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Abstract—Fifth Generation (5G) core network leverages
the application-layer Hypertext Transfer Protocol version 2
(HTTP/2) to enable the communication between the Network
Functions (NFs) of its Service-Based Architecture (SBA). 5G SBA
adopts the security-by-design principle, yet, the usage of HTTP/2
introduces some vulnerabilities related to its features exploitation.
For instance, the HTTP/2 stream multiplexing attack exploits
the stream multiplexing feature, which allows carrying multiple
requests over a single TCP connection, and causes a Denial
of Service (DoS) on 5G SBA. HTTP/2 attacks can be detected
using traditional flow-based anomaly detection solutions in a web
environment. Nonetheless, these solutions fall short in detecting
these attacks in a 5G network, as we show in this work. To
reinforce 5G core network security against HTTP/2 attacks, we
propose 5GShield, a novel application-layer anomaly detection
framework that uses neural networks, namely, Autoencoder,
for anomaly detection. To evaluate our approach, we deploy
a 5G testbed, simulate the HTTP/2 stream multiplexing attack
and collect HTTP/2 data. Our experimental results show that
5GShield can detect HTTP/2 stream multiplexing attack with an
F1-score of 0.992, outperforming a flow-based anomaly detection
solution that exhibits an F1-score of 0.78. 5GShield shows the
efficiency of 5G-specific application-layer features in exposing
HTTP/2 attacks that can go undetected at the network layer.

Index Terms—5G SBA, security, HTTP/2, stream multiplexing
attack, anomaly detection, application-layer features

I. INTRODUCTION

The 5G network revolution is driven by the increasing
number of IoT devices and evolving services in the telecom-
munications sector. To cater to these services, the 5G Core
(5GC) network adopts a Service-Based Architecture (SBA)
in its design, leveraging cloud-native applications. The imple-
mentation of virtualization technologies like Network Func-
tions Virtualization (NFV) and Software-Defined Networking
(SDN) [1], [2] enables flexible 5G SBA design consisting of
interconnected Network Functions (NFs) that provide access to
network resources and capabilities via Service Based Interface
(SBI) [3]. The communication between NFs is facilitated
by RESTful Application Programming Interfaces (APIs) over
HTTP/2 [3]. The HTTP/2 protocol ensures secure, reliable,
efficient, and bidirectional communication [4]. The third Gen-
eration Partnership Project (3GPP) leverages the use of this
harmonized protocol in 5GC Control Plane (CP) signaling [3],
as well as other web-based technologies such as Transport
Control Protocol (TCP), Transport Layer Security (TLS), and
JavaScript Object Notation (JSON).

HTTP/2 enables the communication between an NF Service
Consumer (NFc) (i.e., HTTP/2 client) and an NF Service
Producer (NFp) (i.e., HTTP/2 server) [3] in the form of a
request/response or subscribe/notify. It introduces new features
such as stream multiplexing, flow control, header compression,
and server push which allow it to meet the low-latency
requirement of 5G services. However, recent studies [5]–
[8] have shown that HTTP/2 is vulnerable to Distributed
Denial of Service (DDoS) attacks such as slow-read, stream
multiplexing, and HPACK bomb attacks, exploiting its fea-
tures. Following these studies, the works in [7], [9], [10]
evaluated the security risks posed by HTTP/2 in 5G SBA. This
highlights the need for a robust security solution to enforce 5G
network security against HTTP/2 attacks. While many works
[6], [11] developed anomaly detection solutions to secure the
web against HTTP/2 attacks using Machine Learning (ML)
techniques, HTTP/2 attacks on 5G SBA were only assessed
theoretically in [9], [10]. To the best of our knowledge, no
practical implementation of these attacks in a 5G environment
exists. Further, an evaluation of existing HTTP/2 anomaly
detection solutions in a 5G network remains absent.

In this work, we argue that 5G networks are vulnerable to
HTTP/2 attacks and demonstrate that HTTP/2 stream mul-
tiplexing attacks can occur between two 5G NFs (e.g., a
compromised NFc can launch an HTTP/2 attack on an NFp).
Furthermore, most of the existing anomaly detection solutions
rely on flow-based features collected at the network layer. We
contend that application-layer attacks (e.g., HTTP/2 attacks)
that exploit vulnerabilities in application-layer protocols may
not appear malicious when observed from the network or
transport layers [12]. As a result, existing anomaly detection
methods that rely on flow-based features fail to discover such
application-layer attacks [13].

