
GuRuChain: Guarantee and Reputation-based
Blockchain Service Trading Platform

Mouhamed Amine Bouchiha
L3i Laboratory

La Rochelle University
La Rochelle, France

mouhamed.bouchiha@univ-lr.fr

Yacine Ghamri-Doudane
L3i Laboratory

La Rochelle University
La Rochelle, France

yacine.ghamri@univ-lr.fr

Mourad Rabah
L3i Laboratory

La Rochelle University
La Rochelle, France

mourad.rabah@univ-lr.fr

Ronan Champagnat
L3i Laboratory

La Rochelle University
La Rochelle, France

ronan.champagnat@univ-lr.fr

Abstract—Blockchain (BC) is a promising Distributed Ledger
Technology (DLT) that has attracted attention in recent years
due to its characteristics of maintaining privacy and security.
This technology, which removes the need for a trusted third
party, can be applied in various trust-related domains, such
as energy trading, crowdsourcing, and the Internet of Things.
This paper presents GuRuChain, a platform framework for
online service trading. It combines on-chain and off-chain trust
management to provide a blockchain system suitable for trust-
related applications. The platform does not only ensure the
recording of online transactions; but also the deliverance of
offline services. In GuRuChain, we propose a mathematical model
to assess the trustworthiness of each participant. We also intro-
duce an incentive mechanism based on reputation and guarantee
to monitor the participants’ behavior. Finally, we maintain the
consistency of the BC through the proposed consensus scheme
called Proof Guarantee and Reputation (PoGR). PoGR selects
nodes based on a scoring formula that uses three parameters,
reputation score, guarantee balance, and risk taken to ensure
fairness. The results of the performance evaluation demonstrate
the feasibility, efficiency, and scalability of GuRuChain.
Index Terms—Reputation, Distributed Ledger, Lightweight Con-
sensus, Real-world Correlation, Fairness, and Reliability.

I. INTRODUCTION

RECENTLY, Distributed Ledger Technologies (DLTs)
have received a lot of attention, both from academic

and business perspective. They have been adopted by various
application domains such as supply chain [1], crowdsourcing
[2], and Internet of Things [3]. Blockchain (BC), the widely
used technology of DLTs., can be seen as a sequence of blocks
chained together. Unlike the centralized network structure,
there are no fixed central nodes (servers) in BC-based net-
works. The system is built on a typical peer-to-peer (P2P)
network, allowing the distribution of data processing tasks
among peers. Through a consensus mechanism, information
stored and data generated by each node are synchronized
[9]. The BC peers try to maintain an identical ”Records
Copy” locally, called Ledger. The records/blocks in the ledger
are a set of causally related behaviors/transactions of all the
participants in the system. The identical local ledgers held by
all peers represent, therefore, a whole Common Ledger(CL).

The system permanently stores the transactions that have
been received and verified. The CL of the BC system thus

keeps long-term records of all participants’ actions. The stored
data can be checked at any time and can therefore be used as
eternal proof. Nevertheless, the BC itself has no concept of
trust. All participants in the system are considered identical
and trustless. Therefore, in order to securely and reliably up-
date the CL, the system must employ a sophisticated consensus
scheme to manage the addition of new blocks. Over the last
few years, several consensus schemes have been proposed in
the literature(PoW, PoS, PoA, BFT/PBFT...) [8]. They can be
classified, according to the strategy they employ, into two main
categories, competitive and cooperative. Competitive consen-
sus like Proof of Work (PoW) force participants to perform
useless amounts of computation to compete for the right of
creating and adding new blocks. Proof of Stake (PoS) [9], also
a competitive consensus, uses the auction results of virtual
stakes held by participants to elect a winner who will have the
right to create updates. However, PoS gives candidates with a
large number of virtual stakes an advantage in winning, which
paradoxically weakens the key concept of decentralization in
the blockchain. Byzantine Fault Tolerance/Practical Byzantine
Fault Tolerance (BFT/PBFT) [8], are cooperative consensus
that aims to reach agreement in an asynchronous environment
with bounded message delays and less than one-third (n/3)
of Byzantine nodes. However, BFT/PBFT and its variants of
consensus schemes support a small set of players known in
advance and become very slow when the number of nodes
exceeds a certain threshold.

To solve the problems of the above mentioned consensus
schemes, new consensus mechanisms based on trust and
reputation are emerging [2], [4], [5]. The term trust here
refers to the mutual trust between two nodes, also called
local reputation. It is established by evaluating and recording
interactions between nodes. In contrast, the term reputation
represents the overall opinion the system’s nodes have regard-
ing a specific node [22]. It is usually calculated by aggregat-
ing local reputation scores. A reputation-based approach can
then be proposed to replace or improve existing approaches.
Specifically, the global reputation score could be used to filter
active nodes and thus optimize the selection of validators.
As a result, the consensus scheme can be accelerated, which

ISBN 978-3-903176-57-7© 2023 IFIP

certainly improves the scalability of the system. In addition,
employing a strategy that uses a reputation score instead of
computational power or staking amount alone will provide
much greater fairness among BC peers and thus solve the
problem of monopolizing the update. However, existing trust
and reputation blockchain systems themselves have some
problems. To begin, only few works have considered how to
combine the offline trust of real-world participants (external
trust) and the online trust of nodes running the BC system
(internal trust) to satisfy the needs of various trust management
applications and improve the scalability of the BC system
itself. Moreover, there is a common problem with almost
all existing solutions, which is the trust calculation method.
Almost all reputation-based systems use trust models that
estimate the trust of entities based on their previous behaviors
or current reputation. We believe that trust should be related
to real property i.e. physical or digital assets. Another point
that almost all trust-related applications ignore is the real-
world correlation. A well-designed BC system should not
ignore offline tasks. It should not focus only on the recording
of transactions. But it should also consider whether offline
interactions are properly performed, e.g. whether goods after
an online purchase are well delivered or not.

