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Abstract—Mobile Edge Computing (MEC) networks offer an
increasing computing power through the collaboration among
MEC nodes. This opens a large computing market and brings
challenges for efficient resource management. In this paper, we
study the joint optimization problem of planning cost-efficient
edge networks, allocating link and computation resources, as
well as scheduling and routing user requests in edge computing
networks with arbitrary topologies and multiple ingress nodes.
We formulate this problem as a Stackelberg game where the
network operator, as the leader, aims at maximizing its profit,
and the edge nodes, as the followers, minimize their users’ costs
and latency. Then, we prove the existence of the generalized
Nash equilibrium for the follower subgame, and the Stackelberg
equilibrium for the leader-follower game. We further propose a
distributed best-response algorithm for the follower game and
an alternating leader-follower optimization algorithm for the full
game to compute the equilibrium and prove its convergence.
A centralized optimization incorporating both profit and net-
work latency targets is formulated and solved, which serves as
benchmark for the game solution. Extensive numerical results
demonstrate the effectiveness of the proposed game, achieving
near-optimal planning and scheduling solutions in a very short
time even for large-scale edge networks.

Index Terms—Edge computing, network planning, request
scheduling and routing, Stackelberg game.

I. INTRODUCTION

Resource allocation is a well-known problem which is par-
ticularly critical in MEC networks where each individual node
has limited network, memory and computational resources.
Multiple approaches exist in the literature and offer a solution
considering different network models and assumptions.

In this paper, we focus on addressing at the same time
two different and opposite viewpoints, the one of network
providers that must allocate their resources with the objective
of saving unneeded costs and the one of end users that want
to make sure their requests are fulfilled as soon as possible
by the network, even if this implies a non-optimal use of the
network providers’ resources.

While in the literature some approaches that address the
problem have been presented (see Section II), our novel con-
tribution consists in addressing the problem taking also routing
and network latency into account in the context of distributed
edge computing networks. We experiment the usage of game
theory to formulate the problem and demonstrate the existence

of the equilibrium for the game and the convergence of the
algorithm to such equilibrium. In this approach, we assume
that different edge nodes contribute to the resource planning
and user requests scheduling activities, thus resulting in a
decentralized decision making process. While usually resource
planning is performed in advance and is rarely modified, in
this paper we assume to have the possibility to change the
plan frequently, depending on the type and amount of requests
observed over the time.

To address this problem, we define a Stackelberg game
where the network operator, as a market leader, plans and
prices edge computation and communication resources and
performs requests routing to maximize its profit, while edge
nodes from different locations, as followers, compete for
the shared resources and schedule requests, considering all
resources in the network, to minimize the costs incurred by
their end users to pay for the resource prices as well as link
and processing latency. In the game, the leader moves first
anticipating the followers’ actions, then followers react given
the leader’s decisions. When the game reaches an equilibrium,
if it exists, then no player can benefit by unilaterally deviating
from his/her strategy. In other words, it reaches an optimal
solution from a social point of view.

To summarize, this paper makes the following contributions:
• We propose a Stackelberg game for the joint optimization

of planning and pricing edge network resources, schedul-
ing and routing requests, with the objective of maximiz-
ing the profit of the network operator and minimizing
costs and latency for edge users.

• We prove the existence of a Generalized Nash Equilib-
rium (GNE) for the follower subgame and a Stackelberg
Equilibrium (SE) for the leader-follower game.

• We further propose a distributed best-response algorithm
for GNE and an alternating leader-follower optimization
algorithm for SE and prove its convergence.

• We perform an extensive numerical evaluation to demon-
strate the performance of the proposed game and solu-
tions for edge networks with arbitrary, large-scale topolo-
gies including a real network scenario based on the actual
deployment of base stations.

The rest of the paper is organized as follows: Section II
presents the related work. Section III provides an overview
of the proposed approach. Section IV illustrates the proposedISBN 978-3-903176-57-7© 2023 IFIP



system model. Section V presents the game formulation for the
optimization and Section VI analyzes the proposed game and
proves the existence of the equilibria. Section VII develops
algorithms with proven convergence to find the equilibria.
Section VIII discusses numerical results in different network
topologies and scenarios. Section IX concludes the paper.

II. RELATED WORK

Resource management in MEC environments has been
widely studied in the literature. Many works consider either
a single edge computing node [1–3] or a set of independent
nearby edge computing nodes [4–10] which might also collab-
orate with a remote cloud (a cloud-edge) [11–17]. Only few
studies, however, consider an edge computing environment
that includes network connections among the edge nodes in a
local area due to the complexity of the problem [18, 19].

Network planning and request scheduling are very important
for the edge resources utilization in MEC environments. The
most relevant problems include, among the others, service
placement or provisioning [6, 15, 16, 20], computation offload-
ing [3, 5, 11, 17], and user or server selection [7, 10]. In the
above works, these problems are analysed independently one
from the other, while in practical edge computing networks
they tend to arise simultaneously. In fact, given the distribution
of requests, network planning depends on how or where the
requests are scheduled, and vice versa. Among those that
address the joint problem [4, 14, 18], Gu et al. [4] study
microservice placement and request scheduling to maximize
edge throughput. Xiang et al. [18] study the problem of jointly
planning network and computation resources, offloading and
routing traffic to minimize latency and costs. Both these
approaches are studied from a centralized viewpoint, which
has limited usage for large scale edge networks and does not
capture the distributed nature of the edge and the interactions
among network players, e.g., service providers and users, who
focus only on their own objectives.

