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Abstract—Identification of abnormal and malicious traffic in
the Internet-of-Things (IoT) network is critical for IoT security.
However, it is worth noting that the majority of recent efforts
demand a large amount of tagged traffic to train a machine-
learning model. In this paper, we develop MetaIoT, an intelligent
approach for identifying malicious traffic. MetaIoT is more
accurate and more difficult for attackers to circumvent by taking
into account both the local attributes of each traffic source and
their global relationships. In MetaIoT, we begin by considering
the heterogeneous and dynamic nature of traffic. Then, we
introduce a heterogeneous graph (HG) to model the relationships
between traffic and employ a relation-based heterogeneous graph
attention network to learn node (i.e., traffic) representations
over the built HG. Alternatively, MetaIoT addresses the issue
of needing enough data for model training through the meta-
learning technique. After conducting a comprehensive compar-
ison with the baseline through experiments, our model demon-
strated superior performance in few-shot learning scenarios,
obtaining an accuracy score of 91.65% and an F1 score of
90.33%. When compared with current state-of-the-art IoT traffic
detection models, our model showed the best results.

Index Terms—IOT network security, meta-learning, heteroge-
neous information network, graph neural networks

I. INTRODUCTION

International Data Corporation (IDC) estimates that there
will be 41.6 billion connected IoT devices in 2025 [1]. The
IoT security situation is worsening with adversaries creat-
ing malicious network traffic, resulting in device corruption,
DoS attacks, and malware installations. One such attack was
launched in 2016, famously known as the Mirai attack [2].
Identifying malicious attacks by detecting traffic is one of the
easiest and most effective defences.

In the literature, malicious IoT traffic detection is performed
by first extracting statistical and behavioral network traffic
features [3], and then using machine learning methods, such as
LDA, RF, CART, SVM, LSTM, etc. These studies construct
classifiers using attributes taken from malicious Internet of
Things (IoT) traffic, logs, or other enrichment data. Because
they deal with each region separately and rely on manual
features, feature-based systems can be readily evaded by
well-designed attacks from smart opponents, even when they
attain high performance in their ratings. To tackle this issue,
researchers suggest a neural network-based learning algorithm
that can extract deep harmful flow characteristics [4], [5]. In
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order to recognize anomalous behaviors, Yujia Li et al. [6]
created a Gated Recurrent Neural Network (GRNN), whose
output is sent into the detector engine. For the security of IoT
networks, Khan et al. [7] proposed a unique bidirectional SRU-
driven DL model leveraging skip connections. However, some
of these systems can’t properly uncover the intricate linkages
between traffic because of the limitations of these neural
network models, leaving significant information untouched.

The graph structure is a model that can effectively depict the
relationship mentioned above, but conventional machine learn-
ing algorithms place too much emphasis on attributes, making
it difficult for them to comprehend graphical data. Known as
the Heterogeneous Information Network (HIN) [8], the real-
world network often has a variety of nodes and edges. It
follows that malicious traffic might be distinguished from HIN.
In this research, we shall refer to such intricate networked
data without distinction using the terms ‘HIN’ and ‘HG’
(heterogeneous graph). Because the heterogeneous graph has
richer semantics and more extensive information, we utilize it
as the input of our model. The structure of metapath [9], which
is a composite relation between two objects, is frequently
utilized to understand these semantics. For such graphical
data, the Graphical Neuronal Network (GNN), a potent deep-
representation learning technique, has demonstrated improved
performance in network analysis. According to [10], by taking
into account the attention mechanism in heterogeneous graph
learning, it is possible to successfully learn information from
numerous meta-path specified connections.

Furthermore, the majority of recent efforts demand enough
labeled data to train the model for the detection of malicious
internet of things traffic. For instance, [11]–[13] develop the
IDS system using the entire Ton IoT dataset [14]. Obtaining
labeled samples in the real world is always expensive, and
existing algorithms may struggle to detect fraudulent traffic
due to the lack of labeled data.