This work answers the following questions: How can we
exploit the HTTP/2 stream multiplexing feature in a 5G
network? How will 5G NFs behave under the HTTP/2 stream
multiplexing attack? How can we detect this attack in 5G SBA?
Our contributions can be summarized as follows:
• We propose 5GShield, an application-layer anomaly de-

tection framework based on Autoencoder (AE) [14].
5GShield acts as a shield for 5G NFs that provides
intelligent attack detection capabilities for increased se-
curity. As the rate and statistics of 5G API calls be-
tween 5G NFs vary under an HTTP/2 stream multi-
plexing attack in comparison to a normal network state,ISBN 978-3-903176-57-7 © 2023 IFIP



5Gshield extracts application-layer features (e.g., num-
berofAttemptedNetworkInitiatedServiceRequest, numberof-
SuccessfulNetworkInitiatedServiceRequest, etc.) to capture
these statistics. It then uses them to profile normal NFs
behavior. Thus, deviation from the captured normal profile
can then be detected by 5GShield as an attack. Note that
5G NFs behavior remains hidden to flow-based anomaly
detection solutions.

• We simulate and study the impact of HTTP/2 stream mul-
tiplexing attack in a 5G network using the open-source
Free5GC [15] testbed and UERANSIM [16], a User Equip-
ment (UE)/ Radio Access Network (RAN) simulator.

• We generate a 5G SBA HTTP/2 dataset that captures both
normal and abnormal 5G SBA network behavior under the
HTTP/2 stream multiplexing attack in both stealthy and non-
stealthy modes. We simulate the attack from a compromised
Session Management Function (SMF) towards an Access
and Mobility Management Function (AMF) given that the
AMF is a valuable target for attackers, as we explain in the
sequel. Nonetheless, our work applies to HTTP/2 attacks
between any other NFs of the 5G SBA.

• Our experimental results show that 5GShield can detect
HTTP/2 stream multiplexing attack with an F1-score of
0.992, outperforming a flow-based anomaly detection so-
lution that exhibits an F1-score of 0.78.

The rest of the paper is organized as follows. We present an
overview of related works in Section II. We provide back-
ground information on 5G signaling and discuss the HTTP/2
stream multiplexing threat model in Section III and Section IV
respectively. Details of the proposed 5GShield framework are
presented in Section V. We explain our environment setup and
data collection in Section VI. We present our main findings and
experimental results in Section VII. We discuss in Section VIII
5GShield deployment options in a 5G network. We conclude
and highlight our future work in Section IX.

II. RELATED WORKS

A. HTTP/2 and 5G SBA Security

The security of HTTP/2 was discussed in [8] in which the
authors showed that all web servers are vulnerable to at least
one attack vector such as slow-read attack, stream dependency
DoS, and stream abuse attacks. Work in [5] presented five
versions of slow rate DoS attack that exploit different frame
types of an HTTP/2 stream. They showed the impact of
these attacks on lab-based HTTP/2 web servers. The work
in [7] discussed Application Layer DDoS (AL-DDoS) attacks
against web servers, such as the multiplexed asymmetric attack
that results in heavy computational overhead on the server.
Only few works [9], [10], [17] assessed HTTP/2 security in
5G SBA. Authors of [9] investigated 5G signaling security
vulnerabilities exposed by the use of the HTTP/2 protocol. The
authors focused on the features that can be misused to launch
DoS attacks in 5G SBA. In [10], the authors investigated
the applicability of HTTP/2 attacks in 5G SBA. They noted
that some attacks, e.g., HTTP/2 stream multiplexing attack,
can only be addressed by sophisticated application-layer se-

curity and anomaly detection systems, which are currently
unavailable. The work in [17] presented a report on security
vulnerabilities in HTTP/2 and their impact on 5G networks.
The discussion on HTTP/2 attacks in the literature is limited
to a qualitative assessment of their applicability to 5G SBA
without any practical demonstration.

B. HTTP Anomaly Detection

Few works in the literature addressed HTTP/2 anomaly
detection problem. Authors of [6] developed a real-time de-
tection strategy based on event sequence analysis to detect
HTTP/2 slow-read attacks in real-time using an HTTP/2 web
server dataset. [11] detected HTTP/2 multiplexed AL-DDoS
attacks by relying on an HTTP/1.1 dataset. Other works
presenting anomaly detection solutions [12], [18]–[21] focused
on DDoS attacks including HTTP/1.1 flooding attack rather
than HTTP/2 attacks. Authors of [21] employed statistical
methods to detect HTTP AL-DDoS attacks. [12] proposed
an application-layer anomaly detection method that utilizes
keywords from application-layer protocols such as HTTP and
SMTP, like GET, PUT, and POST to create a hidden semi-
Markov model to detect anomalies. Except the work in [6] that
focused HTTP/2 slow-read attack, none of these works used
an HTTP/2 dataset. Further, to the best of our knowledge, the
work in [11] is the only work that addressed HTTP/2 stream
multiplexing attack detection. However, the authors used an
HTTP/1.1 dataset just like the remaining works which focused
on HTTP/1.1 attacks.

Flow-based anomaly detection techniques are widely used
in the literature. AE with flow-based features [18] and Con-
volutional Neural Network (CNN) [19] were employed to
detect DDoS attacks including HTTP attacks. These works
do not consider a 5G environment nor account for an HTTP/2
dataset. Similar to [12], we argue that flow-based features are
inefficient in detecting application-layer attacks (e.g., HTTP/2
attacks) as HTTP/2 may not exhibit malicious activities when
their network traffic is observed from the network or transport
layers.

