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Abstract—Remote Access Trojan (RAT) is one of the major
threats to today’s network environment. It is a class of malware
frequently used by hacking collectives to monitor victims’ actions
and steal personal information in targeted computers. Traditional
machine learning algorithms have been widely used to detect
malicious encrypted RAT traffic. Traditional machine learning
algorithms rely deeply on expert experience, and it is difficult for
current traffic classification models to design effective handcraft
features. Deep learning methods have been introduced in recent
years to generate representations from raw network traffic data
automatically. Previous deep learning-based malicious traffic
detection methods generate representations from flow sequences
or packet payload bytes. None of these methods simultaneously
learn embeddings from flow sequence and packet payload bytes.
Thus, we propose a novel ensemble model to draw fine-grained
and multi-angle traffic representations for RAT traffic. The model
extract (1) temporal features with convolution neural network
(CNN) and the Reproducing Kernel Hilbert Space (RKHS)
embedding method to model network flow sequence, (2) spatial
features with autoencoder and bidirectional gated recurrent unit
(Bi-GRU) network to model packet payload bytes, and (3) some
stage-based attributes to enhance the identification ability of
RAT traffic behaviors. According to the experimental result, our
approach achieves better performance than previous works with
a precision rate of 97.0% and a recall rate of 96.5%.

Index Terms—Encrypted Malware Detection, RAT Traffic,
Ensemble Learning, Deep Learning

I. INTRODUCTION

Nowadays, Trojan has become one of the most widely
used malicious programs in our network environment. Remote
Access Trojan (RAT) is a kind of Trojan that allows malicious
attackers to control the system and access the victims’ infor-
mation by opening a backdoor in the users’ system. Typical
functions of RAT include process monitor, command execution
and file transfer, etc. RAT can cause great harm to the security
of network systems and damage personal property, so it is
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necessary to specify the malicious activities of RAT to prevent
our computers from further information leakage or attack
from adversaries. DPI-based detection through string pattern
matching is a popular method to identify RAT traffic behavior
in industry circumstances. In today’s network environment,
most network traffic is encrypted, so the actual contents of IP
packet payloads are invisible. Since most malware, including
RAT, encrypts their network flow for better concealment,
the traditional DPI-based detection methods are significantly
challenged and usually lose their functionality.

In recent years, researchers have tended to use machine
learning methods to tackle the identification problem of mali-
cious encrypted traffic. Traditional machine learning (TML)
algorithms, such as Support Vector Machine (SVM) and
Random Forest, are applied to classify network flow with
artificial traffic features like bytes number or interval gap
between packets [1–4]. TML algorithms rely deeply on expert
experience, and the feature set design needs lots of human
effort. The performance of the trained model will become
unstable when transferred into a different environment [5]. To
reduce the dependence of the model on feature engineering and
realize an end-to-end traffic flow classification or malicious
traffic detection, deep learning (DL) methods are introduced
to distill traffic features and identify specific network behaviors
automatically [6–11]. These DL-based methods distill features
from raw network traffic flow instead of using a DL network
to learn representation from the artificial features, i.e., the
model in [12], which still relies on handcrafted features to
guarantee the performance of the method. However, these
previous methods have ignored the heterogeneity of network
traffic data. They have tended to learn representation from flow
sequences or packet payload bytes. None of these methods
model flow sequence and packet payload bytes simultaneously.
Hence, information loss and compression still exist. These
methods fail to detect RAT traffic accurately, according to our
experiments. The issue of lacking representative information



for encrypted malware detection has yet to be well resolved.
For malicious RAT traffic detection, improving the stability

and accuracy of the models is the main target. Adversaries
have developed various evasion techniques by perturbing flow
features or packet content features, reducing the amount of
usable information for malware identification [13]. Generating
embeddings from more flow perspectives is useful for improv-
ing the stability and accuracy of the malicious RAT traffic flow
detection by fully exploiting the usable information in the flow.
Thus, we employ an ensemble representation learning method
to learn embeddings from the flow sequence and packet
payload. We distill features from the packet payload with the
bidirectional gated recurrent unit (Bi-GRU) and autoencoder.
Moreover, we apply the sliding-window technique to explore
the impact of neighboring packet dependencies on identifying
RAT network traffic. These payload-relevant features reveal
much information about the encryption suite, security degree,
and packet-to-packet interrelationship, i.e., spatial features. In
the meantime, we learn representations from the RAT network
flow sequence by transforming the raw partial sequence of a
flow to a multi-channel image using the Reproducing Kernel
Hilbert Space (RKHS) embeddings [14]. The convolution
neural network (CNN) generates a low-dimensional feature
representation from the multi-channel image. These flow-
related features reveal the network behavioral pattern changing
with time, i.e., temporal features. Based on observation and
statistical analysis, the RAT flow can be divided into three
stages due to their function and arrival time [15]. We extract
different features from different stages to model the traffic flow
more precisely. These staged features are statistic-based, i.e.,
statistical features. We aggregate all the learned embeddings
as the final representation to improve RAT network traffic
detection accuracy.