In this work we present ”GuRuChain”, a guarantee and
reputation-based service trading platform framework. Its main
contributions are summarized as follows:
1) A trading platform framework that combines guarantee and

reputation to secure exchanges between participants.
2) An efficient trust/reputation model that allows assessing

and evaluating trust for each participant in the system.
3) An incentive mechanism based on guarantee and reputation

to control the behavior of participants. In GuRuChain, good
behavior will be rewarded by improving the participant’s
reputation score while bad behavior will result in a con-
siderable loss in reputation and property (deposit).

4) A green lightweight consensus called Proof of Guarantee
and Reputation (PoGR) that requires less computation and
can ensure fairness among nodes using both guarantee and
reputation scores.

5) An initial implementation and evaluation of the proposed
solution.

The remainder of this document is structured as follows: Sec-
tion II describes some related works. The system architecture
and the consensus scheme are presented in section III. Section
IV presents the proposed consensus algorithm. Section V is
devoted to the performance evaluation of the proposal. We
conclude our work in section VI.

II. RELATED WORKS

In this section, we review the solutions involved in previous
works that introduce the concept of trust into Blockchain to
optimize performance and efficiency.

[4] introduces TrustChain, a trust-based permissioned
blockchain that replaces PoW consensus with a Proof of Trust
(PoT) consensus. The proposed solution is based on the design
of a comprehensive trust architecture that uses several modules

to calculate the trust level and predict the behavior of each
participant before interacting using smart contracts. However,
the designed architecture requires additional complex mod-
ules such as the machine learning module and the artificial
intelligence module that use many resources to predict the
users’ behavior. [5] presents a new consensus mechanism
called Delegated Proof of Reputation (DPoR), which is an
improvement of Delegated Proof of Stake (DPoS). The main
idea of this system is to ensure fairness among peers, the
authors propose to use a set of parameters to choose the
next block producer. However, the proposed scheme requires
more analysis and experimentation to assess the relevance of
certain parameters(reputation ranking). [1] proposes a three-
layered Blockchain-based framework for trust management in
BC-IoT supported supply chains. The proposed solution rep-
resents a service platform implemented on a permission-based
blockchain network that uses smart contracts to automate repu-
tation calculations, along with a reward and punishment-based
incentive mechanism to encourage users to behave honestly.
However, the proposed solution does not address the consensus
scheme, some entities are considered honest. Moreover the
business network administrator has strong control over the
network, which represents a central point of failure and a se-
curity issue. [2] combines crowdsourcing with the blockchain
consensus process. It introduces a reputation algorithm adapted
for crowdsourcing, proposes an improved version the PoT
consensus [7], and employs an incentive mechanism based
on game theory to ensure the honesty of nodes. However,
there is a lack of determinism in the proposed consensus. The
probabilistic algorithm does not guarantee the uniqueness of
the elected leader. In addition, the authors did not discuss
what protocol their system might use to solve the forks
that may occur. [6], [12], and [13] apply explicit incentive
mechanisms based on the reward and punishment approach,
where participants will be rewarded for good behaviors, while
bad behaviors will lead them to be punished or even removed
from the system. Other use cases are proposed in [3], [14],
[15]. The lack of scalability makes them unable to be used as
a general framework in other scenarios.

Given the above issues, a blockchain system suitable for
trust-related applications must be designed to effectively ad-
dress the problem of mutual trust among participating mem-
bers. The designed system should include a trust-based consen-
sus scheme that establishes the best trade-off between scala-
bility, security and decentralization. In addition, the consensus
algorithm must ensure a certain degree of fairness among the
operating nodes to avoid update monopolization. Furthermore,
the business model of the platform must use a trust model that
links the value of trust to real assets in order to secure the
exchange process and guarantee efficiency.

III. SYSTEM ARCHITECTURE AND MODEL DESCRIPTION

In this section, we propose GuRuChain a BC-based online
service trading platform framework, which benefits from the
trust model that relies on the market supply-demand and
the guarantee mechanism. Our proposal has two main parts.

The first one is the trading logic implemented using smart
contracts and designed to allow sellers to advertise their
services with a guarantee that they are willing to provide.
Sellers are free to set the price and guarantee for their services.
On their side, buyers can also freely select one or more
services among those advertised. A seller who has a high
reputation score and offers a high guarantee is more likely
to sell his service or product. The trading process involves
both online and offline interactions. The online transactions
are conducted on the BC system. The offline interaction is
performed in the real world. Once the online transaction is
completed, the seller begins to provide his service in the real
world. This service can be an immediate transaction or a
long-term interaction such as an online subscription. Buyers
and sellers evaluate the previously provided service through
feedback transactions. If the service provision is intact, the
seller releases the guarantee, otherwise, it goes back to the
buyer. The second part of the system is the proposed consensus
scheme called Proof Guarantee and Reputation (PoGR) that
enables the management of all transactions in GuRuChain. The
PoGR consensus selects block producers based on a scoring
formula that uses three parameters: reputation score, staked
amount, and risk taken, to ensure reliability and fairness. The
complete architecture of the system will be presented in detail
in the following.