In this paper, we offer a comprehensive system called
MetaIoT (as illustrated in Figure 3) to automatically detect
malicious IoT traffic in smart settings, in order to overcome
the aforementioned issues. Initially, we construct a hetero-
geneous graph based on traffic features. The created HG is
capable of thoroughly characterizing the intricate IoT traffic
ecosystem. Then, we employ a relation-based heterogeneous
Graph Attention Network (HAN) [8] to combine relational



information about entities and to get the first node embeddings
over the constructed HG. Besides, we suggest a meta-learning
architecture to efficiently adapt knowledge from training tasks
to testing tasks in order to address the problem of few labeled
samples (e.g., new types of malicious traffic with few labeled
samples). MetaIoT is trained and optimized through several
comparable few-shot learning tasks to improve generalization
of learning new tasks as opposed to existing popular GNNs-
based models that just depend on the auxiliary information
of nodes and aggregated information from neighbors. To
summarize, the following are the primary contributions of our
work:

• In a realistic scenario, the proportion of attack traffic is
small, therefore we adjust the dataset such that malicious
traffic only accounts for 3% of normal traffic to simulate
the traffic distribution in real-life scenarios. Furthermore,
based on the dataset, we analyze the characteristics of
the attacker’s resource concentration and the distribution
difference of commonly used ports for different types of
traffic. Subsequently, we have constructed an heteroge-
neous graph representation of the IoT traffic, utilizing
these findings.

• Considering the dynamic and heterogeneous nature of
most real-world IoT traffic, we introduce a scalable
and heterogeneous GCN module. MetaIoT can support
inductive learning in HIN and handle its node features
and graph structure information simultaneously, fully ex-
cavating the relationship between traffic and transferring
it to the node embedding, using meta-path guided short
walks and attention-based aggregations.

• We propose a new graph few-shot learning system for
malicious IoT traffic in response to the problem of
scarcely labeled traffic data.It differs from previous work
in that we intend to classify malicious nodes into new
classes using only a few samples.

• Comprehensive experiments compared with the baseline
and several state-of-the-art IoT traffic detection models
demonstrate the outstanding performance of MetaIoT. As
IoT security attack events have continued to increase
over the past decade across the country, our proposed
technique will have a significant societal impact to help
address this critical issue.

II. BACKGROUND AND RELATED WORK

In this section, we first introduce backgrounds about
Ton IoT dataset [14]. Then we recap the basic concepts in
heterogeneous graph attention network and Meta-learning as
MetaIoT mainly relies on these two models.

A. Ton IoT Dataset

Ton IoT is a collection of data sets that are a new generation
of IoT and Industrial IoT (IIoT) data sets for evaluating the
fidelity and efficiency of different cybersecurity applications
based on artificial intelligence (AI) [14]. They are targeted
towards applications including adversarial machine learning,
intrusion detection, threat intelligence, and privacy-preserving

models. The data sets were given the name ”Ton IoT” since
they were compiled from a variety of sources, including
data sets from network traffic, Windows 7 and 10 operating
systems, as well as Ubuntu 14 and 18. The Ton IoT dataset
contains threats related to backdoors, DDoS, DoS, scanning,
injection, ransomware, man-in-the-middle (MitM), cross-site
scripting (XSS), and password attacks, and consists of 300,000
normal and 161,043 threat observations.

B. Heterogeneous Information Network

Recently, there has been more attention on the differences
between various components and linkages in real-world sys-
tems, instead of treating them as uniform networks. Hetero-
geneous Information Networks (HINs) contain multiple types
of nodes and edges, each with unique features. HINs are
commonly used in data mining because they provide more
information and rich semantics. Relationships between nodes
are represented by ”meta-paths” which can vary in meaning.

C. Heterogeneous Graph Attention Network

Graph neural networks are a powerful approach for graph
representation in deep learning and have shown great results.
However, they face challenges when applied to heterogeneous
graphs with rich semantic information. HAN is a new hetero-
geneous graph neural network that uses hierarchical attention,
including node-level and semantic-level attentions, to handle
this complexity. The semantic-level attention focuses on the
significance of each meta-path, while the node-level attention
focuses on the importance of a node and its neighbors. The
final node embedding is obtained through attention-based
aggregations and graph convolutions.