In this paper, we propose the Ensemble Representation
model of Encrypted RAT Traffic (ER-ERT), which provides
a robust and accurate network feature extraction method for
encrypted RAT command and control (C&C) communication
traffic identification.

In summary, our main contributions are as follows:
• We propose the model ER-ERT to distinguish encrypted

RAT traffic from benign traffic. The ER-ERT model flow
sequence and packet payloads bytes in a network flow
simultaneously by learning embeddings from both of
them with several deep neural networks. ER-ERT can
fully exploit the information contained in network flow.

• We designed several stage-based statistical features as
distinctive characteristics for RAT traffic detection to
complement the features distilled from flow sequence and
packet payloads bytes. We find traffic of normal applica-
tions differs from RATs on these stage-based features.

• According to our experimental results, ER-ERT achieves
a satisfactory performance, with 97.2% precision rate
and 98.0% recall rate on the open benign dataset and
RAT traffic dataset, and 96.8% precision rate and 97.2%
recall rate on the self-collected benign dataset and RAT
traffic dataset, outperforming the state-of-the-art methods,

showing the effectiveness our model. Meanwhile, ER-
ERT keeps a high detection precision of 97.0% and a
nice recall rate of 96.5% when trained on the open benign
dataset while tested on the self-collected benign dataset,
showing the stability of our model.

The remainder of this paper is organized as follows: Section
2 presents an overview of related work in the area. Section 3
gives a detailed description of our model. The experimental
setup and the experimental results are depicted in Section 4.
Section 5 presents conclusions and future work.

II. RELATED WORK

In this section, we provide an overview of the most im-
portant methods of traffic classification and malicious traffic
detection. In particular, we can categorize these approaches
into four main categories as follows: (1) DPI-based approach,
(2) TML-based approach, (3) DL-based approach, and (4)
graph-based approach.

A. DPI-based approach

DPI-based traffic classification approaches are commonly
used in industry. Finsterbusch et al. [16] summarized the
current main DPI-based traffic classification methods. Most
DPI-based approaches use predefined patterns like regular
expressions as signatures to classify traffic flow [17] [18]. The
generation of signatures is based on the analysis of information
available in the application layer payload of packets. Thus,
DPI-based traffic classification methods are unsuitable for ab-
normal encrypted traffic identification because the application
layer payload is encrypted without decryption.

B. TML-based approach

To deal with the problem of malicious traffic identification,
TML-based approaches are often used with a careful-designed
feature set. Gezer et al. [1] adopted a behavior-based Random
Forest model that employed artifacts created by the malware
during the dynamic analysis of TrickBot malware samples.
Aljawarneh et al. [2] proposed a hybrid model based on
optimal network traffic characteristics. Aljawarneh et al. first
chose 41 relevant traffic features and used the Information
Gain to reduce the feature set size to 8. Anderson et al.
[3] took flow-level features such as flow metadata, packet
length distributions, and time distributions as joint features
to identify encrypted malware traffic. In contrast with An-
derson et al., Stergiopoulos et al. [4] used fewer features to
classify encrypted traffic with the algorithm classification and
regression tree (CART). Stergiopoulos et al. suggested that
five cleverly designed side-channel features were enough for
detecting multiple types of malicious traffic, including packet
size, payload size, payload ratio, ratio to the previous packet,
and time difference.

In conclusion, feature engineering is essential to guarantee
the performance of TML-based approaches. However, it is
costly with the requirements of careful engineering and consid-
erable domain expertise. Besides, with the rapid updating rate
of RAT, the predefined fixed features lose their effectiveness



very quickly, resulting in the decline of malicious traffic
detection accuracy [19].