Two parameters have been considered in GuRuChain, Guar-
antee and Reputation, their definitions are the following:
• Guarantee: represents the amount G i.e ”x of tokens” the

participant is willing to lock in the BC as a deposit to secure
a specific task, such as a trading interaction or BC updating
operation.

• Reputation: refers to the opinion that BC participants have
towards a specific participant. It is expressed as a score R ∈
[0 − 1] and calculated by aggregating the results of past
interactions.

A. System Architecture

Figure 1 shows the proposed layered architecture of our
system. As mentioned before, our online service trading plat-
form framework is composed of individual participants: each
participant owns at least one End Device (ED) to interact
with the system. Through the networking module, nodes
are connected via a secure P2P protocol to form a well-
connected network that supports the Distributed Ledger (DL)
layer running above it. All nodes jointly maintain a Common
Ledger (CL) by running the consensus algorithm to update
their Local Ledger(CL). Another part of the system is the
organization that is represented on the BC by participants who
have the role of admin. Their main task is managing users
as they enter and exit the system. Specifically, they can add
or remove users or nodes from the system. The organization
in our system can be a single organization or a consortium
of organizations. It is considered the initiator of the trading
system. The most important role of the organization is to
ensure that each user can only have one digital identity in order
to avoid sybial attacks. Therefore, users must be recognized

with a ID, such as a Social Security Number (SSN). This
information will be stored outside the ledger (off-chain) so
that only the organization can access it. To enable that, another
ledger, such as the Identity Management Ledger (IDML) [11],
can be used alongside the main ledger to separate identity
management from trading, thereby preserving privacy and
protecting data. However, this part is beyond the scope of
this work. The organization is also responsible for converting
real-world currency into virtual funds. However, it does not
get involved in the trading.

Fig. 1: System Architecture.

B. Node Structure

In GuRuChain, each user called participant is able to launch
a node and join the BC network if and only if he or she
meets the following two conditions: having a sufficient level
of reputation, and depositing at least the minimum guarantee
amount (more details are given in section IV). Figure 2 shows
the complete structure of a node that can be launched by a
participant. It contains the following functional modules:

Fig. 2: Node structure.

• Verification Module: is used to check and evaluate whether
the real-world service is properly provided. This module can
verify immediate transactions and even track the quality of

services over time. It provides participants with a certificate
to prove that the requested services have been correctly
delivered. In order to deliver the service provision certificate,
the verification module needs to collect trading information
from the buyer, the seller, and an independent controller
as proofs (a collection of real-world data and events), then
verify them by corresponding measurements and finally
produce a certificate that can be recognized by all BC nodes
. Depending on the type of service provided, the controller
in our system can be a standalone smart device with a
dedicated interface to capture the required information or an
independent physical entity equipped with a sophisticated
end device to enter this information. Due to the variety
of services provided in the system, the proofs collected
by the verification module and the measures used may be
different. The verification process and its output results
should be considered as hands-off. We need to assume
that when proofs are given as input, everyone’s verification
module will always generate the same certificate, which the
participants cannot fake. The verification process can be
handled using Decentralized Oracle Networks [10](DONs
1) that enable the creation of hybrid smart contracts, where
on-chain code and off-chain infrastructure are combined to
support advanced decentralized applications (DApps) that
react to real-world events and interoperate with traditional
systems.

• Smart Contract Module: A smart contract is a determinis-
tic and immutable program that includes an executable script
and a data model stored in a BC in the form of a Merkle
hash tree [8]. In addition, a smart contract can implement
read-modify-write operations changing the data in the ledger
and store the result of the processing in the blockchain itself.
Smart contracts are triggered by addressing transactions to
them. The smart contract module in our system is the mod-
ule that implements the entire trading process. It contains
three main sub-modules, Business logic, Reputation, and
Guarantee submodule.
1) Business Logic Submodule: or the Application submod-

ule. It contains all the functions needed for a participant
to interact with the system. This submodule is mainly
responsible for the following tasks:
– Manage participant login access and signing published

information using a public and private key pair.
– Managing the participant’s independent wallet ac-

count.
– Generate and process various business transactions

such as service announcement and order placement
sent to the system through its ED or the networking
module.

2) Reputation Submodule: it is responsible for trust and
reputation management by implementing two main func-
tions that allow first the calculation of the trust value of
the last interaction and then the update of the global

1https://chain.link/education/blockchain-oracles

reputation score of the participants involved in this
interaction.

Trust Value Calculation: We evaluate the trust of all
participants in our system per interaction. More precisely,
the system’s reputation module assigns a trust value to
each trader (seller or buyer) after each trading interaction.
The trust value assigned to a seller T i

s after a real-world
interaction i is given by :

T i
s = θ.T i

b→s + (1− θ).T i
v→s

Where T i
b→s represent the subjective trust value, T i

v→s is
the verification (objective) trust value and θ is the weight
that gives more relevance to the objective trust value. The
trust value that represents the direct opinion of the buyer
on the seller Tb→s is computed using the subjective trust
logic [20], [21]. When a buyer b interacts with a seller s,
an opinion denoted by Os

b = (t, d, u) is given to express
b’s belief in the trustworthiness of s. Where, t, d, and
u represent trust, distrust, and uncertainty, respectively;
t+ d+ u = 1 and t, d, u ∈ [0, 1].

t = (1− u) m
m+n

d = (1− u) n
m+n

u = 1− If
(1)

The value of Tb→s after the ith interaction,

T i
b→s = t+ ψu (2)

Where, m and n are the number of valid and invalid
interations between b and s respectively, If denotes the
interaction frequency. The higher interaction frequency
results in a lower uncertainty. ψ is the uncertainty weight
[21].

