensitive
networks,º Journal of Network and Systems Management, vol. 30, no. 4,
p. 74, 2022.

[3] M. Bosk, F. Rezabek, K. Holzinger, A. G. Marino, A. A. Kane, F. Fons,
J. Ott, and G. Carle, ªMethodology and infrastructure for tsn-based
reproducible network experiments,º IEEE Access, vol. 10, pp. 109 203±
109 239, 2022.

[4] A. Varga, ªOMNeT++,º in Modeling and Tools for Network Simulation,
K. Wehrle, M. GÈunesË, and J. Gross, Eds. Heidelberg: Springer, 2010,
pp. 35±59.

[5] L. MÂeszÂaros, A. Varga, and M. Kirsche, ªInet framework,º pp. 55±106,
2019. [Online]. Available: https://doi.org/10.1007/978-3-030-12842-5 2

[6] ªISO/IEC/IEEE International Standard - Information technology ±
Telecommunications and Information Exchange between Systems ±
Local and Metropolitan Area Networks ± Specific Requirements ± Part
1BA: Audio video bridging (AVB) Systems,º ISO/IEC/IEEE 8802-1BA

First edition 2016-10-15, pp. 1±52, 2016.

[7] ªIEEE Standard for Local and Metropolitan Area Network±Bridges and
Bridged Networks,º IEEE Std 802.1Q-2018, pp. 1±1993, 2018.

[8] ªIEEE Standard for a Precision Clock Synchronization Protocol for
Networked Measurement and Control Systems,º IEEE Std 1588-2019,
pp. 1±499, 2020.

[9] ªIEEE Standard for Local and Metropolitan Area Networks±Timing and
Synchronization for Time-Sensitive Applications,º IEEE Std 802.1AS-

2020, pp. 1±421, 2020.
[10] G. Nardini, D. Sabella, G. Stea, P. Thakkar, and A. Virdis, ªSimu5g±an

omnet++ library for end-to-end performance evaluation of 5g networks,º
IEEE Access, vol. 8, pp. 181 176±181 191, 2020.

[11] J. Falk, D. Hellmanns, B. Carabelli, N. Nayak, F. DÈurr, S. Kehrer, and
K. Rothermel, ªNesting: Simulating ieee time-sensitive networking (tsn)
in omnet++,º in 2019 International Conference on Networked Systems

(NetSys), 2019, pp. 1±8.
[12] T. Steinbach, H. D. Kenfack, F. Korf, and T. C. Schmidt, ªAn extension

of the omnet++ inet framework for simulating real-time ethernet with
high accuracy,º in Proceedings of the 4th International ICST Conference

on Simulation Tools and Techniques, ser. SIMUTools ’11. Brussels,
BEL: ICST (Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering), 2011, p. 375±382.

[13] ªIEEE Standard for Local and Metropolitan Area Networks±Bridges
and Bridged Networks - Amendment 34:Asynchronous Traffic Shaping,º
IEEE Std 802.1Qcr-2020 (Amendment to IEEE Std 802.1Q-2018 as

amended by IEEE Std 802.1Qcp-2018, IEEE Std 802.1Qcc-2018, IEEE

Std 802.1Qcy-2019, and IEEE Std 802.1Qcx-2020), pp. 1±151, 2020.
[14] ªIEEE Standard for Local and Metropolitan Area Networks±Frame

Replication and Elimination for Reliability,º IEEE Std 802.1CB-2017,
pp. 1±102, 2017.

[15] M. H. Farzaneh and A. Knoll, ªTime-Sensitive Networking (TSN): An
Experimental Setup,º in 2017 IEEE Vehicular Networking Conference.
IEEE, 112017, pp. 23±26.

[16] H.-J. Kim, M.-H. Choi, M.-H. Kim, and S. Lee, ªDevelopment of
an Ethernet-Based Heuristic Time-Sensitive Networking Scheduling
Algorithm for Real-Time In-Vehicle Data Transmission,º Electronics,
vol. 10, no. 2, 2021.

[17] L. Leonardi, L. Lo Bello, and G. Patti, ªPerformance Assessment of the
IEEE 802.1Qch in an Automotive Scenario,º in 2020 AEIT International

Conference of Electrical and Electronic Technologies for Automotive.
IEEE, 11182020, pp. 1±6.

[18] J. Migge, J. Villanueva, N. Navet, and M. Boyer, ªInsights on the Per-
formance and Configuration of AVB and TSN in Automotive Ethernet
Networks,º in 9th European Congress on Embedded Real Time Software

and Systems (ERTS 2018), Toulouse, France, Jan. 2018.
[19] C. Mauclair, M. GutiÂerrez, J. Migge, and N. Navet, ªDo We Really Need

TSN in Next-Generation Helicopters? Insights From a Case-Study,º in
2021 IEEE/AIAA 40th Digital Avionics Systems Conference, 2021.

[20] S. Senk, M. Ulbricht, J. Acevedo, G. T. Nguyen, P. Seeling, and
F. H. P. Fitzek, ªFlexible measurement testbed for evaluating time-
sensitive networking in industrial automation applications,º in 2022

IEEE 8th International Conference on Network Softwarization (NetSoft),
2022, pp. 402±410.

[21] G. F. Lucio, M. Paredes-Farrera, E. Jammeh, M. Fleury, and M. J. Reed,
ªOpnet modeler and ns-2: Comparing the accuracy of network simulators
for packet-level analysis using a network testbed,º wseas transactions

on computers, vol. 2, no. 3, pp. 700±707, 2003.
[22] S. Ivanov, A. Herms, and G. Lukas, ªExperimental validation of the

ns-2 wireless model using simulation, emulation, and real network,º in
Communication in Distributed Systems - 15. ITG/GI Symposium, 2007.

[23] M. Ulbricht, J. Acevedo, S. Krdoyan, and F. H. Fitzek, ªEmulation
vs. Reality: Hardware/Software Co-Design in Emulated and Real Time-
sensitive Networks,º in 26th European Wireless Conference, 2021.

[24] J. Jiang, Y. Li, S. H. Hong, M. Yu, A. Xu, and M. Wei, ªA Simu-
lation Model for Time-sensitive Networking (TSN) with Experimental
Validation,º in 2019 24th IEEE International Conference on Emerging

Technologies and Factory Automation (ETFA), 2019, pp. 153±160.
[25] F. Rezabek, M. Helm, T. Leonhardt, and G. Carle, ªPTP Security

Measures and their Impact on Synchronization Accuracy,º in 18th

International Conference on Network and Service Management (CNSM

2022), Thessaloniki, Greece, Nov. 2022.