C. DL-based approach

In recent years, DL has emerged as a method to automati-
cally generate feature representations from raw network traffic
data to realize end-to-end learning. Compared with TML-
based methods, DL-based learning methods do not require the
design of manual features. Many previous works have used
packet payload bytes with DL methods for malware detection
or traffic classification. Wang et al. [6] converted the first 784
bytes in a flow into a grey image for further classification
with CNN. Similarly, Lotfollahi et al. [7] used the bytes
in a flow to classify encrypted traffic. The model “Deep
Packet” used CNN or stacked autoencoder (SAE) to extract
features from packet payloads and classify the network traffic
into different applications. Liu et al. [8] proposed the model
BGRUA, which utilized a Bi-GRU and attention mechanism
to realize HTTPS traffic classification. In [9], the multimodal
multitask DL method DISTILLER for traffic classification was
proposed. Two types of input data were fed to the DISTILLER:
(1) the first Nb bytes of transport-layer payload and (2)
informative protocol header fields of the first Np packets.
Although DISTILLER is a multimodal approach, it models
only Nb bytes of payload without learning embeddings from
the flow sequence.

The above methods use DL to automatically generate
embeddings from the packet payload but ignore learning
representation from the raw flow sequence. The network
behavior characteristics contained in the flow sequence are
also useful information for identifying malware traffic. Shapira
et al. [10] proposed the model FlowPic, which transformed
a series of packet sizes in each flow into two-dimensional
grey images and implemented image classification with CNN.
Liu et al. [11] proposed a model called FS-Net, which used
an autoencoder to learn the hidden representation from the
packet length sequence. The autoencoder consists of a 2-layer
Bi-GRU as its encoder and a 2-layer Bi-GRU as its decoder.
These methods generate embeddings from the flow sequence
but ignore learning representations from packet payloads.

D. Graph-based approach

In addition to TML-based and DL-based methods, re-
searchers have used graph-based methods to give a new way
to look at network traffic via connected graphs. Busch et al.
[20] extracted a flow graph where the nodes correspond to
endpoints in the network and edges represent communication
between these endpoints. Statistical features, including mean
and standard deviation of the packet length and minimum
and maximum interarrival time of the packets, were used to
generate the flow graph. Fu et al. [13] proposed the model
ST-Graph. Artificial features, including the TLS version and
the supported cipher suites, and some statistical information,
such as the number of packets and bytes within a stream,
are used for graph embedding. Neither approach automatically
generates feature representations from network traffic data.

Thus, careful feature engineering is still necessary before the
construction of graphs. The dependence on feature engineering
is costly and could lead to the loss of useful information.

III. DESCRIPTION OF ER-ERT FRAMEWORK

A. Overall Architecture
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Fig. 1: The overall architecture of ER-ERT. The f1-vector, f2-
vector, and f3-vector indicate the embeddings generated by the
STA, the SPA, and the TEM, respectively.

Our proposed model ER-ERT framework is illustrated in
Fig. 1. The model generates a fine-grained and multi-angle
traffic representation for RAT traffic identification. The ER-
ERT can be divided into three parts: Data preprocessing
phase, Feature extraction phase, and Classification phase. The
Data preprocessing phase changes the raw flow data into an
ideal form for feature extraction through five steps, including
TCP handshake packet removal, data link header removal,
zero padding, etc. The Feature extraction phase consists of
the Statistical Feature Encoder module (STA), the Spatial
Feature Encoder module (SPA), and the Temporal Feature
Encoder module (TEM). The Classification phase consists of
one dropout layer and three full connection layers to realize
traffic classification.

Network traffic in Pcap files is segmented into flow fi
according to 5-tuple <Source IP, Destination IP, Source Port,
Destination Port, protocol>. After preprocessing the raw flow
data, ER-ERT extracts a feature representation from packet
payload bytes by the SPA and a feature representation from
the flow sequence by the TEM. The two representations, with
some stage-based RAT features extracted by the STA, are
combined into a feature vector. The feature vector is fed into
the fully connected network to identify whether fi belongs to
the network flow of a RAT.



The SPA distills the spatial features of network flow by
modeling the local dependency of adjacent packet payloads
using the n-gram embedding and autoencoders. Local repre-
sentations are integrated into an overall picture by Bi-GRU to
model the long-term dependency of packets.

The TEM distills the temporal features of a network flow
by converting its packet sequences into an image. The RKHS
embedding algorithm can convert the network flow sequence
into an image to generate a compact and efficient feature rep-
resentation. DL network CNN further reduces the dimension
of the representation.

The STA extracts 11 features from different phases of RAT
traffic flow, shown in Table I.

B. Data Preprocessing phase

Fig. 2: The data preprocessing process of ER-ERT model.

The data preprocessing of traffic flow has five steps: TCP
handshake packet removal, data link header removal, IP ad-
dress removal, zero padding, and normalization. Fig. 2 shows
an overview of the preprocessing procedure.

The TCP handshake packet removal module removes the
first three packets in a flow. These packets only contain
the TCP handshake information needed for establishing a
connection but do not carry any information that can be used
to identify the specific application.