D. Meta-learning

Within the context of the meta-learning paradigm, we look
at the few-shot node classification issue. In other words, our
goal is to create a classifier that can be adjusted to new classes
that weren’t present during training, provided a small sample
size for each new class. Each node νi in the training set Dtrain

formally belongs to a class in C1. A given disjoint testing set
Dtest’s nodes are connected to entirely distinct new classes C2.
Only a few nodes in Dtest have labels or classes accessible.
Finding a function f with a low misclassification rate that
can categorize the remaining unlabeled nodes into one of the
classes in C2 is our objective. The job is characterized as a
|C2|-way K-shot learning problem, where K is a relatively
small integer, if there are K labeled nodes in each class.

III. DATA ANALYSIS

This section describes the differences we observe between
different traffic families from the perspectives of ip ad-
dress, ports, and Traffic level statistical characteristics (e.g.,
source bytes, destination bytes). We design the architecture of
MetaIoT based on these observations.

According to [15], we know that malicious attackers are
resource concentrated. They are unlikely to have a large pool
of resources and thus have to reuse the resources they already



Fig. 1. IP address distribution of traffic

have. This aggregation pattern is especially exhibited for re-
sources such as ip addresses. Figure 1 displays the distributions
of IP addresses mapped to dos traffic, scanning traffic and nor-
mal traffic. We were able to see that for malicious traffic(dos
and scanning traffic), the royal dots display strong signals
that some traffic is corresponding to a specific number of IP
address. In the meantime, the royal dots disperse more evenly
around the IP address space for normal traffic. And different
types of traffic show different distribution patterns. We assume
that this is the case because attackers are unlikely to possess
a large number of IP addresses, hence their distribution shows
a relative aggregation trend.

We discovered through the experiments in [16] that various
server ports interact with various device kinds. Therefore, we
decided to compare the port distribution of different types
of traffic in the Ton IoT dataset to verify whether the port
characteristics help us to classify the traffic. Figure 2 displays
a word cloud of the source port numbers for three different
forms of malicious traffic as well as legitimate traffic. If a
port is utilized more frequently for a certain type of flow,
it is shown in the corresponding word cloud by a greater
font size. It is clear that various traffic types—including dos,
backdoor, mitm, and normal—converse with distinct number
of server ports. Based on the above findings, we consider
traffic, ip address and port as nodes, where the feature vector

(a) dos flow (b) backdoor flow

(c) mitm flow (d) normal flow

Fig. 2. Word-cloud of port numbers for different traffic (the more a port is
used, the larger the display font)

of the traffic node consists of time features (duration), service
fields and some traffic statistics features (e.g. Number of
original/destination packets, Number of original/destination IP
bytes).

IV. METHODOLOGY

The proposed model MetaIoT has four main components:
Data Handler, HIN Constructor, Node Embedding Learner,
and Meta Classifier. The data is preprocessed and stored, then
an HIN is built to represent the connections in the dataset.
To increase efficiency and reduce pollution, some nodes are
removed. The GNN is then applied to the HIN to learn node
embedding through attention-based aggregations. To handle
the challenge of adapting to new classes, the model uses the
MAML algorithm for meta-learning. The Meta Classifier is
trained to quickly adapt to new tasks using a small number
of samples. The performance of MetaIoT is evaluated through
meta-testing on new classes.

A. Data Handler

To satisfy our model MetaIoT, we need to transform dig-
ital and non-digital features to vector. In regard to string
feature like service, connection state and protocol, we use
sentence-transformers to compute text embedding. Sentence-
transformers framework uses siamese and triplet network
structures to generate meaningful text embeddings. These
embedding could be used in HAN to compute node similarity.
Under the same reason, we use K-bins discretization to parti-
tion continuous features into discrete values. For the missing
values in the feature, we assign them to a new value to avoid
affecting other attribute values.

B. HIN Constructor

MetaIoT neatly models the Ton IoT dataset as an HIN
consists of three different types of nodes, namely traffic, IP ad-
dresses, and ports, as illustrated in Figure 3. To represent their
relationships, we construct the following adjacency matrices.