This behavior suggests the adoption of game theory that has
been widely used in multiple areas to analyze the interactions
among independent, selfish and rational players with their self-
interests. The general non-cooperative game is well applied to
resource allocation [2, 13]. However, network topology is not
considered. As a special case, Stackelberg game distinguishes
network entities into leaders and followers, where leaders
move first anticipating followers’ actions, then followers react
given leaders’ decisions. Recent studies focus on task offload-
ing [11, 12, 17], resource allocation [8] and service caching
[1]. For instance, Huang et al. [12] formulate a resource
pricing and task offloading problem as a Stackelberg game
among cloud and edge service providers and users. Yan et al.
[1] propose a Stackelberg game of service caching and task
offloading. Another well applied game is the potential game [7,
9, 19]. In all these cases network planning is not studied and
the impact of network latency and topology is not considered.

To our knowledge, this paper is the first that proposes
a Stackelberg game for joint optimization of planning edge
networks, allocating link and computation resources, and
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Fig. 1: Edge considered in this paper.

scheduling and routing requests to maximize profit for network
operator and minimize costs and latency for users. We model
both link and processing latency with queueing theory and
consider large-scale MEC networks of any topology.

III. APPROACH OVERVIEW

The edge planning architecture proposed in this paper is
illustrated in Fig. 1: it is composed of two layers, i.e., the upper
one with the network operator and the lower one with the edge
network. The network operator owns network resources related
to edge computing and link bandwidth; its goal is to gain profit
by planning an edge network and offering network resources
to end users for computing their requests. The edge network
(denoted by G(V, E)) is composed of many edge computing
nodes (V) with specific computing capacities (Dv, v ∈ V),
connected to each other through network links (E) with the
given bandwidth (Be, e ∈ E) in a specific topology. In practice,
the edge computing nodes can be deployed at the centroids
of groups/clusters of base stations for a cost-efficient edge
network; a realistic edge network in a metropolitan area is
adopted in our numerical evaluation (Section VIII). Naturally,
we consider aggregated requests (e.g., web, video) at several
edge nodes named ingress with specific arrival rates (λk, k ∈
{1, 2, 3} for the example in Fig. 1) measured in Gbps, which
already takes into account the computing density of different
types of requests.

The users in the edge network compete for network re-
sources for computing their requests; they can schedule re-
quests with the help of ingress nodes, independently, control-
ling how to split them and selecting which subset of edge
nodes to process each piece of the requests, in order to mini-
mize costs and network latency. Anticipating the decisions of
edge users, the network operator plans and prices the network
resources at the edge network, and routes the user requests
toward the destinations with the objective of maximizing its
profit. The objectives of the network operator and edge users
associated with the edge nodes are therefore different, and
meeting both expectations is not straightforward. In this paper,
their interaction is captured and modeled by a non-cooperative
game, i.e., a Stackelberg game, where the network operator
and edge users are players. Playing this game, they eventually
reach an equilibrium, at which they have made the best choice
given the other players’ decisions.



IV. SYSTEM MODEL

In this section we propose a mathematical model for
resource planning and request scheduling in mobile edge
computing networks. We first model the network planning
decisions (on capacity and computation) and request routing,
as well as the processing and link latency, and then formulate
the Leader-Optimal optimization problem. For brevity, we
simplify expression ∀k ∈ K as ∀k, and apply the same rule to
other set symbols like V, E , etc., unless otherwise specified.

A. Network Planning - Capacity and Computation

We assume that, in each edge node, some processing
capacity can be made available for computing requests, which
will result in an operation cost associated with the amount
of processing capacity. To model more closely real network
scenarios, we assume that only a discrete set of capacity values
are available to the network operator. This can be mapped to
the different numbers of virtual machines or levels of CPU
computation power for each edge node. Therefore, we adopt
a piecewise-constant function Dv for the processing capacity
of an edge node, in line with [16]. This is defined as:

Dv =
∑

a∈A
δavLa, ∀v, (1)

where La is a capacity level (a ∈ A) and δav ∈ {0, 1} is a
binary decision variable for capacity planning, satisfying the
following constraint (exactly one level of capacity is available
at a node, including zero, i.e., no processing capability):∑

a∈A
δav = 1− δ0v , ∀v, (2)

where δ0v is a binary variable that indicates whether node v
has currently any available computation capacity or not.

To save on operation costs, in case an edge node is not
supposed to be exploited to process some requests, then no
processing capacity is made available on it. We introduce
binary variable bkv to indicate whether any piece of request k
is processed on node v. The following constraint should then
be satisfied:

bkv ⩽ 1− δ0v ⩽
∑

k′∈K
bk

′v, ∀k, ∀v. (3)

We also consider a total planning budget, P , for the avail-
able computation capacity, with the following constraint:∑

v∈V
Dv ⩽ P. (4)

B. Request Routing

We assume that each user request can be split into multiple
pieces only at its ingress node. Each piece can then be
offloaded to another edge computing node independently of
the other pieces, but it cannot be further split (we say that
each piece is unsplittable).

In general, we consider that the user request or the virtual
operator request passes through a predefined set of nodes along
a given (unique) path, like a given chain of nodes providing
services to the user/virtual provider.