C. HTTP/2 Dataset

The works in the literature [11], [18], [19], [21], [22]
utilized various datasets such as CICIDS2018, CICDDoS2019,
4G-LTE, modified HTTP/1.1 to HTTP/2 dataset, and HTTP/2
web server dataset. HTTP/2 datasets are private and not
collected in a 5G network while the others are public and
not suitable for further research on anomaly detection in 5G.
Unlike these works, we simulate and collect 5G HTTP/2 data
from a 5G testbed.

III. SIGNALING IN 5G SBA

A. Overview

5G network adopted an SBA for its CP, encompassing a set
of interconnected NFs that communicate via an SBI (Figure 1).
Such communication is enabled by HTTP/2 that was selected
by 3GPP as the 5G signaling protocol, given its low latency,
scalability, and extensibility [3]. In 5G SBA, the 5G CP
NFs interact with each other using either Request-Response



or Subscribe-Notify. Request-Response is used when an NFc
requests a service and an NFp responds, while Subscribe-
Notify is employed when an NFc subscribes to an NFp event
that causes the NFc to be called back when the event occurs
(e.g., SMF subscribes to location report to get notified of
the last known location of a UE or group of UEs by the
AMF [23], etc.) [2], [3]. 5G NFs interactions are determined
by the exchange of services via 3GPP standardized RESTful
APIs [2], [3]. Thus, a 5G procedure (e.g., UE registration)
is performed through HTTP/2 signaling and translated into a
chain of API calls between 5G NFs. Hence, depending on the
number of API calls and their processing, each 5G procedure
can yield different communication and computation overheads
in the network. Consequently, computationally expensive API
calls can be used by an attacker to perform HTTP/2 attacks.
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Fig. 1: 5G Service-Based Architecture [2], [15], [16]

B. 5G SBA Signaling Security
5G network was developed with security in mind, thus,

exploiting it through HTTP/2 vulnerabilities while leveraging
5G procedures and API calls is not an easy task. To better
assess the feasibility of HTTP/2 attacks in 5G networks, we
highlight 5G SBA security as required by 3GPP. In fact, 5G
signaling between NFs is secured through authentication and
authorization mechanisms. Authentication for confidentiality
and integrity protection of the messages exchanged between
NFs is ensured through TLS [3], [24]. Service authorization is
however, granted by the OAuth 2.0 protocol via the Network
Repository Function (NRF) [4], [25]. NRF provides an OAuth
2.0 access token to 5G NFs to access each other services [4],
[26]. Note that authorization and authentication exist in non-
roaming and roaming scenarios [4]. In a roaming scenario,
the protection of the 5G network from unauthorized access
and attacks is performed by a Security Edge Protection Proxy
(SEPP) that acts as a security gateway on the interconnections
between roaming partners. SEPP provides end-to-end authen-
tication, confidentiality, and integrity protection via signatures
and encryption of HTTP/2 messages along with application-
layer security between NFs and the roaming partners to enable
their secure communication [4].
IV. HTTP/2 STREAM MULTIPLEXING ATTACK IN 5G SBA

While accounting for the secure design of 5G SBA (Sec-
tion III), we detail herein, the list of assumptions that allow
launching the HTTP/2 stream multiplexing attack from a

compromised NFc towards an NFp in a 5G network, and
describe its threat model.
A. Assumptions
1) Attacker compromises an NFc: Many standardization doc-

uments discuss threats brought by NFV and virtualization
technologies (e.g., container, virtual machines, etc.) to
telecommunication networks and 5G in particular [27]. The
adoption of hyper-scale cloud by mobile operators extends
the attack surface of their networks and makes their virtual
NFs vulnerable [27]. An attacker can compromise 5G NFs
deployed on docker containers in the cloud, by exploiting
docker vulnerabilities to perform container escape (i.e.,
CVE-2016-5195 [28], and CVE-2019-5736 [29]) [1]. At-
tackers can take advantage of a breach of isolation between
5G network slices that share one or multiple NFs [30].

2) NFc successfully authenticates with the NFp: We assume
that if TLS is used, the compromised NFc can still au-
thenticate with the NFp as the attacker has access to its
public/private key pairs.

3) NFc is authorized to access NFp services: We assume
that the malicious NFc has already acquired OAuth 2.0
access tokens to the NFp services. These tokens are cached
and can be reused by the attacker [4]. Alternatively, the
malicious NFc can request new access tokens from the
NRF given that it can successfully authenticate with it (i.e.,
assumption (2)). Vulnerabilities related to network slicing
and service authorization, such as those mentioned in [30]
can also be exploited to access the NFp services.