R1: To represent relations between traffics and source IP,
we build the traffic-from-IP matrix M where element M (i, j)
= 1 if traffic i is from IP j , otherwise, M (i, j) = 0 .



Fig. 3. System architecture of MetaIoT.

R2: To describe relations between traffics and destination
IP, we build the traffic-to-IP matrix Q where element Q (i, j)
= 1 if traffic i have destination IP j , otherwise, Q (i, j) = 0.

R3: To describe the relation of traffic and source port. We
build the traffic-from-Port matrix U where each element U (
i,j ) ⊂ 0, 1 denotes whether traffic i source from Port j or not.

R4: To describe the relation of traffic and destination port.
We build the traffic-to-Port matrix U where each element U (
i,j ) ⊂ 0, 1 denotes whether traffic i have destination Port j or
not.

MetaIoT uses four symmetric meta-paths to identify mali-
cious traffic. P1 focuses on resource aggregation by attackers
and P2 uses the port feature to categorize different types of
traffic linked to the same port.

C. Node Embeddings Learner

Node-level Attention: We use node-level attention to iden-
tify the significance of each traffic node’s neighbors based
on meta-paths in the heterogeneous graph. We create a type-
specific transformation matrix for each node type to project
their features into the same space for embedding learning. [17].
Diverse kinds of nodes have different feature spaces as a result
of the heterogeneity of nodes. In order to project the features
of several node types into the same feature space, we create
the type-specific transformation matrix Aϕi

for each kinds
of nodes. The following diagram illustrates the projection
process:

s
′

i = Aϕi
· si (1)

We transform node i’s original features (s
′
) into projected

features (si) using a type-specific transformation matrix. Then,
we use self-attention to weigh the significance of each node
type. The node-level attention rϕij , or the significance of node j
to node i in a meta-path-connected node pair (i,j), is calculated
as follows:

rϕij = Att(s
′

i, s
′

j ;ϕ). (2)

The deep neural network Att is used here to execute
node-level attention. Given a meta-path, the preceding Eq.(2)
demonstrates that the weight of a meta-path-based node pair
(i,j) relies on its characteristics. Then we calculate the rϕij for
j ∈ N , where N stands for the neighbors of node i based
on the meta-path (including itself). The weight coefficient ξϕij
is obtained using the softmax function after normalizing the
relevance between meta-path based node pairs:

ξΦij = softmaxj
(
rΦij

)
=

exp
(
σ
(
vT
Φ ·

[
s′i∥s′j

]))∑
k∈NΦ

i
exp

(
σ
(
vT
Φ · [s′i∥s′k]

)) (3)

where σ denotes the activation function, ∥ denotes the
concatenate operation and vϕ is the node-level attention vector
for meta-path ϕ. The weight coefficient ξϕij of (i,j) is dependent
on their characteristics, as can be shown from Eq. (3).



The neighbor’s projected features may then be combined
with the associated coefficients to aggregate the meta-path
based embedding of node i as shown below:

zΦi = σ

 ∑
j∈NΦ

i

ξΦij · s′j

 (4)

where zϕi is the learned embedding of node i for the meta-path
ϕ.

We extend node-level attention to multihead attention to
address the aforementioned problem and increase the stability
of the training process. To create the semantic-specific embed-
ding, we concatenate the learnt embeddings after repeating the
node-level attention N times.

zΦi = ∥Nn=1σ

 ∑
j∈NΦ

i

ξΦij · s′j

 (5)

Given the meta-path set {ϕ1, ..., ϕP }, we may acquire p sets of
semantic-specific node embeddings after feeding node charac-
teristics into node-level attention, labeled as {ZΦ1

, . . . ,ZΦP
}.

Semantic-level Attention: Semantic-specific node embed-
dings can only represent a node from one aspect. We need to
combine several semantics, which meta-paths can reveal, to
develop a more thorough node embeddings [16]. Using P sets
of semantically distinct node embeddings discovered by node-
level attention as input, the learned weights of each meta-path
{εΦ1

, . . . , εΦP
} can be shown as follows:

(εΦ1
, . . . , εΦP

) = Att (ZΦ1
, . . . ,ZΦP

) (6)

The deep neural network named Att is used here to carry
out semantic-level attention.