Each link e ∈ E may carry different request pieces qkv , i.e.,
the percentage of request k processed at node v. Then, the

request flow k on e, fk
e , can be expressed as the sum of all

pieces of requests that pass through such link:

fk
e =

∑
v∈V: e∈Rkv

qkv, ∀k, ∀e, (5)

where Rkv ⊂ E denotes a routing path (set of traversed
links) for the request piece qkvλk from ingress sk to node v.
Variable qkv has to fulfill the request integrality constraint:∑

v∈V
qkv = 1, ∀k. (6)

The following constraint ensures that the total requests on
each link e do not exceed its capacity Be:∑

k∈K
fk
e λ

k ⩽ Be, ∀e. (7)

The request flow conservation constraint is written as:∑
e∈Φ−

v

fk
e −

∑
e∈Φ+

v

fk
e =

{
qkv − 1, if v = sk,
qkv, otherwise, ∀k, ∀v, (8)

where Φ−
v and Φ+

v are set of incoming and outgoing links of
node v, respectively. The fulfillment of this constraint guaran-
tees continuity of the routing path. Moreover, the routing path
Rkv should be acyclic.

C. Processing and Link Latency
The latency is composed of processing latency on some

edge computing nodes and link latency between the nodes.
Processing Latency: We assume that each user request can

be segmented and processed on different nodes, and different
user requests from different ingress nodes can share the
computation capacity of the same nodes. The processing of
user requests on each node is described by an M |M |1 model.
As introduced before, we indicate with qkv the percentage of
request k processed on node v. Let Tv denote the processing
latency for the user requests on node v. Then, based on the
computation capacity Dv with the requests

∑
k∈K qkvλk to be

served, ∀v ∈ V , Tv is expressed as:

Tv =


1

Dv−
∑

k′∈K
qk′vλk′ , if ∃k : qkv > 0&Dv > 0,

0, otherwise.
(9)

Note that the capacity Dv is planned by the network operator,
and could also be zero: when user requests are not processed
on node v, v has no computation capacity, the corresponding
value is in fact 0. The capacity constraint is written as follows:∑

k∈K
qkvλk ⩽ Dv, ∀v. (10)

Link Latency: Let Te denote the link latency for routing
different user request flows through link e. Recall that fk

e λ
k

is the flow of request k on link e. The transmission of user
requests on each link is also described by an M |M |1 model.
Specifically, ∀e ∈ E , Te is defined as:

Te =


1

Be−
∑

k′∈K
fk′
e λk′ , if ∃k : fk

e > 0,

0, otherwise.
(11)

Note that the link latency is accounted for only if a non-null
request flow is routed on e, i.e., fk

e > 0.
We underline that the way we model the latency or delay

with the queuing system is aligned with other approaches in
the literature [15, 21].



D. Optimization problem

In edge computing networks, the network operator plans
the edge computing nodes and network links to serve user re-
quests. It charges the users for these services to earn revenues
and cover the operation costs for opening and maintaining
edge nodes and links. Then, the profit of the network operator
can be expressed as a function of the variables related to
the pricing and the costs of network planning and resource
allocation, and it is defined as follows:

UOP(p, δ,γ, q) =
∑
k∈K

∑
v∈V

pkvqkvλk

−
∑
v∈V

∑
a∈A

θvδ
a
vLa −

∑
k∈K

∑
v∈V

∑
e∈E

ϕeγ
kv
e qkvλk, (12)

where p = (pkv)Tk∈K,v∈V is the vector of the prices set by the
operator for the computation resources, δ = (δav )

T
a∈A,v∈V is

the vector of the network planning decisions, γkv
e is the routing

decision variable representing whether the piece of request
qkv is scheduled on link e, (i.e., γkv

e = 1 if e ∈ Rkv , and 0
otherwise), while γ = (γkv

e )Tk∈K,v∈V,e∈E is the vector of the
request routing decisions, q = (qkv)Tk∈K,v∈V is the vector of
the request offloading decisions, θv and ϕe are the computation
and link cost factors for node v and link e, respectively.

The network operator also needs to ensure the reliability
and quality of the network services for users, for which the
total processing plus link latency is considered as the main
metric in this model. Therefore, the centralized optimization
problem can be formulated as follows:

max
p,δ,γ,q

UOP(p, δ,γ, q)− ξp
∑
v∈V

Tv − ξl
∑
e∈E

Te, (LO)

s.t. (1) − (12),

pL ⪯ p ⪯ pU, (13)

where pL and pU are (positive) lower and upper bounds
for the price, respectively; ξp and ξl are the non-negative
weights for the processing and link latency, respectively. The
above problem contains integer and continuous variables as
well as quadratic constraints, therefore it is a mixed-integer
quadratically constrained programming (MIQCP) problem.

Problem LO is a Leader-Optimal optimization, since the
network operator is the market leader who targets the profit
by offering the network resources to the end users while
promising a certain level of quality of service. The solution
of LO may be not beneficial to all end users. Moreover, the
end users also have no control over how their own requests will
be split and where the different segments will be processed.

V. STACKELBERG GAME FORMULATION

The entities in the system include the network operator
and the end users associated with the edge nodes, where the
operator wants to maximize its profit by providing network and
computation resources, while the users want their requests to
be served with the lowest possible latency and minimum costs.
In practice, the operator always plans the network resources
at first, anticipating the demands of the users; then, the users

post their requests and compete for network resources in
a distributed manner, without cooperation. This interaction
forms a Stackelberg game, where the operator acts as leader
and the users with the edge nodes as followers.

A. Leader Problem - Pricing, Planning and Routing

Based on the above analysis, anticipating the users’ de-
mands of requests (q), the network operator performs the best
action by solving the following optimization problem, leading
the users towards a direction (solution) beneficial to all:

max
p,δ,γ

UOP(p, δ,γ | q), (PL)

s.t. (1) − (5), (7), (8), (10), (12), (13).