The objective trust value Tv←s depends on the results
of the verification process and the measures used in that
process. As mentioned before, according to the types of
services or products provided on the platform, different
metrics are required to verify and evaluate the provision
of these services, such as compliance, quality, delivery
time, etc. Our solution is a general platform framework
that we can adapt to many types of applications. There-
fore, the objective trust formula may differ from one
service to another. However, the calculation method is
almost the same. It depends mainly on the presence of
the certificate, the amount of the transaction and the
time between the last two interactions. It is clear that
it is not expensive for a buyer to collude with other
sellers to improve their reputation. He or she can buy
many cheap products from the same seller (or different
sellers) to improve their reputation together in a short
time. Thus, to mitigate this type of collusion attack,
objective trust should be tied to the value and timing
of Tx. For example, for an ongoing interaction, if one
of the traders has already exchanged a product a short
time ago, Tv←s should be set to a relatively low value
to avoid collusion attacks. The calculation formula is :

T i
v→s = C [σc + σtFt + σaFa] (3)

σc, σt, σa ∈ [0, 1] ; σc + σt + σa = 1 (4)

Where, C is a boolean that refers to the presence of the
certificate ’1’ or not ’0’, σc is the weight of the certificate
itself. σt and σa are the weights of the time t and the
amount a of the interaction, respectively. Ft and Fa are
the functions that normalize t and a, respectively (Fa,
Ft ∈ [0, 1]). They both have a positive correlation with
t and a.
The combination of objective and subjective trust results
in the overall trust value of the ith interaction. The same
model will be used to calculate the trust value of the
buyer T i

b .
Overall Reputation Update: In our system, an initial

reputation value Rinit is assigned to each new par-
ticipant. This value is assumed to be the critical line
of trust, so that all participants whose reputation is
lower than Rinit are considered untrusted. We update the
overall reputation score of a trader after each real-world
interaction. We believe that the only way to show good
intentions is through proper real-world interaction. This
is because online interactions are governed by the plat-
form itself, so participants do not need to trust each other.
Unlike real-world interactions where buyers must trust
sellers to provide services that have already been paid
for. To summarize, the only way for a trader to improve
his reputation is by conducting correct interactions in the
real world. We now explain the process, the reputation
model is triggered after each offline interaction to update
the overall reputation score of both parties. First, we
compute the trust value Ti as described in 2, then we use
it to update the overall reputation score of the participants
involved in this interaction as follows:

Ri =

{
(1− ω)Ri−1 + ω.Ti Ti ≥ Rinit

ωRi−1 + (1− ω)Ti Ti < Rinit
(5)

ω = F (Ti, Nb) = κTi
1− e−λ.Nb

1 + e−λ.Nb
(6)

Where Ri−1 represents the current reputation value, i.e.
before the last interaction. ω is a weighting function,
Nb refers to the number of blocks added to the ledger
since the trader joined the network. We use a variable
weighting factor ω (a Hyperbolic tangent function that
normalize Nb) instead of a static factor to ensure that
older participants have more opportunity to improve
their reputation without giving them any liberty to make
mistakes. Thus, the longer the users stay in the system,
the more likely they are to improve their reputation,
provided they maintain correct behavior. The maximum
value of the weighting, which can be reached when Nb

becomes significantly high, is κ ∈ [0, 1]. Moreover, the
weighting function does not depend only on Nb but
mainly on the trust score Ti computed during the last
interaction. Therefore, a bad action represented by a low
Ti (Ti < Rinit) will have a huge impact on the overall
reputation score whatever the value of Nb.

3) Guarantee Submodule: In our system, buyers can reject
the delivered service after verification. To protect sellers
from such behavior, we allow them to set the proportion
they want to get as service delivery fee in case of rejected
service. They are free to set this value, which we call
the guarantee proportion Pg . Let V be the value of the
service, the amount transferred to the seller in case of a
rejected delivery is G = PgV . Buyers, on the other hand,
are free to choose the services offered by different sellers.
To encourage buyers to choose its service, a seller must
choose an appropriate Pg . Services with low Pg will be
preferred, while those with high Pg will be avoided.

• Node Core Module: It includes all the components of an
Ethereum2 BC client, from the networking and storage mod-
ules to the execution engine. It also includes the consensus
algorithm that enables transaction verification and block
validation.
The communication among these modules ensures the func-

tionality of the node. The verification module has a specific
external interface to collect the proofs related to service
provision. The result of the verification process, the certifi-
cate, will be sent to the smart contracts module for further
processing. Except for the verification module, which has a
specific interface, the network module is the only interface
between the system and the node itself.

IV. POGR CONSENSUS SCHEME

In this section, we discuss the consensus scheme in Gu-
RuChain. Specifically, the mechanism used to select the block
to be added to the BC. A reliable consensus mechanism must
ensure validity and consistency to operate properly. Mean-
while, efficiency and cost-effectiveness must be maintained
to achieve high performance.

We present Proof of Guarantee & Reputation (PoGR) a
lightweight consensus mechanism that replaces the need for
unnecessary mining of PoW-like consensus with a scoring
method to enable Block Producer (BP) selection. PoGR
reduces the use of processing power by each running node
and therefore decreases its energy consumption. The scoring
method ensures fairness among nodes and thus, solves the
update monopolization problem that often occurs in PoS-like
consensus schemes.