The data link header removal module removes the Ethernet
header of a packet in the flow. Data link layer information,
such as MAC address, type of frame, etc., is useless in packet
classification [21]. Removing Ethernet header information can
reduce the input size and improve the accuracy of malicious
traffic detection.

Keeping the IP address field in a packet as input may cause
overfitting of the classification model. The IP address removal
module abandons the IP address field in a packet to deal
with the overfitting problem. In a real-world emulation, the
IP server used by RAT is always a proxy that cannot provide
any useful information about the real malicious server.

Each traffic flow contains several time-related packets with
different lengths in the interval from 0 to 1500 bytes as
most of the computer networks are constrained by Maximum
Transmission Unit (MTU) size [7]. We zero-pad the IP packets
less than 1500 bytes at the end and truncate the packets longer
than 1500 bytes to keep input data length consistent.

TABLE I: FEATURE SET FROM DIFFERENT STAGES OF TRAF-
FIC FLOW

Stage Name Description

Keep-alive
Stage

tα Proportion of keep-alive stage duration
ph1 Proportion of keep-alive stage packet number
ph2 Proportion of keep-alive stage byte number

h
Whether keep-alive stage exist.
if exist, h is 1; otherwise, h is 0

mt Mean packet inter-arrival time
Data Exchange

Stage
tβ Proportion of data exchange stage duration

pd
Ratio of upload byte number

to download byte number

Early
Stage

eout Upload byte number in early stage
ein Download byte number in early stage
pout Upload packet number in early stage
pin Download packet number in early stage

To handle the packet content more efficiently, we convert
the byte in a packet to an integer from 0 to 255 (8 bits). Then,
normalize the integer by dividing it by 255 so that all the input
values are in the range [0, 1].

C. Feature extraction phase

Algorithm 1: Keep-alive stage segmentation for encrypted
traffic flow

Input: An encrypted traffic stream F (x) = {p1, p2, ..., pn}
Output: Keep-alive time sequence

T (x) = {(t1, t2), ..., (tn − 1, tn)}
1 hp = {p1};
2 HP = {};
3 for (i = 1; i < n; i++) do
4 if the arrival time of pi+1 is latter than the arrival time

of pi for more than 1s then
5 hp is added to set HP ;
6 hp = {pi+1};
7 end
8 else
9 pi+1 is add to hp;

10 end
11 end
12 Using the K-means algorithm to cluster the set HP

according to packet number, average packet size, and the
variance of average packet size to get the clustering result
HPcluster .

13 Using SVM to classify HPcluster to identify keep-alive
packet clusters.

14 for all hpj in HP do
15 if hpj belongs to a keep-alive packet cluster then
16 The time interval (tj , tj+1) between the arrival time

of the previous packet of hpj and the arrival time
of the last packet in hpj is treated as keep-alive
time and is added to T (x).

17 end
18 end

a) STA: According to [15], the flow of RAT can be
divided into three distinct stages: early stage, keep-alive stage,
and data exchange stage. The early stage appears at the begin-
ning of the flow and only lasts for a short time to accomplish
basic information exchange. In contrast, the keep-alive and
the data exchange stage appear alternately and repeatedly



afterward. The keep-alive stage has the most extended duration
in RAT traffic. During the keep-alive stage, the client sends
small heartbeat message packets to the server to inform the
hacker that it is online. During the data exchange stage, the
server sends command requests to the client, and the client
returns results to the server. Packets exchanged during this
stage are usually very intensive.

We extract different kinds of features during different stages.
The utilized feature set is given in Table I. The traffic of
normal applications is different from RATs on these stage-
based features. For example, the average proportion of the
packet number in the keep-alive stage is 15.1% for the traffic
of Gh0st RAT and 6.84% for the traffic of normal application.
The traffic of Gh0st is collected by ourselves, and the traffic
of normal application is from the benign part of the USTC-
TFC2016 dataset [22]. Thus, these stage-based features can
serve as distinctive characteristics for RAT traffic detection.

Accurately segmenting a session into different stages is an
essential prerequisite for extracting these staged features for
RAT traffic detection. We design different segmentation algo-
rithms for different stages. The keep-alive stage segmentation
algorithm is depicted in Algorithm 1. After dropping the first
three handshake packets in the flow, the early stage begins
at the fourth packet and ends when the arrival time interval
between two adjacent packets is larger than t. The variable
t is usually assigned the value one according to experience.
Meanwhile, other packets not contained in the early or keep-
alive stages are included in the data exchange stage.

b) TEM: The TEM aims to model the flow sequence in
network traffic to discover the network behavior characteris-
tics. The framework of this module is depicted in Fig. 3.
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Fig. 3: The architecture of TEM.