We evaluate the importance of each meta-path by nonlin-
early transforming the semantic-specific embedding and com-
paring it with a semantic-level attention vector. The meta-paths
are then weighted based on their relevance when averaging
all the semantic-specific node embeddings. The importance of
each meta-path, denoted as τϕi

, is shown as follows:

τΦp
=

1

|V|
∑
i∈V

qT · tanh
(
W · zΦp

i + b
)

(7)

where q is the semantic level attention vector, b is the bias
vector, and W is the weight matrix. We use the softmax
function to normalize each meta-path after determining its
significance. By using the softmax function to normalize the
above significance of all meta-paths, it is possible to determine
the weight of meta-path ϕi denoted as βΦp

.

εΦp
=

exp
(
τΦp

)∑P
p=1 exp

(
τΦp

) (8)

This might be interpreted as the meta-path Φp’s contribution
to a particular task. Naturally, the larger εΦp

, the more
significant the meta-path Φp is. Keep in mind that the weights
of metapath Φp might vary depending on the job. We can
combine these semantically specialized embeddings using the

learned weights as coefficients to get the final embedding Z,
which looks like this.

Z =

P∑
p=1

εΦp
· ZΦp

(9)

All semantic-specific embeddings are combined to form the
final embedding. The finished embedding may then be applied
to certain tasks and alternative loss functions can be designed.

D. Meta Classifier

After the Node Embeddings Learner, the nodes on the
graph already learn the relationship knowledge between nodes
through HAN. We now demonstrate how to employ these
embeddings to resolve the few-shot IoT traffic classification
learning issue (also known as the Tmt meta-testing task)
by training on previously sampled similar tasks (i.e., meta-
training tasks).

The training and testing sets that correspond to each task
are referred to as the support set and query set, respectively.
MetaIoT is anticipated to learn how to swiftly adjust to a new
type of traffic after training on a significant amount of meta-
training tasks (as prior knowledge). The gradient updates in
our method’s training phase use MAML [18]. By meta-testing
the new job, or fine-tuning MetaIoT on a few samples from
the support set of Tmt and assessing it on the query set of
Tmt, the performance of MetaIoT is evaluated.

We denote our MetaIoT model as gθ with
parameters θ, and the training set as Mtrain =
{(x1, y1) , . . . , (xi, yi) , . . . , (xN , yN )} where yi∈B1 and
N is the number of nodes in the training set. Depending
on the dataset we use, y has a total of 10 classes. From
Mtrain, we will divide M meta-training tasks as follows:
T = {T1, T2, · · · , TM}.

In the support set, we have Si = {vi1, vi2, . . . , vis} =
{(xi1, yi1) , (xi2, yi2) , . . . , (xis, yis)} where s=|Si|; xis is the
input vector of node vis(represented as a traffic node) with
label yis.

Task Sampling: By selecting tasks fromMtrain, we create
M tasks T . To mimic few shot node classification, we sample
|B2| classes from B1 and then randomly sample K nodes for
each class. That is, there are only a few K flows in each class
of traffic as a support set. Below are the main steps.

• B ← CHOOSE |B2| classes FROM B1 ;
• Si ← CHOOSE K × |B2| nodes FROM MB ;
• Qi ← CHOOSE L nodes FROM MC − Si ;
• Ti = Si +Qi ;
• Repeat step (1) - (4) for M times;
Therefore, we begin by selecting |B2| classes at random

from B1, also known as B. Once we have MC , which is a
subset of training set Mtrain with elements (xi , yi ), where
yi is one of the classes in B. To create the support set Si,
we then randomly select K × |B2| nodes from MC , where K
is the number of nodes in each class of Si (i.e., the number
of shots). Finally, we create the query set Qi from a random
sample of L nodes taken from the MC’s remaining nodes.



This query set is then utilized to create the meta-training task
Ti = Si+Qi. The preceding processes repeated M times result
in M meta-training tasks.