A participant who wants to be involved in the BC man-
agement must run a node that will execute the consensus
algorithm and thus be able to produce blocks. To do this,
he or she must generate two transactions, TXGB

to pay a
deposit GB ∈ [GminGmax] as a guarantee balance and TXGp

to specify the effort or risk he or she is willing to take
Gp ∈ [GminGB] to get the updating right. Both transactions
TXGB

and TXGp
are sent to the BC system for verification

and storage. The participant will not be able to launch its
node to run the consensus algorithm and create updates unless
these two conditions are satisfied: both TXGB

and TXGp

transactions are valid, and its reputation is higher than Rmin.

2https://besu.hyperledger.org/en/stable/private-networks/

In POGR, each node maintains a list of operating nodes and
their scores locally. This list is updated after adding a new
block to the BC. In GuRuChain, participants who run nodes
are rewarded for doing so. The Gmin and Gmax values are
the minimum and maximum amounts that the system should
pay to the participants who run nodes as a reward. Their initial
values are set by the system administrators and can be adjusted
based on available information. The idea behind this is that
when a malicious block producer generates an invalid block, it
will eventually lose a portion of its deposit Gp (Gp ≥ Gmin).
The lost amount Gp is then transferred to the other participants
managing the nodes as compensation.

Fig. 3: PoGR consensus scheme.

Note that nodes whose remaining guarantee GB is below
Gmin or whose reputation is lower than Rmin are auto-
matically removed. We examine all requests using a scoring
method. Each node sort the list of running nodes using the
following formula:

Sn = (α.G+ β.E + γ.R).τn ; α+ β + γ = 1 (7)

Where, Sn is the score of the node n, G = GB/Gmax is the
proportion to the maximum amount the participant wants to
lock as a guarantee balance, E = Gp/GB is the proportion
to the balance that represents the Effort/Risk taken by the
participant, R is the reputation score of the participant who
manages the node. Finally, τn = F (Ngb) is the available
generation rate initially equals to 1. It decreases exponentially
with the number of blocks Ngb generated during a block
cycle Bc, which refers to the period in blocks needed for a
block producer to recover 100% of its producing right, i.e.,
τn = 1. For example, let’s take Bc = 5 and a node n that
generates a new block (B = 10 is its first block in the last
five blocks). n needs to wait for at least five blocks to recover
100% of its available generation rate τn (until B = 15). In
other words, τn will be reset to 1 only if n does not generate
any of the following five blocks. Moreover, τn will continue
to decrease exponentially according to the number of blocks
Ngb that n generates during this period. In this example,
τn = 1/exp(2, 1) = 1/2, with a base = 2 and Ngb = 1,
B = 10 is its first block. The complete sheme is described in
detail in Fig.3 and Algo 1

Data: Bc, listNodes , Gmin , Gmax , CL
Result: selection of the next BP
begin

BP ← receivedBlock.getBP()
if ! receivedBlock.isV alid then
Remove <BP , SBP > from listBP

else
SBP = computeScore(BP)
Call updateBPList(BP,SBP)
foreach node n in listNodes do

if exists a Tx of n in receivedBlock then
Sn = computeScore(n)
Call updateBPList(n,Sn)

end
end

end
Set next BP the node with the highest score

end
Function computeScore(n):

Read (R, Gp, and GB) of n from CL
if R < Rmin or Gp /∈ [GminGB] then
Remove <n , Sn > from listBP
else

Ngb ← 0 , i ← 0
currentHeader ← CL.blockHeader
while i < Bc and ! currentHeader.isNil do

if currentHeader.getBP() == n.adr
then
Ngb = Ngb + 1

end
currentHeader ←
CL.getHeader(currentHeader.PARENTHASH)
i← i+ 1

end
τn = 1/ exp(base,Ngb)
Sn = [α.GB/Gmax + β.Gp/GB + γ.R].τn

end
return Sn

Function updateBPList(n,Sn):
if n /∈ listBP then
Insert <n , Sn > in listBP
else

Update <n , Sn > in listBP
end

Algorithm 1: Proof of Guarantee & Reputation.

We now examine how PoGR can guarantee fairness among
nodes analytically. The scoring formula (eq. 7) used to evaluate
node candidates must satisfy the following two conditions:

• Reputation should be given more relevance than guar-
antee for two reasons; First, it explicitly reflects the level
of trust the system has in the participant; Second, the par-
ticipant locks his guarantee balance and sets the proportion
that he is willing to use freely, unlike the reputation score,
which is governed by the system itself. In other words,

the participant has no intervention in the calculation of his
reputation.

γ ≥ α, β (8)

• The effort E importance over guarantee balance G. eq.7
must meet this condition because, in PoGR, more effort (
Gp ≊ GB) means more risk of leaving the consensus. Let
P1 and P2 be two participants who have the same reputation
R and both of them did not generate any block yet. However,
P1 has a low guarantee balance GB1 ≊ Gmin, so he or
she has to fixe E1 ≊ 1 i.e. a high risk. On the other side,
P2 is a participant who has a very high balance GB2

≊
Gmax, but decides to not take a high risk E2 = Gp2

/GB2
≤

GB2
−Gmin

GB2
= Gmax−Gmin

Gmax
. P1 should get at least the same

score as P2, because if P1 produces a malicious block, his
or her node will be automatically deleted (the remaining
GB1 is less than Gmin).