Generally, the flow sequence can be modeled as packet
inter-arrival time sequence, packet length sequence, and packet
direction sequence. So we use these three sequences as the
input to the TEM. The detailed description of these sequences
is depicted in Table II. To combine these sequences more
effectively, we transform them into an image and treat this
image as an input to CNN. We use the RKHS embedding
to realize this transformation, which is a useful method to
represent a (conditional) distribution as an element or an
operator in RKHS [14][23]. The theory of RKHS embedding
is described below.

The kernel mean embedding κx of a marginal distribution

TABLE II: THE INPUT OF TEM

Name Description

s1, s2, ..., sn
The packet length sequence of a bidirectional flow.

N is the number of packets in the flow.
∆t1,∆t2, ...,∆tn The packet inter-arrival time sequence of a bidirectional flow.

d1, d2, ..., dn
The packet direction sequence of a bidirectional flow,

di = 1 indicates that the i-th packet is sent from server to client.

TABLE III: THE STRUCTURE OF CNN

conv1 conv2 fc1 fc2 output
conv/relu pool conv/relu pool fc fc fc

3× 3× 3× 32 max 3× 3× 32× 64 max 6400× 256 256× 64 20

P(x) is defined as the expectation of its feature map:

κx = E[ϕ(X)] =

∫
x

ϕ(x) dP (x) (1)

in which ϕ(x) means the high-dimensional mapping of
variable x in RKHS through positive definite kernel. Thus,
κx equals the expectation of ϕ(x) with respect to P (x).

To make the input data format of the CNN more like an
image, we also define

κ2
x = E[ϕ(X)× ϕ(X)] =

∫
x

ϕ(x)× ϕ(x) dP (x) (2)

According to the theorem above, packet length sequence sj ,
packet inter-arrival time sequence ∆tj , and packet direction
sequence dj can be transformed into the embedding κ2

s, κ2
t

and κ2
d, together constituting a 3-channel image. Then the 3-

channel image is fed to the CNN to generate a hidden low-
dimensional representation of traffic flow. Table III shows the
specification of the CNN used in this paper.

c) SPA: The SPA aims to model the packet payload bytes
in network flow. It also explores the impact of packet payload
dependencies on identifying malicious RAT traffic. Thus, the
n-gram embedding [24][25], and the sliding-window mecha-
nism are involved in generating the feature vector of traffic
flow. The autoencoder is used to reduce the dimension of the
payload vector. We choose autoencoder because it can model
complex data with greater efficiency over shallow machine
learning methods and learn latent representation from high-
dimensional input data. The procedure of n-gram embedding
is shown in Fig. 4. We first use a sliding window of length n
to form n-grams (n ∈ {1, 2}). Formally, the packet sequence
of a flow f is denoted by f = (p1, p2, ..., pl), in which pi is
the payload of the packet i and l is the length of the packet
sequence. pi = (bi1, bi2, . . . bid), where bij is the j-th byte
in payload pi and d is the length of the packet payload. The
sequence of n-grams is denoted by g = (gn1 , g

n+1
2 , ..., gll−n+1),

where gi+n−1
i is the concatenation of vectors from pi to

pi+n−1. Then the autoencoder is trained with the input gi+n−1
i ,

and it serves as a mapping function σ : gi+n−1
i ⇒ ωi. The

length of the embedding unit ωi is 64.
GRU and LSTM can model the long-term dependency of the

packet payload, but GRU has fewer parameters than LSTM.



So we choose GRU to extract the feature vector representing
the entire flow. Fig. 5 shows the architecture of the Bi-GRU
model we use. Two Bi-GRU networks with the same structure
are utilized to deal with 1-gram and 2-gram embedding,
respectively. Given the embedding sequence ω = (ω1, ..., ωl),
the Bi-GRU contains a forward GRU network

−−−→
GRU which

reads ω from ω1 to ωl and a backward GRU network
←−−−
GRU

which reads ω from ωl to ω1:
−→
h t =

−−−→
GRU(

−→
h t−1, wt), t ∈ [1, l] (3)

←−
h t =

−−−→
GRU(

←−
h t+1, wt), t ∈ [1, l] (4)

where
−→
h t and

←−
h t are the forward and backward hidden states,

respectively, with a dimension of 16. The initial hidden state
vectors

−→
h 0 and

←−
h l+1 are both zero vectors.