The leader problem (PL) contains both integer and continuous
variables, resulting in a mixed-integer linear programming
(MILP) problem.

After the leader solves problem (PL), it will communicate
to the followers the set of planned resources, including the
computing nodes with the specific capacities (δ) and the
routing paths to the nodes (γ) that can be used for processing
the requests and the corresponding prices (p).

B. Follower Game - Computation Offloading

After the pricing, resource provisioning/planning and re-
quest routing performed by the network operator (leader),
users (followers) compete for the edge network resources to
process their requests. Each follower decides the assignment of
its request pieces to the target edge computing nodes, aiming
to minimize the total costs in terms of payments as well as
processing and link latency.

Given the leader decisions p, δ and γ, the following sets
are defined for clarity: V ′ = {v ∈ V : Dv > 0}, Vk = {v ∈
V : bkv > 0}, E ′ =

⋃
k∈K,v∈V′ Rkv and Ek =

⋃
v∈V′ Rkv .

Then, the disutility (or total costs) of each follower k can be
defined as:

Uk(qk | q−k,p, δ,γ) =
∑
v∈V′

pkvqkvλk + wpT
k
P + wlT

k
L, ∀k,

(14)
where q−k denotes the actions of the other followers (ex-
cluding k). wp and wl are the weights for the processing
and link latency costs, respectively. T k

P and T k
L are the total

processing and link latency for each follower k, fusing the
leader decisions information. Based on their definitions (9)
and (11), they can be expressed as:

T k
P =

∑
v∈Vk

1

Dv −
∑

k′∈K:Vk′∋v q
k′vλk′ , ∀k, (15)

T k
L =

∑
e∈Ek

1

Be −
∑

k′∈K fk′
e λk′ , ∀k. (16)

Then, in the followers’ game, ∀k, the optimization problem
can be formulated as:

min
qk

Uk(qk | q−k,p, δ,γ), (PF)

s.t. (5) − (7), (10), (14) − (16),

0 ⩽ qk ⩽ 1. (17)



Each optimization in the game (PF) is a nonlinear program-
ming problem due to the processing and link latency expres-
sions (15) and (16). Furthermore, both the utility functions and
the decisions of the followers are coupled due to the latency
and the corresponding capacity constraints (7) and (10).

VI. GAME ANALYSIS

A. The Follower Game

The follower game (PF) is a Generalized Nash Equilibrium
Problem (GNEP), since each player’s payoff function depends
on both his/her own variables and that of other players due to
the latency, and the strategy of each player also depends on
the rival players’ strategies due to the coupled constraints (7)
and (10).

Lemma 1. The follower game (PF) is a potential game.

Proof. Refer to report [22]. ■

Remark. The potential function of the follower game can be
defined as:

P (q) =
∑
k∈K

∑
v∈V′

pkvqkvλk + wp

∑
v∈V′

1

Dv−
∑

k∈K:Vk∋v q
kvλk

+ wl

∑
e∈E′

1

Be −
∑

k∈K fk
e λ

k
, (18)

which satisfies ∂P (q)
∂qk = ∂Uk(q)

∂qk , ∀k.

Corollary 1.1. The follower game possesses a pure-strategy
Equilibrium.

Lemma 2. The follower game (PF) is a jointly convex GNEP.

Proof. Refer to report [22]. ■

Based on [23, Theorem 3.9], the jointly convex GNEP
can be reduced to a Variational Inequality (VI) problem
VI(Q,F(q))1, where q ∈ Q and F(q) = (∇qkUk(q))k∈K.
Specifically, every solution of the VI(Q,F(q)) is also a
solution of the jointly convex GNEP, but the opposite is
not necessarily true. Such a solution is called a Variational
Equilibrium (VE), and the variational equilibria are more
“socially stable” than other equilibria of the GNEP [23].

Lemma 3. The follower game admits a social optimal Varia-
tional Equilibrium.

Proof Sketch. Based on the derivation in Lemma 1, the Jaco-
bian matrix of the mapping F(q) can be expressed as:

JF =
[
Tkk̄

]
kk̄∈K2

=
[[

∂2Uk

∂qkv∂qk̄v̄

]
vv̄∈V′2

]
kk̄∈K2

. (19)

Then, JF is positive-definite, implying that F is strictly
monotone2. Thus, the follower game has a global unique VE
solution [23]. The next is to prove that the VE solution is also
the global minimizer of the potential function P (q) (see Eq.
(18)). The full proof is detailed in report [22]. ■

1The variational inequality problem VI(Q,F(q)) consists of finding a
vector q⋆ ∈ Q such that (q − q⋆)TF(q⋆) ⩾ 0, ∀q ∈ Q.

2A mapping F : X ⊆ Rn → Rn is strictly monotone with respect to X
if (F(x)− F(y))T(x− y) > 0, ∀x,y ∈ X and x ̸= y.

B. Stackelberg Game

This Stackelberg game is a bilevel optimization problem in
which the constraints are partially defined by another para-
metric optimization problem. In general, the bilevel optimiza-
tion may carry some ambiguities coming from the possible
non-uniqueness of the solution when solving the lower-level
problem. Hence, to tackle these ambiguities we can consider
the optimistic or the pessimistic formulation of the original
problem [24]. For this game, due to the unique followers’
equilibrium (see Lemma 3), the optimistic and pessimistic
bilevel optimizations coincide with the following formulation:

max
p,δ,γ,q

UOP(p, δ,γ, q), (BP)

s.t. (p, δ,γ) ∈ P,

q ∈ GNEP(p, δ,γ),

where P represents the domain of leader decisions p, δ,γ and
GNEP(p, δ,γ) represents the generalized Nash equilibria of
the non cooperative game among the followers defined above.
Note that even a linear bilevel programming problem was
proved to be strongly NP-hard [25].