SP1
≥ SP2

⇒ α.G1 + β.E1 ≥ α.G2 + β.E2

⇒ α.
Gmin

Gmax
+ β.1 ≥ α.1 + β.

Gmax −Gmin

Gmax

⇒ α.
Gmin

Gmax
≥ α− β.Gmin

Gmax

⇒ Gmin

Gmax
≥ α

α+ β
(9)

The designed scheme aims to improve the reliability of the
updating process without forcing participants to pay more,
which is ensured by the condition 9 implicitly. It encourages
participants to take more risks than investing more funds. Since
the consequence of a malicious update with higher risk is node
expulsion, all malicious nodes are likely to be removed, which
improves the system’s efficiency and reliability.

V. EVALUATION AND RESULTS

In this section, we first present the business model formulation
of the proposed platform in the context of Hyperledger Besu
3 followed by the experimental setup. Next, we discuss the
evaluation results of the platform in terms of the effectiveness
of the trust and reputation model, the overall system scalability,
and performance.

A. Business Model

We implement the proposed palatform framework on Hy-
perledger Besu which is an open-source Ethereum client
developed under the Apache 2.0 license and written in Java.
Besu includes a command line interface and a JSON-RPC API
to run, maintain, debug and monitor nodes in an Ethereum
network. The API can be used via RPC over HTTP or
WebSockets. The API supports typical Ethereum features such
as: Smart contract and Decentralized application development
(Dapp). For the evaluation, we define a trading logic that
includes:
• Participants: Traders (Sellers and/or Buyers) and Admins.

3https://besu.hyperledger.org

• Assets: we define a data structure that could represent any
real-world service or product.

• Smart Contracts: There are three types of smart contracts
used to develop the business model: the Permission Smart
Contract (on-chain permissioning 4) ; it provides the func-
tionality of adding and removing participants and nodes
by administrators. The second SC is the Trading Smart
Contract which handles all the trading operations, from
service announcement to deposit revocation. The last one is
the reputation and guarantees smart contract; it maintains the
trust calculation and the reputation update. It also manages
the deposit submission and revocation.

B. Experimental Setup

The deployment of the overall system platform and the
evaluation tests are carried out on a cluster of eight PCs
whose characteristics are given in Table I. We use Hyper-
ledger Caliper 5 to run the evaluation experiments. Caliper
is a blockchain performance evaluation framework that allows
testing and measuring the performance of different blockchain
solutions using metrics such as latency and throughput. In
addition, based on the logs of running nodes, we analyze other
measures such as the fairness of the consensus scheme and
the effectiveness of the trust model. The platform’s business
model configuration involves the following setups: Permission-
ing Smart Contract for rules management, Hyperledger Besu
for trade management, and Web3js 6 for client application
interaction with the smart contract.

TABLE I: Computing environment.

Machine #
Intel® CoreTM i7-6820HQ CPU @ 2.70GHz × 8 ; 16GiB 3
Intel® CoreTM i7-8700 CPU @ 3.2GHz × 12 ; 32GiB 1
Intel® CoreTM i7-4710MQ CPU @ 2.50GHz × 8 ; 16GiB 1
Intel® CoreTM i7-4800MQ CPU @ 2.70GHz × 8 ; 32GiB 1
Intel® CoreTM i7-6500U CPU @ 2.50GHz × 4 ; 16GiB 1
Intel® CoreTM i7-6700HQ CPU @ 2.60GHz × 8 ; 16GiB 1

C. Trust & Reputation Model Effectivness

We begin the discussion with results that demonstrate the
effectiveness of our trust and reputation model. Figure 4a
shows the ideal reputation growth of a participant in our
system (GuRu) compared to the referenced one (IpoT) [2]
which uses the same logic to compute trust (interactions) and
provides better results than the traditional reputation models.
We observe that the reputation score R increases as the number
of interactions increases in both models. However, we note
that the growth of R in our model is slower than in the other.
Therefore, the participant in our system needs to perform more
interactions to reach the maximum score. The reason behind
this is that, in our reputation model, we select the update
formula based on the trust value of the last interaction. We
give less relevance to Ti if its value is above the critical trust

4https://github.com/ConsenSys/permissioning-smart-contracts
5https://github.com/hyperledger/caliper-benchmarks
6https://web3js.readthedocs.io

(a) Ideal reputation growth of a normal participant.

(b) Reputation growth of a malicious participant.

Fig. 4: Effectivness of the Trust and Reputation models.

line Rinit because it reflects the expected behavior. On the
other hand, if the trust value is below the threshold, it will be
given significant relevance relative to the current reputation
value Ri1 because it represents inappropriate behavior. Figure
4b shows the response of both systems to improper behaviors.
To trick the system, a malicious participant will continue to
behave correctly for a while and then try to do something
wrong. As the figure shows, after producing a bad action, the
reputation score decreases rapidly in both systems. However,
what we notice is that the score drops faster in (GuRu).
This is because our system has a high sensitivity to improper
behaviors. We can conclude that a participant in our system
needs more time and interactions to achieve a high reputation.
Moreover, as soon as he misbehaves, he will get a reputational
hit, which drops his score below the critical line. As a result,
the system will consider him as an untrusted participant, and
it will be difficult for him to get back his reputation.