Meta-training: We aim to obtain a good initialization of the
Meta Classifier for related tasks by initializing its parameters
to perform well after a few gradient descent updates on a new
few-shot learning task. We next pass the support set Si to the
Meta Classifier when learning a task Ti, and then we calculate
the cross-entropy loss:

LTi
(θ) = (yis − 1) log (1− gθ (xis))

−
∑

xis,yis

yis log gθ (xis) (10)

Then, using a straightforward gradient descent with one
or more steps in task Ti, we update the parameters. For the
sake of conciseness, we will just briefly discuss one gradient
update in the next portions of this section, with a warning that
executing multiple gradient updates is a simple extension:

θ′i = θ − lr1∇θLTi
(gθ) (11)

where the model parameters are trained to enhance the
performance of g

′

θ across meta-training tasks, and lr1 is the
task-learning rate. The meta-objective is more explicitly as
follows:

θ = min
θ

∑
Ti∼p(T )

LTi (fθ−lr1∇θ
LTi (fθ)) (12)

where the distribution of meta-training tasks is denoted by
p(T ). The goal is calculated using the model parameters θ.
This is due to the fact that we require effective initialization
parameters θ for all related few-shot node classification tasks
rather than updated settings θ

′

i that are effective on only
one job Ti. In essence, our model seeks to maximize node
classification performance on a new job(carries only a few
samples) after a minimal number of gradient descent updates
by optimizing the model parameters. The model parameters are
updated in the following equation, where stochastic gradient
descent (SGD) is used to conduct the meta-optimization across
jobs and lr2 is the meta-learning rate..

θ ← θ − lr2∇θ

∑
Ti∼p(T )

LTi

(
fθ′

i

)
(13)

Meta-testing: To do meta-testing, all required is to feed
the Meta classifier with the nodes from the support set of
the new few-shot learning task (i.e., Tmt, some categories
that were not learned during previous training) and update the
parameters of θ

′

mt using one or a few gradient descent steps
using Eq (11). Therefore, using Tmt’s query set, it is simple
to assess MetaIoT’s performance and thus solve the problem
of detecting IoT malicious traffic in small sample scenarios.

Algorithm 1 Training Procedure of MetaIoT.
Input: Graph adjaccent matrix: A; Node features: s; Meta-

path set: ϕ; Initial parameters: δ; Task-learning rate:
lr1; Meta-learning rate: lr2; distribution p(T ) over
Mtrain; meta-testing tasks: Tmt

Output: Labels of nodes in query set of Tmt.
foreach ϕi ∈ { ϕ0, ϕ1, ..., ϕP } do

foreach node i in HIN do
Find neighbors NΦ

i based meta-path ϕi

foreach j ∈ NΦ
i do

Calculate the weight coeffcient ξϕij
end
Concatenate the node-level attention embedding
zΦi = ∥Nn=1σ

(∑
j∈NΦ

i
ξΦij · s′j

)
end
Calculate the weight of meta-path εΦi ;
Fuse semantic-level attention embedding
Z =

∑P
p=1 εΦp

· ZΦp

end
Initialize θ randomly;
while not converged do

Sample batch of meta-training tasks Ti ∼ p(T );
foreach Ti do

Calculate LT i(fθ) using Si ;
Update adapted parameters θ

′

i ;
Calculate LT i(fθ′

i
) using Qi ;

end
Update θ ← θ − lr2∇θ

∑
Ti∼p(T ) LTi

(
fθ′

i

)
end
Update parameters θ′m,t using S in Tmt;
Predict labels of Z in Q of Tmt using model fθ′

mt
.

V. EXPERIMENTS

As previously mentioned, we tested the effectiveness of our
suggested MetaIoT model on several threat categories using
the Ton IoT dataset. The following two questions will be
addressed in this section: (a) How well did the MetaIoT model
perform in the circumstance of a few shot sample? (b) How
did the model perform when enough sample cases were used?
We create original sample situations and tiny sample scenarios
for the two difficulties mentioned above in order to conduct
evaluation studies.