Lemma 4. The full game admits at least one global Stackel-
berg Equilibrium.

Proof. Refer to report [22]. ■

A typical approach to solve the problem BP is to re-
formulate it as a Mathematical Program with Equilibrium
Constraints (MPEC) problem, in which the lower-level (fol-
lower) GNEP problem is replaced by the VI constraints,
i.e., q ∈ S(p, δ,γ), where S(·) denotes the solution for
VI(Q,F(q |p, δ,γ)). However, since the upper-level (leader)
problem is a MILP (see Section V-A), the problem becomes a
Mixed-Integer MPEC (MI-MPEC) involving both continuous
and discrete variables, which is extremely hard to solve, both
theoretically and computationally.

VII. HEURISTICS

Since solving the original optimization problem is compu-
tationally cumbersome in realistic network scenarios, in this
section, we propose an approximate solution approach for the
bilevel optimization problem, and then we design an iterative
algorithm to implement it.

A. Followers’ Best Response Dynamics

From Lemmas 1 and 3, the follower game is a potential
game having a social optimal equilibrium, which then can be
solved with best response dynamics. Given the leader’s deci-
sions p, δ and γ, the followers perform their best responses
in parallel in an iterative way from a feasible starting point
q0. Specifically, each follower k ∈ K separately optimizes
its objective, given the reactions in the previous iteration of
the other followers q−k

i . The iteration process is written as
qk
i+1 = argminqk∈Qk Uk(qk | q−k

i ,p, δ,γ), ∀k. The iteration
repeats until the Generalized Nash Equilibrium is reached
by checking if the followers’ objective function values or



Algorithm 1 Initial Request Scheduling Estimation
1: For each request k ∈ K, estimate the minimum number of

computing nodes needed to process it (nk = ⌈ λk

max{La}⌉) and
select the best nk candidate nodes from the neighbors of k’s
ingress node sk (bkv);

2: Assign all requests fairly (bkv , qkv) to their corresponding
candidate nodes based on λk and max{La} values, considering
the sharing status of nodes;

3: If any candidate node’s capacity constraints are violated, find
more neighbor nodes to completely process all requests and then
go to step 2.

the decisions have converged to a fixed value. Note that the
starting point q0 will be estimated by Algorithm 1.

B. Computation of the Solution of the Stackelberg Game
In the followers’ game all requests are enforced to be served,

hence the leader can first set the price p in a dominant strategy
to the upper bound pU. Then, the leader makes decisions on the
planning of computation resources (δ) and the request routing
(γ), anticipating the followers’ best reactions. However, the
routing variables γ and request allocation variables q are
“intertwined”: to find the optimal routing, the fraction of each
request processed at each node v should be known, and at
the same time, to solve the optimal resource allocation for a
request, the routing path should be known.

To tackle the above reciprocal dependence, the leader could
first consider the resource allocation/scheduling subproblem
estimating where to process the requests, and that is indicated
by the binary variable bkv . This can be useful to preliminarily
limit the range of the destination nodes and estimate the
initial placement of the requests. To this end, we propose a
local neighborhood search heuristic considering the rates of
requests in different ingress nodes and the maximum capacity
of computing nodes. The detailed procedure is illustrated in
Algorithm 1, which estimates the initial request scheduling so-
lution in a greedy manner. It searches the neighbor computing
nodes to accommodate the requests considering fair sharing
of computing capacity by different requests on any computing
node. It finally returns the initial solution of q.

Given the initial solution of q, the leader can optimize its
own strategy to get the initial solutions for the computing
resources planning δ and the request routing γ. Based on the
above solutions, the followers play in a non-cooperative game
taking their best responses. The follower game will converge to
a social optimal equilibrium, refining the requests placement.
Furthermore, based on the reactions of the followers, the
leader optimizes its own strategy making the followers replay
a new game. This results in an iterative process/procedure
of reactions of both the leader and the followers until their
strategies converge to a Stackelberg Nash Equilibrium (SNE)
(see Algorithm 2). Note that the estimated initial placement
of the requests (see Algorithm 1) may be redundant to ensure
feasibility, which is eventually refined during the iterations.

Lemma 5. With normal (i.e., sequential/non-distributed) best
response dynamics of followers, Algorithm 2 converges to a
local Stackelberg Equilibrium.

Algorithm 2 Computation of the SG’s Solution
1: Initialize q0 ∈ Q (Algorithm 1), j = 0;
2: while SNE is not reached do
3: Leader: (p, δ,γ)j+1 = argmin

(p,δ,γ)∈P

UOP(p, δ,γ | qj);

4: Followers: qj+1 = BestResponse(qj , (p, δ,γ)j+1);

Proof. Refer to report [22]. ■

C. Complexity Analysis

Here we provide a coarse-grained analysis of the complexity
of the algorithms. Algorithm 1 aims at producing an initial
estimation of request scheduling. In the worst case, assuming
all requests K fairly share the computing capacities of the
same nodes, the pre-scheduling will be recomputed each time
a new overbooking happens at any computing node until all
requests are well fitted. Then, the complexity is O( |K|

∑
λk

max{La} ).
Algorithm 2 aims at computing the equilibrium. Following the
proofs of Lemma 5, the algorithm converges along with the
decreasing of Dv value for all nodes until a certain accuracy ϵ
is reached, then the worst-case complexity is O( 1ϵ (O(OPT)+
O(BR))), assuming O(OPT) and O(BR) are the complexity
of the leader optimization and the followers best response,
respectively.