D. Performance & Scalability Evaluation

Now, we present results quantifying the performance of our
system for relevant benchmarks using Hyperledger Caliper. We
consider three metrics for GuRuChain performance evaluation
as described below:
• Throughput: the number of successful transactions per sec-

ond (TPS).
• Latency: refers to the time difference in seconds between

the submission and completion of a transaction.
• Scalability: Changes in throughput and latency when alter-

ing a configuration parameter, such as network size or node
configuration.
Increasing the size of the network may be a feasible

approach to improve the performance of some P2P systems.
However, in the context of blockchains, additional factors
such as block propagation time and consensus costs may

have a direct impact on system scalability. In this section,
we present scalability evaluation results obtained from several
comparison tests between our proposed protocol (PoGR), the
standard PoA protocol (Clique), and the Ethach (Ethereum’s
PoW). In our experiments, we collected several data points,
each corresponding to the average of several runs with a
specific network configuration. Each run consisted of 3000-
5000 transactions. To fairly compare the protocols, we applied
the same settings for both PoGR and PoA consensus, i.e.,
the same: block period (5-10s), node configuration, block size
(gas limit), and workload configuration. In other words, we
only varied the network size at a time while other parameters
were set to the same values. For the PoW settings, we used a
low fixed difficulty to adjust the block frequency and get an
average block time between 5 and 10s. The other parameters
are the same as for PoGR and PoA.

From Fig.5, we can see the gap between the consensus
protocols PoGR, PoA (Clique), and PoW (fixed difficulty).
PoGR and PoA outperform PoW in terms of both latency and
throughput. Furthermore, when adding nodes to the network,
the results show that the PoW’s throughput increases at the
beginning but starts to decrease once the peak is reached.
Contrary to the PoGR’s throughput, which remains stable as
the block producer selection in our protocol does not depend
on the number of participating nodes. The slight overhead
is related to the network’s communication and consensus
costs. Furthermore, compared to the standard PoA protocol,
no significant performance difference has been observed for
small network (N < 12). This is due to the experimental
setup where nodes in both protocols seal blocks in the same
fixed period. However, when the network size exceeds a certain
threshold (N > 12), the throughput of Clique starts to
decrease while we continue to get a higher throughput in
our protocol. This is justified by the fact that in Clique,
the probability of getting forks increases with the number of
validators. Therefore, the system will take extra time to resolve
those forks, which will obviously generate an additional time
cost.

VI. CONCLUSION

In this paper, we proposed a platform framework for
online/offline service trading. The proposed solution com-
bines on-chain and off-chain trust management to provide a
blockchain system suitable for trust-related trading systems.
GuRuChain supports both the recording of online transactions
and the provision of offline services. Our solution relies on
market supply and demand to ensure free exchange between
participants. Our goal was to enable effective trust manage-
ment for all participants. To achieve this, we complemented the
GuRuChain trust model with a guarantee and reputation-based
reward and punishment mechanism. The introduced trust and
reputation system helps not only buyers to select the services
provided by sellers, but allows also reliable participants to
manage nodes and create updates. The core part of GuRuChain
is the proposed Lightwgheit consensus scheme, called PoGR,
which selects block producers based on guarantee and reputa-

(a) Latency comparison

(b) Throughput comparison

Fig. 5: Latency and Throughput comparison between Ethach(PoW)
and clique(PoA) and PoGR.

tion scores. We implemented and deployed a prototype of the
proposed framework using Hyperledger Besu. Accordingly,
several test scenarios were performed to evaluate the effec-
tiveness of the proposed trust model and the scalability of the
overall system. The results of this evaluation demonstrate the
feasibility, efficiency, and scalability of GuRuChain.

ACKNOWLEDGMENT

We acknowledge the support of the Nouvelle Aquitaine region
for this research. We thank the FUI23 PARFAIT and B4IoT
projects for funding and supporting this work.

REFERENCES

[1] Sidra Malik, Volkan Dedeoglu, Salil S. Kanhere and Raja Jur-
dak, ”TrustChain: Trust Management in Blockchain and IoT Sup-
ported Supply Chains,” 2019 IEEE International Conference on
Blockchain (Blockchain), Atlanta, GA, USA, 2019, pp. 184-193, doi:
10.1109/Blockchain.2019.00032

[2] Xiaoyu Zhu, Yi Li, Li Fang, and Ping Chen. An improved proof-of-trust
consensus algorithm for credible crowdsourcing blockchain services.
IEEE Access, 8:102177-102187, 2020.

[3] Volkan Dedeoglu, Raja Jurdak, Guntur D. Putra, Ali Dorri, and Salil
S.Kanhere. 2019. A trust architecture for blockchain in IoT. In Proceed-
ings of the 16th EAI International Conference on Mobile and Ubiquitous
Systems: Computing, Networking and Services (MobiQuitous ’19).
Association for Computing Machinery, New York, NY, USA, 190–199.
DOI:https://doi.org/10.1145/3360774.3360822.

[4] Jayasinghe Upul, Lee Gyu Myoung, MacDermott Áine, Rhee Woo
Seop. (2019). TrustChain: A Privacy Preserving Blockchain with Edge
Computing. Wireless Communications and Mobile Computing. 2019.
1-17. 10.1155/2019/2014697.

[5] Thuat Do, Thao Nguyen, and Hung Pham. Delegated Proof of Rep-
utation: a Novel Blockchain Consensus. In Proceedings of the 2019
International Electronics Communication Conference (IECC ’19). As-
sociation for Computing Machinery, New York, NY, USA, 90–98.
DOI:https://doi.org/10.1145/3343147.3343160.

[6] Eric Ke Wang, Zuodong Liang, Chien-Ming Chen, Saru Kumari, and
Muhammad Khurram Khan. Porx: A reputation incentive scheme for
blockchain consensus of iiot. Future Generation Computer Systems,
102:140-151, 2020.