A. Data Preprocessing

For Ton IoT dataset, we first use the definition of a five
tuple (src ip, dst ip, src port, dst port, protocol) to define a
traffic flow, and we perform the drop duplication operation
for repeated traffic. In most realistic settings, the number of
malicious traffic samples is usually much smaller than that of
normal traffic. Table I displays the statistics of the datasets
after pre-processing. In this case, malicious traffic samples
account for only about 3% of all traffic. Then, according to the
description in section IV, we generated an IOT heterogeneous
graph.



B. Few-shot Sample Learning Ability

For the Ton IoT datasets, we choose two classes at random
to serve as meta-testing classes (i.e., the associated nodes
forming Mtest with |B2|= 2), and the remaining nodes (i.e.,
Mtrain) are utilized to build meta-training tasks using the
technique outlined in section 2. 2. There are only K samples
for each class in the support set of the meta-training and meta-
testing tasks (K = 3, K = 5, or K = 10) for all datasets. We
found that the node selection has an impact on each method’s
performance when the support set is quite limited. As a result,
we assess each model using data from the same batch and
present the average accuracy. To ensure a balanced division of
the dataset, we used stratified sampling to create the training,
validation, and testing subsets. The subsets were created such
that they reflected the class proportions of the original dataset,
with 80% of the samples used for training, 10% used for
validation, and 10% used for testing.

TABLE I
TON IOT DATASET FOR FEW-SHOT CLASSIFICATION

Traffic Type
Normal Scanning Injection DDoS Password XSS DoS

Number 26140 120 130 122 136 134 89
MITM Backdoor Ransomware

110 77 91
Descriptive Statistics and Partition of Ton IoT Dataset

Nodes Edges ∥C1∥ ∥C2∥
27140 2M 5 2

Baselines: For Ton IoT, we compare MetaIoT against
DeepWalk [19], GraphSAGE [20], SGC [21], GCN [22], HAN
[8], Meta-GCN, Meta-SGC. The reason we chose these models
is because they are representative models in graph neural
network models, among which GraphSAGE and DeepWalk
could not be compared with the combination of meta-learning
due to memory limitations, but for the rest of the models,
we compared them under the conditions of ensuring a unified
dataset and optimal parameters. Notably, we only alter the
dataset partition to fulfill the meta-learning paradigm’s few-
shot learning requirements; all other model variables remain
unchanged from their initial implementation.

Implementation and Parameter Setups: In order to en-
hance the convergence of our model, we modified the batch
size in Algorithm 1 to 12. The learning rates, denoted as lr1
and lr2, were set to 0.1 and 0.001, respectively. For HAN, we
set the learning rate to 0.005, the regularization parameter to
0.001, the dimension of the semantic-level attention vector to
128, the number of attention heads to 8, and the attention
dropout to 0.6. Additionally, we employed early stopping
with a patience of 100, meaning that if the validation loss
does not decrease for 100 consecutive epochs, the training
process is ceased. The parameters of GCN and SGC were
optimized utilizing the validation set. To ensure fairness, the
same training, validation, and test sets were employed for all
models. For random walk-based methods, such as DeepWalk,
we set the window size to 5, walk length to 100, walks per
node to 40, and number of negative samples to 5. Lastly, to
guarantee a fair comparison, the embedding dimension was

set to 64 for all algorithms. The remaining model settings
were kept the same as the recommendations in their original
publications.

Experimental Result: The top performances are bolded
in Table II’s results of the performance comparison between
MetaIoT and baselines. We can see from the table that our
suggested model performs the best overall across all models.
Even when compared to GCN and SGC, GraphSAGE has not
produced results that are competitive. This finding suggests
that earlier inductive graph learning methods do not transfer
well to new classes, while having demonstrated promising
results when dealing with new nodes (as described in the
original study [22]). Because heterographs gain more relation
information than homogeneous graphs, they outperform SGC
and GCN in terms of performance. In general, heterograph
models—like ours—perform much better on few-shot learning
situations than homogeneous graph-based models, such as
GCN and SGC. A similar conclusion can also be seen in
Figure 4.