VIII. NUMERICAL RESULTS

In this section we evaluate the performance of the proposed
game model and leader-optimal approach in terms of the profit
of the operator (leader), costs of the users (followers) and the
computing time for the solution. We first illustrate the network
topologies considered in the numerical evaluation campaign
and the experimental setup, then discuss the results obtained
in different network scenarios.

Network Topologies: Multiple network topologies are con-
sidered in our evaluation, consisting of several random graphs
as well as a topology built on a real network scenario. Table I
shows the structural information for all network topologies.

1) Random graphs: We first consider Erdös-Rényi random
graphs [26], generating several topologies with different num-
bers of nodes and edges, starting from simple to large and
dense networks. They can be considered as representatives of
various edge networks where edge nodes are distributed and
connected with each other in different ways over the territory.

2) A real network scenario: We further consider a topology
based on a real network scenario with the actual deployment of
Base Stations (BSs), where the information of BSs is collected
from an open database, OpenCellID [27]. This topology was
first introduced in [18], but we use it in a different context,
solving the game theoretic resource allocation problem.

TABLE I: Structural information of the considered topologies

Topology #Nodes #Edges #Ingress Degree (Min, Max, Avg) Diameter

5N5E 5 5 3 (1.0, 3.0, 2.0) 3
10N20E 10 20 4 (3.0, 5.0, 4.0) 3

CittàStudi 30 35 6 (1.0, 6.0, 2.3) 10
50N50E 50 50 10 (1.0, 4.0, 2.0) 15

100N150E 100 150 20 (1.0, 7.0, 3.0) 9



Experimental Setup: Our model and approaches are im-
plemented based on an open-source solver SCIP (Solving
Constraint Integer Programs) [28]. The parameters of SCIP
are set to the default in our experiments. All numerical results
presented in this section are obtained on a server equipped
with an Intel(R) Xeon(R) E5-2640 v4 CPU @ 2.40GHz and
126 Gbytes of RAM. The results illustrated in the following
figures are obtained by averaging up to 30 instances, with 97%
confidence intervals.

For each network, we select the source (ingress) nodes
uniformly at random. The number of ingress nodes varies from
3 to 20 according to the size of the network topologies.

In Table II, we summarize the reference values defined
for the main parameters, which represent a scenario with a
high load of requests compared to the computation capacity
of nodes. The request rates result from the aggregation of
requests generated by the users at a given ingress node. In
case of smart metropolitan areas, the network capabilities and
requirements of MEC hosts are investigated in a survey [29],
based on which, we set the parameters for our demands.
We generate random request rates on the ingress nodes of
the network topologies according to a Gaussian distribution
N(λk, σ2), where λk is uniformly selected varying from 30
to 55 Gbps and σ = 0.5. The link bandwidth is set in the 50 to
100 Gbps range. We set three possible levels for computation
capacity: 30, 40 and 50 Gbps, as it happens in typical cloud
IaaS, where users see a predefined computation service offer.
The computation budget is set in the range 300 to 4000 Gbps
according to the size of network and the corresponding ingress
nodes. The cost factors of the bandwidth and computing
resources are set to 0.25 and 0.5 respectively. The latency
weights for both user and operator are set to different values
for different priorities.

In our experiments, the request rates at ingress nodes are
scaled up to 3 times to cover extreme cases, for which almost
all the requests cannot be served with only the computing
resources of their respective ingress nodes, and therefore must
be offloaded to other edge computing nodes. Finally, note that
our proposed model and heuristics are general, and can be
applied to optimize resource allocation in all network scenarios
with any parameter settings.

Discussion of Results: In the following, we first compare
the results obtained from both the Stackelberg game (SG)
and leader-optimal (LO) approaches for the relatively small
network scenarios including the 5N5E network with 3 requests

TABLE II: Parameters setting - initial (reference) data (for the
case of high incoming request load).

Parameter Initial value

Request rate λk (Gbps) 30 ∼ 55 (k ∈ K)
Link bandwidth Be (Gbps) 50 ∼ 100 (e ∈ E)
Computation level La (Gbps) 30, 40, 50 (a ∈ A)
Computation budget P (Gbps) 300 ∼ 4000
Cost factors θv , ϕe 0.25, 0.5 (v ∈ V, e ∈ E)
Price bounds pL, pU 0.1, 1.0
Latency weights (user) wp, wl 10
Latency weights (operator) ξp, ξl 0.1

and the 10N20E with 4 requests. Note that the centralized
LO approach can obtain results in a reasonable computing
time only for such small networks, since this latter increases
exponentially with the network scale. Even for the 10N20E
network, the average computing time is already larger than
104 seconds. Subsequently, we analyze the solution mainly
obtained by SG for 3 large network scenarios, including one
real network (CittàStudi scenario, with 6 requests) and two
random network topologies: 50N50E with 10 requests and
100N150E with 20 requests respectively.