We stack the 2-layer Bi-GRU in our model, and the two
hidden vectors of the first layer form the input vector for the
second layer:

−→
h 2

t =
−−−→
GRU2(

−→
h 2

t−1, (
−→
h 1

t ,
←−
h 1

t )), t ∈ [1, l] (5)

←−
h 2

t =
←−−−
GRU2(

←−
h 2

t+1, (
−→
h 1

t ,
←−
h 1

t )), t ∈ [1, l] (6)

The output vector o of the Bi-GRU is the concatenation of
the final hidden states of both forward and backward directions
of all the layers:

o =
[−→
h 1

l ,
←−
h 1

1,
−→
h 2

l ,
←−
h 2

1

]
(7)

The outputs of the two Bi-GRUs with the input 1-gram
embedding sequence and 2-gram embedding sequence are then
concentrated to form the final representation of the whole flow.
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Fig. 4: The n-gram embedding of packet payloads in SPA with
autoencoders.

D. Classification phase

The classification phase of our model consists of a fully
connected network with one dropout layer and three full
connection layers. It takes the representation generated by the
Feature Extraction Phase as input and outputs the classification
result indicating whether a flow is a RAT flow.

Bi-GRU Bi-GRU

Bi-GRU Bi-GRU

Bi-GRU Bi-GRU

Bi-GRU Bi-GRU

N-gram embedding unit

(1*64)

Output Representation

(1*64)

2-layer Bi-GRU

Fig. 5: The embedding of traffic flow in SPA with Bi-GRU.

TABLE IV: AN OVERVIEW OF BENIGN TRAFFIC DATASETS

Name Session Num Description

B1 345470
Containing traffic of BitTorrent, Facetime, FTP, Gmail, MySQL,

Outlook, Skype, SMB, Weibo, WorldOfWarcraft

B2 144840
Collected during 2022.04 on the enterprise network gateway.

Containing traffic of WeChat, TeamViewer, Tencent Meeting, etc.,
which are frequently used by enterprise staff.

IV. EXPERIMENTAL EVALUATION

In this section, we introduce the composition of the dataset
and how to evaluate the performance of our model. Then
we compare our method with the state-of-the-art methods
and analyze the influence of the hyperparameters and their
corresponding optimal choice.

A. Data collection

In our experiment, two benign parts of traffic are used for
evaluation. The first benign part of the dataset is from the open
dataset USTC-TFC2016 [22], and the second benign part of
the dataset is collected on a company network port in a realistic
environment. The malicious traffic in our dataset is generated
by open-source RATs collected by ourselves.

a) Encrypted Benign Traffic Datasets: B1 is the first be-
nign part of our dataset. In recent studies, USTC-TFC2016 has
been widely used for encrypted traffic classification [5]. The
benign part of the USTC-TFC2016 dataset organizes 345470
sessions generated from 10 applications. B2 is the second
benign part of our dataset, collected on the gateway server
of an enterprise network. We captured all the transport layer
security (TLS) encrypted packets on port 443 and segmented
the packets into multiple sessions. Then, we removed small
sessions which were not sufficiently informative(less than 784
payload bytes). After cleaning the captured traffic data, B2

organizes 144840 sessions from applications different from
the B1 dataset. The composition of the dataset B1 and B2 are
detailed in Table IV.

b) Encrypted Malicious Traffic Dataset (M ): To hide
the real identity of hackers, adopting customized open-source
RATs for attacks has been popular in recent years [26].
We select seven open-source RATs based on popularity and
stability to generate M . The composition of the dataset M



TABLE V: AN OVERVIEW OF MALICIOUS TRAFFIC
DATASETS

RATs Pupy Metasploit QuasarRAT Gh0stRAT
Session Num 2040 2482 1293 1150

RATs Remcos DarkCome NanoCore Total
Session Num 1568 1933 1375 11841

is detailed in Table V. We use a client with Windows 10
operating system running on it, serving as a victim, and a
RAT server with Ubuntu 16.04 operating system running on
it. We collect the traffic between the server and the client to
generate dataset M . Five randomly chosen commands (e.g.,
file downloading, screen shooting, keyboard logging, file up-
loading, event logging) are executed for each malicious session
to simulate the practical usage of RAT samples. The execution
interval between two commands is randomly selected in the
range of 1 and 60 seconds. The Dataset M contains 11841
different sessions.

We use dataset B1 and B2 separately with malicious dataset
M to evaluate the efficiency of our model. We use the 5-fold
cross-evaluation strategy for persuasive evaluation to acquire
a stable performance. The dataset is divided into three parts,
training, validation, and testing. The three parts in a fold are
divided following the ratio of 0.6:0.2:0.2.