4) Attacker has access to UE information: As some network
services require exchanging UE information (e.g., Sub-
scription Permanent Identifier (SUPI)) [26], we assume
that the attacker can gain access to such information by
monitoring NFc communications or even requesting such
information from other NFs.
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B. Threat Model - HTTP/2 Stream Multiplexing Attack
Given the prior assumptions, we simulate the HTTP/2

stream multiplexing attack between an SMF acting as the
malicious NFc and an AMF representing the targeted NFp.
The choice of the AMF as the attacker target is related to the
importance of the role it plays in providing UE authentication,



authorization, and mobility management services [23]. In
addition, the AMF is exposed to external networks, which
extend its attack surface and put it at risk [31]. A DDoS attack
against the AMF can significantly reduce the availability of 5G
services and even cause network outages [31]. Without loss
of generality, we consider the SMF as the compromised NFc
by the attacker given that it is one of the major consumers
of the AMF services [23]. Thus, in this attack, we assume
that the attacker, acting as the malicious SMF, requests the
Namf_Communication_N1N2MessageTransfer API
from an AMF. Note that this API is triggered between SMF
and AMF in multiple 5G procedures such as UE registration,
network-triggered service request, and UE-triggered service
request, etc. [23]. We leverage this API to perform the HTTP/2
stream multiplexing attack in two forms:

• Stealthy HTTP/2 stream multiplexing attack: consists of
triggering different randomly selected 5G procedures for
randomly selected UEs.

• Non-stealthy HTTP/2 stream multiplexing attack: consists
of triggering the same 5G procedure simultaneously for the
same subset of UEs.

In Figure 2, we illustrate the HTTP/2 stream multiplex-
ing attack in four steps: (1) The attacker compromises an
SMF via virtualization vulnerabilities. The SMF may or
may not belong to a malicious roaming partner that has
already been authenticated and authorized to access the
AMF service(s). (2) The attacker (i.e., malicious SMF) es-
tablishes the first TCP connection with the AMF. (3) Then
the malicious SMF initiates a service request procedure
using Namf_Communication_N1N2MessageTransfer
API by sending as many requests as the AMF al-
lows per a single TCP connection using legitimate UEs
information. Note that the number of streams (i.e.,
request-response) an endpoint (e.g., AMF) allows its peer
to initiate on their established connection is specified
by the HTTP/2 SETTINGS_MAX_CONCURRENT_STREAMS
setting. (4) Given a sizable number of computation-
ally expensive requests, the AMF becomes overloaded.
The attacker can scale this attack by repeating it over
multiple TCP connections, which causes a DoS at-
tack at the AMF. Note that the default and maxi-
mum value of SETTINGS_MAX_CONCURRENT_STREAMS
is 2 147 483 647, which makes the scaling of the attack easier
[32]. Finally, as the attacker used a subset of legitimate UEs
information and requests, the detection of this application-
layer attack becomes challenging.

V. 5GSHIELD FRAMEWORK

In this section, we introduce the 5GShield framework (Fig-
ure 3), our novel and intelligent application-layer anomaly
detection solution designed to detect HTTP/2 attacks including
stream multiplexing attack.

A. Data Collection and Pre-processing Module

The data collection and pre-processing module aims at
collecting application-layer information and pre-process it for
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Fig. 3: An overview of 5GShield framework and its modules

feature engineering and anomaly detection. This module col-
lects the data provided by the application, that is the monitored
NF that we aim at protecting (e.g., AMF). In 5G networks,
application-layer information includes Performance Measure-
ments (PM) counters that are standardized by 3GPP [33] and
other counters that can be available by the NF application.
PM counters convey how well an application is performing
and can be used to determine system bottlenecks and fine-
tune the application performance. For example, AMF PM
counters, standardized by 3GPP, present procedures related
measurements such as registration, service request, UE config-
uration update procedures measurements among others such as
mobility-related measurements [33]. Thus, these counters per-
mit profiling an NF normal behavior as they depict aggregated
information pertaining to its provided services. They represent
statistics of the communication patterns between the NF they
represent and all the peer NFs it interacts with.

B. Feature Engineering Module

The feature engineering module performs feature extraction,
normalization and selection based on the data it receives from
the data collection and pre-processing module. It extracts
application-layer features belonging to two categories, mainly;
3GPP-based features depicting 3GPP PM counters for the
targeted NF and HTTP/2-based features that reflect requests
and responses between the targeted NF and its peer NFs. We
note that 3GPP features represent, in majority, measurements
related to the APIs (i.e., services) provided and received
by the targeted NF. In contrast, the HTTP/2-based features
are more general and can be accounted for any targeted
NF while considering its peers. 3GPP-based and HTTP/2-
based features capture the communication patterns between
NFs through API calls statistics. This enables the successful
detection of HTTP/2 attacks, including the stream multiplexing
attack, as these attacks exhibit a deviation from the normal
communication patterns between NFs.