SG is a semi-distributed approach, where the leader co-
ordinates with the fully distributed followers, achieving a
Stackelberg equilibrium beneficial to all entities, while LO is a
centralized optimization approach standing for the interests of
the leader. Besides, the LO approach can be tuned to consider
different settings of latency weights ξ (see the objective
function in model (LO), where here the subscripts p, l are
omitted for simplicity), which represent to what extent the
leader cares about the processing and link latencies as a part
of the followers’ objectives. Higher values (ξ = 1 or 10 in
the following figures) correspond to giving more weight to the
latencies experienced by the followers, lower values (ξ = 0.01
or 0.1) give instead more weight to the profit UOP of the
network operator. The default values are set in Table II.

Fig. 2 illustrates the variations of the leader profit and user
disutility against the request rate λk, which is scaled (∀k) w.r.t.
the initial value reported in Table II of a factor between 0.5
and 1.75. The solutions obtained by SG and LO are compared
for the 5N5E network. From Fig. 2, it is clear that SG, as a
semi-distributed approach, achieves indeed a high leader profit,
which is close to the best profit obtained by the centralized
LO approach with an average ratio 0.94, and at the same time,
causes low disutility (costs) for the followers (in average 0.67
times that obtained with LO).

In Figs. 2(a) and 2(b), for the LO approach, a lower latency
weight ξ can lead to a higher profit for the leader/network
operator, but it also causes higher disutility (costs) for the
followers/users. For SG, in the worst case (at scale 1.25),
compared with LO (with ξ = 0.01), it obtains 0.84 times
the profit for the leader, but only causes less than half (0.47)
times the disutility for users. Fig. 2(c) compares the disutility
of each user for SG and LO with the default weight (ξ = 0.1),
where SG obtains lower disutility for each user than LO.

In summary, in the considered scenarios, users are better
off under the SG than the LO approach, while obtaining
at the same time a profit for the network operator which
is comparable or close to that obtained with the centralized
LO approach. This indeed justifies our choice to solve the
resource planning and assignment problems using SG in
network environments where it is intrinsically unpractical or
difficult to devise a completely centralized solution.

In fact, when the request rate is low, SG can easily obtain
the best solution. As the rate increases, the solution space
becomes too large to be explored efficiently, and SG will
find suboptimal solution in terms of leader profit, but it still
achieves a very good balance between leader profit and user
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Fig. 2: Comparison of Stackelberg Game (SG) and Leader Optimal (LO) solutions, scaling the request rate λk,∀k in the 5N5E
scenario with 4 players including 3 followers and 1 leader (the network operator).
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Fig. 3: Comparison of SG and LO (ξ = 0.1), scaling λk,∀k in the 10N20E scenario with 5 players (4 followers and 1 leader).

disutility due to the Stackelberg equilibrium that is reached.
When the request rate reaches a higher level, e.g., at scale
1.75 for the 5N5E network, close to the saturation, the solution
space shrinks, and SG can obtain the best solution.

Fig. 3 compares the results obtained in network 10N20E.
Considering the LO approach takes a long time and large
computing resources to obtain the solution, we only illustrate
the case where LO uses the default latency weight (ξ = 0.1).
Figs. 3(a) and 3(b) show similar trends to the ones in Fig. 2;
SG achieves lower leader profit with a lowest ratio 0.84 and
average ratio 0.92 to LO, but better disutility than LO with
lowest ratio 0.65 and average ratio 0.80. As shown in Fig. 3(c),
SG achieves a better disutility, (which increases somehow
monotonically with the requests’ rates) than LO for each user.

Table III compares SG and LO w.r.t. leader profit, average
disutility and computing time in three large network scenarios,
i.e., CittàStudi, 50N50E and 100N150E (for LO, due to its high
computing time, only 3 points are shown). For CittàStudi and
50N50E, the leader profit and average disutility achieved by
SG overlap with that of LO at scale point 0.5. For points 1.0
and 2.0, the leader profit obtained by SG is lower than LO,
while the average disutility is better than LO. The minimum
and average ratios for the leader profit are 0.86 and 0.93,
for the average disutility, 0.57 and 0.74, respectively. For
100N150E, LO cannot find a solution in an acceptable time.
Indeed, comparing computing time, SG is extremely fast for
all network scenarios.

The average number of iterations and computing time for
the convergence of SG are reported in Table IV in different
network scenarios. SG can converge to a local Stackelberg
equilibrium within few iterations and few seconds: even for

the largest considered topology (100N150E), SG needs only
23 iterations and 9 seconds in average. For CittàStudi, the
topology is close to a tree shape, resulting in straightforward
routing strategies. Therefore, SG needs less iterations for
CittàStudi than 10N20E, but a longer computing time due to
the larger problem scale. Similar properties apply to 50N50E

TABLE III: Comparison of solutions in different scenarios.

Scaling requests
λk,∀k

Leader Profit Avg. Disutility Comput. Time (s)

SG LO SG LO SG LO

Città Studi

0.5 82.28 82.28 22.82 22.82 0.10 560.61
1.0 153.30 177.25 44.20 77.13 1.16 3518.60
1.5 205.24 - 67.66 - 1.84 -
2.0 248.58 265.44 95.46 148.58 5.80 621755.30
2.5 265.63 - 115.57 - 8.51 -
3.0 317.33 - 138.58 - 9.52 -

50N50E

0.5 129.61 129.61 21.66 21.66 0.13 17383.41
1.0 266.83 298.65 46.31 63.32 2.10 25255.48
1.5 338.11 - 65.39 - 1.96 -
2.0 397.30 441.44 95.27 141.23 2.07 129818.94
2.5 472.62 - 117.52 - 1.94 -
3.0 498.70 - 132.80 - 1.73 -

100N150E

0.5 238.14 - 20.56 - 0.20 -
1.0 527.50 - 44.45 - 1.35 -
1.5 627.31 - 61.78 - 8.12 -
2.0 773.92 - 84.46 - 9.77 -
2.5 909.33 - 113.08 - 14.44 -
3.0 981.64 - 127.31 - 22.74 -

TABLE IV: Average iterations and computing time (sec) for
the convergence of SG in different scenarios.