B. Baseline Method and Evaluation Metrics

We choose five baseline methods in this paper as compar-
isons according to Section 2. The first baseline is a TML-
based method proposed by Stergiopoulos et al.[4]. Algorithm
CART is used with five side-channel features to classify
encrypted traffic. The second baseline method is also a TML-
based state-of-the-art algorithm proposed by Gezer at el.[1],
which used the Random Forest algorithm to identify TrickBot
malware samples. The third baseline method “Deep Packet”
is generated by Lotfollahi et al.[7]. The network SAE is used
to classify network flow into different applications. The fourth
baseline is the model BGRUA proposed by Liu et al.[8]. The
model aims to extract forward and backward features of the
byte sequences in a session to classify HTTPS traffic. The
fifth baseline is the method FS-Net proposed by Liu et al.[11],
which used an autoencoder to learn the hidden representation
of a traffic flow from the packet length sequence.

The evaluation metrics are precision rate (PR), recall rate
(RC), and F1 score. The precision rate indicates how much
malicious encrypted traffic labeled by our model is the real
RAT traffic. The recall rate indicates how much RAT encrypted
traffic is predicted to be malicious. The F1 score considers
the precision rate and the recall rate simultaneously to form a
compositive metric of the designed model.

C. Overall Effectiveness

In this section, we aim to evaluate the effectiveness of ER-
ERT. The specific settings of the experiments are shown in
Table VI. Table VII shows the performance of our model
on Dataset1, Dataset2, and Dataset3. The result on Dataset1

TABLE VI: EXPERIMENT SETTING

Dataset1 Dataset2 Dataset3
train validation test train validation test train validation test

Benign B1 B1 B1 B2 B2 B2 B1 B1 B2
Malicious M M M M M M M M M

TABLE VII: THE RESULT ON DATASET1, DATASET2 AND
DATASET3

Dataset Method Performance
PR RC F1

Dataset1

CART [4] 0.702 0.952 0.808
RF [1] 0.676 0.891 0.769

Deep Packet [7] 0.843 0.922 0.881
FS-Net [11] 0.876 0.957 0.914
BGRUA [8] 0.919 0.982 0.949

ER-ERT 0.972 0.980 0.975

Dataset2

CART [4] 0.699 0.840 0.763
RF [1] 0.682 0.857 0.760

Deep Packet [7] 0.851 0.919 0.884
FS-Net [11] 0.825 0.908 0.865
BGRUA [8] 0.917 0.954 0.935

ER-ERT 0.968 0.972 0.970

Dataset3

CART [4] 0.654 0.728 0.689
RF [1] 0.590 0.792 0.676

Deep Packet [7] 0.753 0.886 0.814
FS-Net [11] 0.833 0.897 0.864
BGRUA [8] 0.895 0.937 0.916

ER-ERT 0.970 0.965 0.967

shows that our model outperforms other models according
to the F1 score. The precision of ER-ERT is approximately
97.2%, and the recall rate is 98.0%. Our model outperforms
other models on Dataset2 as well, with a detection precision of
96.8% and a recall rate of 97.2%. Compared with the result on
Dataset1 and Dataset2, most baseline models suffer a perfor-
mance loss on Dataset3 in the case of different application
types in the training and testing dataset. Nevertheless, our
model maintains a high detection precision of 97.0% and a
high recall rate of 96.5%, showing the stability of our model.

Fig. 6 depicts the confusion matrix corresponding to the
classification of 7 kinds of RATs and the benign traffic on
Dataset3, showing the per-class ratio of samples correctly and
incorrectly classified. The confusion matrix of the model ER-
ERT, BGRUA, and FS-Net are depicted in Figs. 6(a) to 6(c),
respectively. We compare our model’s confusion matrix with
the BGRUA’s confusion matrix because the BGRUA performs
best among the methods that learn representations from packet
payload. We compare our model’s confusion matrix with
the Fs-Net’s confusion matrix because the Fs-Net performs
best among the methods that learn representations from the
flow sequence. We observe that our model performs better
in identifying different RAT samples than the BGRUA and
FS-Net models. The misclassification of the BGRUA model
often occurs when two RAT samples have identical cipher
suites, signature algorithms, and other characteristics in the
TLS handshake phase, e.g., Pupy and Metasploit. On the
other hand, FS-Net has difficulties distinguishing between
RATs with similar packet length sequences, e.g., Remcos and
DarkComet. Generally, our model outperforms other models



(a) The confusion matrix for model ER-ERT (b) The confusion matrix for model BGRUA (c) The confusion matrix for model FS-Net

Fig. 6: The classification result of different kinds of RATs and normal traffic

in identifying different RATs by simultaneously learning rep-
resentation from flow sequence and packet payload bytes, with
some statistical stage-based attributes.