Given that we consider securing the AMF as a proof
of concept of 5GShield, we present in Table I the
AMF features that we select. We distinguish the 3GPP-
AMF features that are based on 3GPP guidelines [33],
from which we choose the PM of AMF pertaining
to the Namf Communication N1N2MessageTransfer



API (Section IV-B). Note that while other 3GPP-AMF features
can be selected and relevant for the AMF profiling and HTTP/2
attack detection, we limit our selection to those related
to the Namf Communication N1N2MessageTransfer
API that we leverage to launch the attack. Other 3GPP
features were disregarded given their absence from our col-
lected dataset. In addition to 3GPP-AMF features, we account
for the HTTP/2-AMF features consisting of the number of
sent/received, successful/unsuccessful requests per peer NF.
Following the extracted features (Table I), we perform feature
normalization and then, we select the most relevant ones.

At the feature selection stage, we use the variance threshold
[34] function to determine the most relevant variance value of
the features. We choose this selection function, as it is well
known for its usage in unsupervised models [34]. The purpose
of its usage is to help in removing features with minimal
variations or those deemed as noise. As 5GShield is highly
dependent on NF behavior patterns, the features selected to
train the model must be accurately represented (i.e., have high
variance) and provided to the anomaly detection module.

C. Anomaly Detection Module

The anomaly detection module consists of a model training
engine and an anomaly detection engine (Figure 3). The model
training engine trains the anomaly detection model and selects
an appropriate threshold that assists in attack and benign data
classification. The anomaly detection engine consists of the
trained model and an attack classification add-on that enables
benign and attack data classification based on the output of
the trained model and the selected threshold. Hence, for the
anomaly detection model, we choose a feed-forward neural
network, an AE, which is composed of one input layer, one
or more hidden layers, and one output layer. In contrast to
conventional methods (i.e., k-nearest neighbors), AE has been
used for anomaly identification and has produced improved
results [14]. Due to the limitation of data labeling, we choose
unsupervised learning rather than supervised. We use the
selected application-layer features as input to train an AE
to learn the normal traffic behavior of the targeted NF (e.g.,
AMF). The AE identifies any malicious traffic that deviates
from normal traffic as an attack. It learns a good lower-order
mapping of the input data with the help of a reconstruction
error loss function. The discovered lower-order mapping can

then be employed to reconstruct the input data [18]. Thus,
when the AE is tested on data similar to that used to train
it, it should provide a low reconstruction error. In contrast, if
the test and training data differ significantly, the AE probably
produces a high reconstruction error. As a result, we train the
AE with benign data to efficiently detect any deviations as
anomalies.

We choose the Mean Squared Error (MSE) to measure
the model reconstruction error. MSE assesses the average
squared difference between the input and the predicted values.
As model errors increase, the MSE values increase. The
acceptable margin of difference between the input and the
predicted value needs to be specified to determine if the
input is benign or anomalous. Hence, to discriminate between
benign and malicious data, there is a need for an efficient
threshold selection α such that an MSE ≤ α yields the data
is benign while an MSE > α determines that the data is
malicious. As such, a high threshold value would result in
missing attacks (i.e., high false negatives, low recall), whereas
a low threshold value can cause a lot of mis-classifications of
benign data into malicious one, thus resulting in low precision.
Both cases result in degraded performance of the AE. F1-score
represents the harmonic mean between precision and recall
and is ideally equal to 1. Thus, given that it takes both false
negatives and false positives into consideration, we select the
threshold that maximizes the F1-score in this work.

VI. ENVIRONMENT SETUP

In this section, we present the environment that we use to
simulate normal and malicious network traffic. It also includes
details on the 5G testbed and discussions on the data pre-
processing and the feature engineering that we perform on the
data collected from our testbed.
A. Simulation Setup and 5G Testbed

We perform the evaluation using Free5GC [15], an open-
source 5GC testbed, and UERANSIM [16] that provides
a UE/RAN simulator. Our Free5GC and UERANSIM are
installed on a Virtual Machine (VM) running on top of
OpenStack [35]. The VM runs Ubuntu 20.04-Focal with 4
vCPUs and 4GB RAM. We install the docker-compose version
of the Free5GC called Free5GC-compose, version 3.0.5 [36],
in which the 5G NFs are deployed on different containers in
the same VM. Using Python 3.8, we implement our 5GShield

TABLE I: 3GPP and HTTP/2 application-layer features collected at the AMF
3GPP-AMF features HTTP/2-AMF features
numberofAttemptedNetworkInitiatedServiceRequest receivedRequestToAMF, sentRequestFromAMF
numberofSuccessfulNetworkInitiatedServiceRequest receivedRequestToAMFperNRF, sentResponseFromAMFperNRF
numberofAttemptedUEInitiatedServiceRequest receivedRequestToAMFperAUSF, sentResponseFromAMFperAUSF
numberofSuccessfulUEInitiatedServiceRequest receivedRequestToAMFperNSSF, sentResponseFromAMFperNSSF
totalNumberofAttemptedServiceRequests receivedRequestToAMFperPCF, sentResponseFromAMFperPCF
totalNumberofSuccessfulServiceRequests receivedRequestToAMFperSMF, sentResponseFromAMFperSMF

receivedRequestToAMFperUDM, sentResponseFromAMFperUDM
receivedRequestToAMFDiscarded
sentErrorResponseFromAMF, receivedErrorResponseToAMF
totalSuccessfulRequest, totalUnsuccessfulRequest



solution, while our anomaly detection AE model leverages
PyOD library 1.0.6 [37].