5N5E 10N20E CittàStudi 50N50E 100N150E

Avg. Iteration 11 16 14 5 23
Avg. Comput. Time 2.07 3.89 4.16 1.45 9.06
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Fig. 4: Convergence of SG (a) and computing time (b).

which has a simple semi-tree topology.
Fig. 4(a) illustrates the convergence process of SG. For

clarity, we select the 5N5E network with request rate λk

scaled to 1.8 ∀k, which almost saturates the network. The
oscillating waves of the followers and the slightly decreasing
curve of the leader reflect the convergence process. At first,
the leader estimates the required resources and the initial
assignment of requests, and optimizes its strategy. Then,
given these decisions, the followers compete for the resources
targeting at their own objectives in a distributed way, reaching
a subgame equilibrium (in about 5 iterations); the leader
reacts again given the followers’ decisions, and this process
repeats until convergence to a local Stackelberg equilibrium.
Fig. 4(b) shows the computing time of SG and LO for different
networks. For LO, it increases exponentially as the problem
scale increases, while for SG, it is almost around 10 seconds.
Due to the tree-shape topologies of CittàStudi and 50N50E, the
computing time is not that higher than 10N20E. Finally, LO is
unable to obtain results in a reasonable time for 100N150E.

IX. CONCLUSION

In this paper we investigated the joint optimization of
network planning and request scheduling in edge computing
networks and formulated it as a Stackelberg game, where
the network operator, as market leader, plans and prices
edge computation and communication resources, and provides
routing paths for end user requests to maximize its profit, while
edge users, as followers, compete for the network resources
and schedule their requests to be served to minimize costs
as well as link and processing latency. We proved that the
follower subgame admits generalized Nash equilibrium, and
the full leader-follower game admits Stackelberg equilibrium.
We proposed an algorithm to find the local Stackelberg equi-
librium that is guaranteed to converge, which runs extremely
fast even for large-scale networks, and achieves high leader
profit, close to the leader-optimal (LO) solution, while at the
same time causing much lower user disutility than LO.
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[3] S. Jošilo and G. Dán, “Decentralized algorithm for randomized task
allocation in fog computing systems,” IEEE/ACM Trans. Netw., vol. 27,
no. 1, pp. 85–97, 2018.

[4] L. Gu, D. Zeng, J. Hu, B. Li, and H. Jin, “Layer aware microservice
placement and request scheduling at the edge,” in IEEE INFOCOM,
2021, pp. 1–9.

[5] J. Zhou, D. Tian, Z. Sheng, X. Duan, and X. Shen, “Distributed task
offloading optimization with queueing dynamics in multiagent mobile-
edge computing networks,” IEEE Internet of Things Journal, vol. 8,
no. 15, pp. 12 311–12 328, 2021.

[6] S. Deng et al., “Optimal application deployment in resource constrained
distributed edges,” IEEE Trans. Mob. Comput., vol. 20, no. 5, pp. 1907–
1923, 2020.

[7] P. Lai et al., “Quality of experience-aware user allocation in edge com-
puting systems: A potential game,” in IEEE ICDCS, 2020, pp. 223–233.

[8] Y. Chen, Z. Li, B. Yang, K. Nai, and K. Li, “A stackelberg game
approach to multiple resources allocation and pricing in mobile edge
computing,” Future Gener. Comput. Syst., vol. 108, pp. 273–287, 2020.

[9] Q. He et al., “A game-theoretical approach for user allocation in edge
computing environment,” IEEE Trans. Parallel Distrib. Syst., vol. 31,
no. 3, pp. 515–529, 2019.

[10] S. Ma, S. Guo, K. Wang, W. Jia, and M. Guo, “A cyclic game for
joint cooperation and competition of edge resource allocation,” in IEEE
ICDCS, 2019, pp. 503–513.

[11] H. Zhou, Z. Wang, N. Cheng, D. Zeng, and P. Fan, “Stackelberg
game-based computation offloading method in cloud-edge computing
networks,” IEEE Internet of Things Journal, 2022.

[12] S. Huang, H. Huang, G. Gao, Y.-E. Sun, Y. Du, and J. Wu, “Edge
resource pricing and scheduling for blockchain: A stackelberg game
approach,” IEEE Trans. Serv. Comput., 2022.

[13] S. Long, W. Long, Z. Li, K. Li, Y. Xia, and Z. Tang, “A game-
based approach for cost-aware task assignment with QoS constraint
in collaborative edge and cloud environments,” IEEE Trans. Parallel
Distrib. Syst., vol. 32, no. 7, pp. 1629–1640, 2020.

[14] K. Poularakis, J. Llorca, A. M. Tulino, I. Taylor, and L. Tassiulas,
“Joint service placement and request routing in multi-cell mobile edge
computing networks,” in IEEE INFOCOM, 2019, pp. 10–18.

[15] X. Ma, S. Wang, S. Zhang, P. Yang, C. Lin, and X. Shen, “Cost-
efficient resource provisioning for dynamic requests in cloud assisted
mobile edge computing,” IEEE Trans. Cloud Comput., vol. 9, no. 3,
pp. 968–980, 2019.
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