Hyper-parameter Sensitivity: We investigate MetaIOT
sensitivity to its two hyperparameters: the dimension of the
final embedding and the dimension of the semantic-level atten-
tion vector under different k-shot scenarios. Figure 5 depicts
the F1 score of the aforementioned metrics, respectively.

As can be seen from the results, Meta-IOT’s performance
improves as the dimension of the final embedding increases.
However, when the dimension of the final embedding exceeds
64, it only brings about a minimal improvement in perfor-
mance. The reason is that HAN needs a suitable dimension to
encode the semantics information and larger dimension may
introduce additional redundancies. Hence, it is recommended
to set the embedding dimension to 64. Regarding the semantic-
level attention vector, Meta-IOT’s performance also gradually
improves with an increase in dimension and number of sam-
ples in small sample categories. However, the performance
begins to decline as the vector continues to increase, which
could be due to overfitting.

C. Learning Ability from Ordinary Sample Scenarios

To answer question (b), We directly put The Ton IoT
overall data set into the HIN constructor and learned node
embeddings. In order to maintain consistency with existing
methods for data splitting, the dataset was divided into 60%
for training, 20% for validation, and 20% for testing. Finally,
we use these embedding and cross entropy loss functions
to classify nodes. Table III details the performance of the
suggested heterogeneous detection model when applied to the
Ton IoT dataset. The evaluation’s findings show that when
compared to 4 other models, the model produces greater
results. The suggested model outperformed all techniques
considered, with an f-score of 98.60%. Figure 6 presents the
full confusion matrix of our classification results. The matrix
showcases the distribution of the true classifications versus the
predicted ones.

Based on the above experiments, we verified MetaIoT effect
for few shot sample scenes and sufficient sample scenes.



Fig. 4. Performance comparisons of all methods with different support data sizes (3-shot, 5-shot or 10-shot).

(a) Dimension of the final embedding (b) Dimension of the semantic-level attention vector

Fig. 5. F1-score of Different Final Embedding Dimensions and Different Dimensions of Semantic Attention on Different k-shot Settings

Fig. 6. Performance comparison with existing methods

TABLE II
PERFORMANCE COMPARISON WITH EXISTING METHODS

USING THE OVERALL DATA SET.

Model A(%) P(%) R(%) F(%)
Nguyen et al. [11] 99.09 99.91 96.34 97.77
Schneble et al. [12] 98.17 98.79 96.45 97.57
Yingying et al. [13] 94.28 88.18 84.32 86.20
Booij, T. M. [14] 98.07 - - 97.26
ours 99.20 98.86 98.36 98.60

In all cases, MetaIoT significantly outperforms all baseline
methods, demonstrating the strongest capability of our model
for malicious IoT traffic detection.

VI. LIMITATION AND FUTURE WORK

This work achieves IoT network intrusion detection from
limited supervised information, in order to wean IDS from
dependency on large-scale labeled datasets. However, detec-
tion capacity of MetaIoT still derives from specific malicious
samples. Ideally, we hope MetaIoT can detect unseen attacks
even if security experts know nothing about them. Besides,



in terms of detection accuracy and recall comparing with
supervised learning on large-scale datasets, MetaIoT still has
potential for making further progress. We think the key issues
for advancement are more representative features of network
flow. How to design a set of comprehensive and representative
features for describing network behaviors accurately remains
a problem for security researchers. Lastly, the selection of
meta-paths affects traffic embedding, and we aim to develop a
method to learn traffic embedding directly from heterogeneous
graphs without relying on expert experience. Addressing these
challenges will be our focus for future work.

VII. CONCLUSION

In this paper, to solve the problem of malicious IoT traffic
detection with limited labeled data constraints, we use the
standard IoT dataset (Ton IoT) and develop a novel system
called MetaIoT. To be more precise, we first discussed feature
selection, created an HIN to extract the dataset’s complex
semantics structural relationships and node content, then used
a hetero GNN to train the node embeddings. Afterwards, we
design a meta-learning algorithm to optimize the model, so
that the model can complete target detection in few shot
sample scenarios. The extensive results demonstrate the ef-
fectiveness of our model by comparison with many baseline
models.
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