B. 5G Network Simulation

Given the lack of a public 5GC dataset that can be used for
anomaly detection, we leverage our 5G testbed for normal and
HTTP/2 stream multiplexing attack simulation. This requires
simulating UE-initiated and network-triggered 5G procedures
that can occur in a 5G network. To this end, we employ the
functionalities provided by UERANSIM (Table II).

TABLE II: Procedures Order
Triggered procedure Possible subsequent procedures
UERegister UEReleasePDUSession, RANReleasePDUSession, UEDeregister, Uplink, Downlink
Uplink UEReleasePDUSession, RANReleasePDUSession, UEDeregister, Downlink
Downlink UEReleasePDUSession, RANReleasePDUSession, UEDeregister, Uplink
UEReleasePDUSession UEReleasePDUSession, RANReleasePDUSession, UEDeregister, Uplink, Downlink
RANReleasePDUSession Uplink, Downlink
UEDeregister UERegister

Normal network behavior - Benign dataset generation —
To simulate normal network traffic behavior, we consider 50
UEs and perform multiple 5G procedures selected randomly
from those provided by the UERANSIM (Table II). As 5G pro-
cedures have logical dependency and precedence constraints
between them, the random choice of a procedure p+ 1 for a
UE, is performed from a list containing all possible subsequent
procedures that can be triggered following a procedure p. For
example, a UE cannot deregister from the network unless it
is already registered. In addition, each 5G procedure initiates
varying communications between NFs based on the UE state
(i.e., CONNECTED, IDLE, etc.) and other conditions (net-
work, RAN resources, etc.) [26]. This is reflected through the
API calls and/or API information elements initiated/used by
the NFs. For example, if the network-triggered service request
procedure (i.e., downlink) [26] is initiated while the UE’s
state is CONNECTED, the API requests will not trigger the
paging procedure. Note that the procedures listed in Table II
are triggered at different times for the same UE to replicate
5G communications and can switch the UE to various states.
For example, (1) UE registers to the network1; after a while,
(2) RAN releases the PDU resources allocated to the UE,
which switches its state to IDLE; (3) Then, a downlink
procedure is triggered which switches the UE state from IDLE
to CONNECTED.

Malicious network behavior - Attack dataset
generation — In our proof of concept, we consider
an attack from a malicious SMF towards an
AMF. Thus, we select the procedures that trigger
Namf_Communication_N1N2MessageTransfer
API, such as UE-triggered service request (i.e., uplink),
network-triggered service request (i.e., downlink), and
UE release PDU session, given that this API covers
most of the service operations provided by the AMF
and consumed by the SMF (Section IV-B). Using 15
legitimate UEs, which information were compromised
by the attacker, the malicious SMF requests these

1UE PDU session establishment is automatically triggered in Free5GC [15]
after a UE registration.

procedures from the AMF by establishing multiple TCP
connections. Each HTTP/2 connection running on top of a
TCP connection established between SMF and AMF has
SETTINGS_MAX_CONCURRENT_STREAMS=250, which is
the default value used in the Free5GC testbed. We initiate
the malicious requests while other legitimate requests are
being processed concurrently in the 5G network. We simulate
both stealthy and non-stealthy versions of the HTTP/2
stream multiplexing attack. For stealthy attack simulation,
we randomly select UEs from the 15 compromised UEs
that we dedicated for the malicious activities. Each of
the selected UEs randomly triggers one or multiple 5G
procedures [26] while respecting their precedence constraints
(Table II). In contrast, for the non-stealthy attack simulation,
the 15 compromised UEs are used to perform the same
procedure(s) simultaneously. That is a combination of (1)
Uplink procedure; (2) Downlink procedure; (3) UE release
PDU session procedure2 in which UE requests to release its
PDU session and switches to IDLE state. This combination
of procedures is performed in any order. However, all the
compromised UEs will be performing the same chosen order
of (1), (2), and (3) at a time.

Data collection and attack impact — Using the benign
and malicious network simulations described above, we collect
from the Free5GC testbed the application layer information
at the AMF (Section V-A). Further, as we aim to compare
5GShield with flow-based anomaly detection solution, we
collect the incoming and outgoing traffic flows (pcaps) to/from
the AMF. We use these flows for flow-based features extraction
as it will be described in Section VI-C. During the attack
simulation, we observe an increase in the Central Processing
Unit (CPU) consumption at the AMF once the attack starts at
576 seconds (Figure 4). Nonetheless, such an increase cannot
be used for attack detection as it can also be observed during
normal network conditions following a peak in network traffic
(e.g., scheduled events during particular periods).
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Fig. 4: AMF CPU consumption during the attack

C. Data Pre-processing and Feature Engineering
We pre-process the collected data to extract application-

layer features to use in 5GShield, and flow-based features to

2UE PDU session establishment procedure is automatically triggered after
the UE release PDU session procedure in Free5GC [15].



train a flow-based anomaly detection model that we aim to
compare 5GShield against.