D. Parameter Tuning
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Fig. 7: (a) packet number p1 in the SPA and (b) packet number
p2 in the TEM versus F1 score.

We go a step further to experiment on the hyperparameters
of ER-ERT. These parameters include packet number p1 in
the SPA and packet number p2 in the TEM. At the same
time, we try to verify the importance of different modules
of our integrated model. When we set the parameter p1 or p2
to 0, we eliminate the corresponding module. Considering the
parameter p1, the result is shown in Fig. 7(a). If we remove
the SPA when p1 is set to 0, the F1 score drops to 88.6%.
Fig.7(b) shows the change in model performance with the
variation of p2 value. If we remove the TEM when p2 is set to
0, the F1 score drops to 81.2%. Generally, the later a packet
arrives in a network flow, the more likely it is a packet of the
data exchange stage. The packets of the data exchange stage
carry encrypted application data, and their payloads vary a lot
due to different operations (e.g., downloading or uploading
files with different lengths and content). Thus, involving these
packets in the detection model will disturb the identification
of malicious RAT traffic. However, using too few packets as
the module input leads to a loss of network flow information.
Thus, the TEM achieves the best performance when p2 is set
to 15. The SPA, which aims to extract representation from
packet payload, appears to be more sensitive to the change of

TABLE VIII: THE EXPERIMENT RESULT ON DIFFERENT
COMPOSITION PATTERNS ON DATASET3

Model
Composition PR RC F1

STA 0.651 0.890 0.752
SPA 0.808 0.942 0.870
TEM 0.845 0.949 0.893

STA+SPA 0.832 0.961 0.900
STA+TEM 0.903 0.896 0.900
TEM+SPA 0.932 0.952 0.942

STA+SPA+TEM 0.970 0.965 0.967

payload content and achieves the best performance when p1
is set to 10.

To evaluate the effectiveness of three feature extraction
modules, we experiment with different permutations of these
modules. In Table VIII, we can see the effect of different
modules on classification accuracy. The result shows that
the combination of three modules outperforms other possible
permutations, indicating the efficiency of our design. The
combination of the three modules has better performance than
the composition of SPA and TME, illustrating the contribution
of the stage-based statistical features in detecting RAT traffic
as a complement to the temporal and spatial features.

We can also observe from Table VIII that the composition
of STA and TEM outperforms the composition of STA and
SPA, indicating that the TEM plays a more important role
than the SPA in detecting malicious traffic. The effectiveness
of the SPA is limited since the SPA can be disturbed more
easily by payload content which varies a lot due to different
operations. The composition of TEM and SPA outperforms the
composition of STA and SPA, indicating that the TEM plays
a more important role than the STA. It also illustrates that the
features automatically learned from flow have better effects
than the predefined statistical features, as the DL network
can distill more hidden traffic flow features beyond artificial
recognition.

To analyze the impact of the proportion of benign and
malicious traffic on classification accuracy, we experiment



TABLE IX: THE EXPERIMENT RESULT ON THE VARIANT
PROPORTION OF MALICIOUS AND BENIGN TRAFFIC FLOW

Proportion malicious:benign Evaluation
PR RC F1

2:5 0.970 0.965 0.967
1:4 0.968 0.950 0.959
1:8 0.972 0.943 0.957

1:16 0.972 0.868 0.917
1:32 0.980 0.790 0.875

with the model in different scenarios. As shown in Table IX,
when the malicious and benign traffic reaches the proportion
of 2:5, the model achieves the best performance according to
the F1 score. With the decline of the ratio of RAT traffic, the
precision of the model rises from 97.0% to 98.0% since it is
easier for the model to extract characteristics of benign traffic
flow with the increase of normal traffic ratio. However, the
recall rate of the model drops sharply from 96.5% to 79%, as
it is more difficult for the model to extract characteristics of
malicious flow with the decrease of RAT traffic ratio.

CONCLUSION AND FUTURE WORK

In recent years, many DL-based methods have been pro-
posed to address malicious traffic detection problems. These
methods generate representations from flow sequences or
packet payload bytes. None of these methods simultaneously
learn embeddings from flow sequence and packet payload
bytes. In this paper, we build an ensemble representation
learning model ER-ERT for malicious RAT traffic detection.
ER-ERT learns embeddings from flow sequence with CNN
and the RKHS embedding and from packet payload bytes
with autoencoder and Bi-GRU. The learned representations
are combined with some stage-based attributes to enhance the
identification ability of RAT traffic behaviors by comprehen-
sively modeling network traffic. According to our experiments,
ER-ERT achieves a better performance than state-of-the-art
algorithms. Future work will be to modify our model to adapt
to the imbalanced training data set.
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