[7] Jun Zou, Bin Ye, Lie Qu, Yan Wang, Mehmet A. Orgun, Lei Li (2019).
A Proof-of-Trust consensus protocol for enhancing accountability in
crowdsourcing services. IEEE Transactions on Services Computing,
12(3), 429-445. https://doi.org/10.1109/TSC.2018.2823705

[8] Emanuele Bellini, Youssef Iraqi and Ernseto Damiani, ”Blockchain-
Based Distributed Trust and Reputation Management Systems: A Sur-
vey” in IEEE Access, vol. 8, pp. 21127-21151, 2020, doi: 10.1109/AC-
CESS.2020.2969820.

[9] Wenbo Wang, Dinh Thai Hoang, Peizhao Hu, Zehui Xiong, Dusit
Niyato, Ping Wang, Yonggang Wen, Dong In Kim, ”A survey
on consensus mechanisms and mining strategy management in
blockchain networks” 2018, arXiv:1805.02707. [Online]. Available:
http://arxiv.org/abs/1805.02707

[10] De Pedro, Adán Sánchez, Levi Daniele, et Cuende Luis Iván. Witnet: A
decentralized oracle network protocol. arXiv preprint arXiv:1711.09756,
2017.

[11] Malik Sidra, Gupta Naman, Dedeoglu Volkan, Kanhere Salil, Ju-
rdak Raja. (2021). TradeChain: Decoupling Traceability and Iden-
tity in Blockchain enabled Supply Chains. 1141-1152. 10.1109/Trust-
Com53373.2021.00155.

[12] Changbing Tang, Luya Wu, Guanghui Wen, Zhonglong Zheng, ”In-
centivizing Honest Mining in Blockchain Networks: A Reputation
Approach,” in IEEE Transactions on Circuits and Systems II: Express
Briefs, vol. 67, no. 1, pp. 117-121, Jan. 2020, doi: 10.1109/TC-
SII.2019.2901746.

[13] Nojoumian Mehrdad, Golchubian Arash, L. Njilla , K. Kwiat, C.
Kamhoua. (2019) Incentivizing Blockchain Miners to Avoid Dishon-
est Mining Strategies by a Reputation-Based Paradigm. In: Arai K.,
Kapoor S., Bhatia R. (eds) Intelligent Computing. SAI 2018. Ad-
vances in Intelligent Systems and Computing, vol 857. Springer, Cham.
https://doi.org/10.1007/978-3-030-01177-2-81.

[14] Singh Nikita, Tarun Kumar and Manu Vardhan. ”Blockchain-based e-
cheque clearing framework with trust based consensus mechanism.”
Cluster Computing (2020): 1 - 15.

[15] Cai Wenjun, Jiang Wei, Xie Ke, Zhu Yan, Liu Yingli, Shen Tao.
(2020). Dynamic reputation–based consensus mechanism: Real-time
transactions for energy blockchain. International Journal of Distributed
Sensor Networks. 16. 155014772090733. 10.1177/1550147720907335.

[16] Ahmet Bugday, Adnan Ozsoy, Serdar Murat Oztaner, and Hayri Sever.
Creating consensus group using online learning based reputation in
blockchain networks. Pervasive and Mobile Computing, 59:101056,
2019

[17] Jingyu Feng, Xinyu Zhao, Guangyue Lu, and Feng Zhao. 2019. PoTN: A
Novel Blockchain Consensus Protocol with Proof-of-Trust Negotiation
in Distributed IoT Networks. In Proceedings of the 2nd International
ACM Workshop on Security and Privacy for the Internet-of-Things (IoT
S&P’19). Association for Computing Machinery, New York, NY, USA,
32–37. DOI:https://doi.org/10.1145/3338507.3358613

[18] Leonard Kleinrock, Rafail Ostrovsky, and Vassilis Zikas. A por/pos-
hybrid blockchain: Proof of reputation with nakamoto fallback. IACR
Cryptol. ePrint Arch., 2020:381, 2020.

[19] You Sun, Rui Zhang, Rui Xue, Qianqian Su, and Pengchao Li. A reputa-
tion based hybrid consensus for e-commerce blockchain. In International
Conference on Web Services, pages 1-16. Springer, 2020.

[20] Josang Audun, Hayward Ross, Pope Simon (2006)”Trust Network
Analysis with Subjective Logic” . In Dobbie, G. Estivill-Castro, V (Eds.)
Conference Proceedings of the Twenty-Ninth Australasian Computer
Science Conference (ACSW 2006). Australian Computer Society, CD
Rom, pp. 85-94.

[21] Jiawen Kang, Zehui Xiong, Dusit Niyato, Dongdong Ye, Dong
In Kim, Jun Zhao, ”Towards secure blockchain-enabled Internet
of vehicles: Optimizing consensus management using reputation
and contract theory,” 2018, arXiv:1809.08387. [Online]. Available:
http://arxiv.org/abs/1809.08387

[22] Paul Resnick, Ko Kuwabara, Richard Zeckhauser, Eric Friedman Com-
munications of the ACM, December 2000, Vol. 43 No. 12, Pages 45-48
10.1145/355112.355122

[23] Zheng, P., Zheng, Z., Luo, X., Chen, X., Liu, X.: A detailed and
real-time performance monitoring framework for blockchain systems.
In: 40th International Conference on Software Engineering: Software
Engineering in Practice, ICSE-SEIP 2018, pp. 134–143. ACM (2018)