Application-layer features — From the PM counters
collected at the AMF, we retain a total of 25 3GPP-AMF
and HTTP/2-AMF features (Section V-B), listed in Table I.
From these features, we disregard low-weight features such
as receivedRequestToAMFperAUSF, receivedRequestToAMF-
perNSSF, receivedRequestToAMFperPCF, sentErrorRespon-
seFromAMF and retain high-weight ones based on the vari-
ance threshold ML method [34] (Section V-B). The retained
features are normalized and depict communications between
the AMF and all the NFs in the network, and not only the
SMF. This allows the detection of attacks originating from
any NF(s) towards the AMF.

Flow-based features — We extract flow-based features
from the collected network flow traffic using CICFlowMeter
[38]. This results in 84 features listed in [38]. We clean and
normalize the collected features using oneHotEncoder. Then
using the same variance threshold ML method [34] employed
for application-layer features selection, we discard the flow-
based features with low weight such as Bwd IAT Mean, Bwd
IAT Max, Bwd PSH Flags, IAT Tot [38], etc., and retain the
rest (e.g., flow duration, total Fwd Packet, total Bwd packets).

In summary, we end up with benign and malicious records
associated with the simulated stealthy and non-stealthy attacks,
with a total of 19 application-layer features and 56 flow-based
features. We label our data to evaluate our anomaly detection
model performance by depending on our knowledge of the
compromised UEs that we used for attack simulations. We
consider the attack as our positive class. However, we do not
use the label as a feature in our models given that we adopt
an unsupervised learning technique.
D. Dataset for Anomaly Detection

To train and evaluate our 5GShield anomaly detection
solution, we divide the application-layer features dataset into
three categories: (1) Training and Validation Dataset: Benign
data used to train and validate the unsupervised model; (2)
Optimization Dataset: Benign and malicious data used to
select the threshold; (3) Test Dataset: Benign and malicious
data used to evaluate 5GShield detection performance. These
datasets are mutually exclusive and do not include redundant
records. We similarly split the flow-based features dataset and
use it to train and test a flow-based anomaly detection solution.

VII. EXPERIMENTS AND RESULTS

In this section, we evaluate the performance of 5GShield
against a traditional flow-based anomaly detection solution and
test its performance in the presence of contaminated data.

TABLE III: Autoencoder Hyperparameters
Hyperparameter Architecture Number of epochs Dropout Batch size Loss Optimizer Hidden activation
AE - 5GShield [19; 3; 19] 200 0.2 32 MSE Adam ReLU
AE Flow-based [56; 8; 3; 8; 56] 200 0.2 32 MSE Adam ReLU

A. 5GShield Application-layer Anomaly Detection Solution
AE architecture selection — To determine the architecture

of the AE to use in our 5GShield anomaly detection module
(Section V-C), and which better recognizes the HTTP/2 stream
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Fig. 5: Training and validation loss of 5GShield AE model

multiplexing attack, we train and validate the performance of
multiple AE architectures. We use 20000 benign records as a
training dataset to train the models and validate their perfor-
mance using a validation dataset that yields 10% of the training
dataset. Due to space limitation, we omit the performance of
the different evaluated AE architectures. However, our tests
show that a basic AE with one hidden layer is the most
efficient. Thus, we train the selected model with a combination
of hyperparameters for 200 epochs (Table III). We observe the
average reconstruction loss across the different training epochs
for the training model using benign unlabelled data. As shown
in Figure 5, the training loss and the validation loss start to
converge after 30 epochs and the AE depicts a reasonable
convergence within 200 epochs.

5GShield performance and threshold selection — To
evaluate the detection performance of the AE, we select a
threshold α = 4.399 as it maximizes the F1-score. The thresh-
old selection was done by evaluating the AE performance us-
ing an optimization dataset of 1400 benign and 4600 malicious
records. Using the selected threshold α = 4.399 displayed as
a green line in Figure 6, we evaluate the model performance
using a test dataset of another (other than optimization dataset)
1400 benign and 4600 malicious records. Figure 6 shows that
the test records between 0 and 4600 are related to stealthy
and non-stealthy attacks and depict an anomaly score (i.e.,
MSE) greater than the selected threshold. In contrast, only
a few of those records, i.e., belonging to the stealthy attack,
are predicted as benign given that their MSE is under the
threshold. This is expected as a stealthy attack is comparable to
a benign behavior which makes its detection more challenging.
In addition, test records starting at record #4600 are benign and
are correctly classified. Their anomaly scores drop under the
threshold as depicted in Figure 6. As a result, 5GShield with
AE using application-layer features achieves good detection
performance with an F1-score of 0.992.

5GShield performance with contaminated data — In
real operational network settings, access to purely benign data
is challenging. In contrast to the previous test in which we
trained our model using only benign data, we evaluate the
performance of our 5GShield AE when trained on partially
contaminated data (i.e., a mix of unlabeled benign and sig-
nificant malicious data) in this experiment. We consider the
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training dataset and contaminate it with 0.1%, 0.5%, 1%,
1.5%, and 2% of malicious data. Then we train the AE with the
same hyperparameters (Table III). We use the optimization and
test datasets to select the threshold and test the model respec-
tively. Figure 7 depicts a degradation of 5GShield model’s F1-
score with the increase of the contamination percentage in the
training data. When contamination exceeds 1%, the F1-score
falls below 0.85. In the presence of higher contamination, our
model needs to be fine tuned to better detect HTTP/2 attacks.
We leave this for future work.
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B. Flow-based Anomaly Detection Solution
We compare the performance of 5GShield against a tradi-

tional flow-based anomaly detection solution that is widely
used in the literature. For that, we develop a flow-based
AE using the same data that we generated and employed
for 5GShield AE (Section VI-B). We pre-process this data
to extract flow-based features. We train our flow-based AE
using a training dataset of 1500 benign records. We use an
optimization dataset of 232 benign and 268 malicious records
to select the threshold that maximizes the F1-score and a test
dataset of 218 benign and 282 malicious records. Similar to
5GShield, we evaluate different model architectures and select
the one that depicts the best performance. The selected flow-
based AE architecture and hyperparameters are depicted in
Table III. Our results show that for a threshold β = 0.2437,
the flow-based anomaly detection model achieves a detection
performance with an F1-score of 0.78.

C. 5GShield and Flow-based Anomaly Detection Comparison
To better evaluate 5GShield against the flow-based anomaly

detection solution, we resort to the Receiver Operating Charac-
teristic (ROC) curves. An ROC curve summarizes the trade-off
between the False Positive Rate (FPR) and the True Positive
Rate (TPR) for all thresholds [39]. The Area Under the ROC
Curve (AUC) represents a metric commonly used with ROC
to compare multiple ML models. It provides an aggregated
measure of performance across all thresholds. An AUC = 1
depicts a perfect model that can reach a TPR = 1 and
a FPR = 0 with a perfect threshold selection. Figure 8
shows the under performance of flow-based anomaly detection
solution with an AUC = 0.7365 in comparison to 5GShield
with an AUC = 0.8673. This highlights the advantage of
profiling NFs behavior through 5G specific application-layer
features in comparison to general flow-based features.
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VIII. 5GSHIELD DEPLOYMENT OPTIONS

The 5GShield framework was designed to complement 5G
NFs with additional anomaly detection capabilities in order
to secure the 5G network. The novelty of 5GShield yields in
its usage of standardized 5G specific application data, also
known as PM counters. These PM counters are standardized
and defined by 3GPP for each 5G NF. They can be used by
network operators to profile NFs behavior. The use of these
PM counters alleviates the need for telecom operators to deal
with line-rate traffic flows that may be hardly collected and
managed when their network is deployed in the cloud where
they do not necessarily own the infrastructure.

3GPP PM counters collected by each NF can also be shared
upon request by that NF with the Operations Administration
and Maintenance (OAM) module, which in turn can share it
with the Network Data Analytics Function (NWDAF) [40].
NWDAF was introduced in 5G SBA and is responsible for
5G network data analytics generation and analysis. The gen-
erated data can also be used for closed loop control with the
assistance of ML models. Thus, we envision that our 5GShield
can be deployed as a built-in NWDAF at the NF, where data,
insights and actions are taken by that NF. This enables an
automated closed loop at the local level. 5GShield can also
be deployed at a central NWDAF in the form of a NF that
collects data from other NFs and use it for a closed loop at
the network level [40].



IX. CONCLUSION

In this work, we proposed 5GShield, an application-layer
anomaly detection framework to protect 5G networks against
HTTP/2 attacks. For that, we simulated the HTTP/2 stream
multiplexing attack in a 5G testbed based on Free5GC and
UERANSIM. Using an AE as our anomaly detection model,
we showed that 5GShield achieves an F1-score of 0.992
and outperforms a flow-based anomaly detection solution that
depicts an F1-score of 0.78. The superior detection perfor-
mance of 5GShield shows the efficiency of using PM counters
as application-layer features that capture 5G NFs profiles,
services, behavior, and communications with their peers. As
these counters can be collected by the NF itself or shared with
a central NWDAF, 5GShield can thus, be deployed at any NF
including the NWDAF.

As 5GShield can be deployed with any ML model, in future
work, we aim at enhancing its detection performance by ex-
ploring additional ML techniques while also considering richer
datasets depicting more 5G procedures (currently unavailable
in UERANSIM) and various HTTP/2 attacks.
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