
FSTC: Dynamic Category Adaptation for Encrypted
Network Traffic Classification

Navid Malekghaini, Hauton Tsang, Mohammad A. Salahuddin, Noura Limam, Raouf Boutaba
David R. Cheriton School of Computer Science, University of Waterloo, Ontario, Canada

{nmalekgh, hauton.tsang, mohammad.salahuddin, noura.limam, rboutaba}@uwaterloo.ca

Abstract—With the advancement in security and privacy on
the Internet, network traffic has become increasingly difficult to
classify. Current deep learning (DL)-based encrypted network
traffic classification approaches rely on protocol-specific features
(e.g., TLS headers) and/or assume that the classification cate-
gories (i.e., applications) remain constant over time. However,
both the encryption protocols and applications continue to
evolve. Therefore, DL models must be retrained from scratch
for newer encryption protocols or applications, which makes
existing approaches intractable in practice. In this paper, we
propose novel Transfer Learning (TL) approaches for introducing
new traffic classes to DL models without retraining them from
scratch. We also propose a framework named FSTC, which
leverages Active Learning (AL) to achieve human-assisted TL
for new traffic classes and minimizes the labeled data needed
for encrypted network traffic classification. We evaluate our TL
and AL approaches using protocol-agnostic features from the
publicly available ISCXVPN2016 and QUIC datasets. To the best
of our knowledge, neither proposal has been explored before in
the existing literature.

Index Terms—Encrypted Traffic Classification, Deep Learning,
Active Learning, Transfer Learning, Web Traffic

I. INTRODUCTION

Traffic classification (TC) is essential for a broad range
of network operation and management activities. With ad-
vancements in cryptography, encrypted communication has
become a defacto to preserve the privacy of Internet users.
A majority of Web-based services now employ the Hypertext
Transfer Protocol Secure (HTTPS) protocol, which encrypts
traffic payload using Transport Layer Security (TLS), making
TC a challenging endeavour. Numerous works have leveraged
deep learning (DL) methods for encrypted network traffic
classification (ENTC) (e.g., [1–4]). DL offers benefits, such
as automatic feature learning, which helps achieve superior
performance in ENTC compared to traditional machine learn-
ing (ML). However, DL has its drawbacks, which greatly
influences its real-world application in ENTC.

Many ENTC approaches (e.g., [5]) use protocol-specific
input features for DL models. Furthermore, though there
are approaches that leverage protocol-agnostic methods (e.g.,
[2, 6]), they still rely heavily on information derived from
protocol-specific sources, such as the TLS handshake. Though
these approaches may show improved ENTC performance
in the context of the TLS protocol, their performance is
likely to deteriorate even with minor changes to the protocol.
Furthermore, many deep ENTC models (e.g., [1, 2, 5, 6])

ISBN 978-3-903176-57-7© 2023 IFIP

have a fixed output dimension (i.e., network traffic classes).
However, network traffic categories may change rapidly due
to emerging technologies or new use cases, making an already
trained DL model obsolete over time due to its inability to
categorize new traffic classes.

Rather than discarding the model and starting over from
scratch, Transfer Learning (TL) can be used to allow a model
to learn about new traffic classes while retaining the model’s
knowledge of existing classes. We call this class extension
concept Dynamic Category Adaptation (DCA). Indeed, DCA
can reduce training time immensely when classifying new
traffic. TL can be further extended by integration into an
Active Learning (AL) framework. AL incorporates human
feedback in the training process of the classifier in cases where
large labeled datasets are not available, such as classifying
emerging network protocols and technologies. Furthermore
the framework can automatically detect possible new classes,
and query a human for labels on a small number of traffic
samples that the DL model is least confident in. This is the
core idea of the “Four Seasons Traffic Classifier (FSTC)”, our
AL framework for human-assisted TL in support of ENTC.

Our main contributions are:

• We propose novel TL approaches for introducing new
traffic classes to DL models using output layer replace-
ment and “Neural Adaptor” techniques

• We compare the performance of our novel TL approaches
to state-of-the-art approaches in ENTC using two sets
of protocol-agnostic features: (i) standard flow statistics,
and (ii) flow time-series information. To the best of
our knowledge, this is the first time that TL has been
leveraged for DL-based ENTC.

• We propose “FSTC”: an AL framework that enables
human-assisted TL for ENTC. To the best of our knowl-
edge, this is the first time a framework for DCA using
AL has been proposed.

In Section II, we provide a brief survey of works that have
inspired our approach. Section III delineates our methodology
for FSTC along with its building blocks, such as ENTC
models, TL approaches, and DCA methods. In Section IV,
we evaluate the performance of our framework. We conclude
in Section V and instigate future directions.



II. RELATED WORKS

A. Encrypted Network Traffic Classification with DL

Recent advancement in DL and its successful application in
areas such as computer vision and natural language process-
ing (NLP), have motivated its exploration in other domains,
including ENTC. Broadly, DL-based methods for ENTC can
be categorized based on the following types of DL models:
Multilayer Perceptron (MLP) [2, 7], Stacked Autoencoder
(SAE) [1], Convolution Neural Networks (CNN) [2, 6, 8–
10], and Long Short-term Memory (LSTM) [2, 6, 9]. We can
classify the type of input features these models leverage into
four main categories [11]:

1) Statistical features: These features include statistical
data about a flow, including minimum, maximum, mean,
and standard deviation of packet lengths, inter-arrival
times, number of packets, etc.

2) Time series: These features include a time-series data of
packets in a flow. The features of a packet can include the
direction of packet, inter-arrival time, size of packet, etc.
Such information can be treated as a more fine-grained
version of statistical features.

3) Payload: These features include raw bytes of the packet
payload, mostly above layer 4 of the network protocol
stack.

4) Header: These features include only raw bytes of header
fields in the packet. Typically, these headers are extracted
from layer 3 or layer 4 of the network protocol stack.

Akbari et al. [2] used a comprehensive multi-part model to
achieve the highest accuracy reported on pure encrypted data
in ENTC. They used three input feature categories including
statistical, time-series, and header features. They excluded the
payload category. Their model uses a CNN-based architecture
for the header features, similar to [6, 10], and a stacked LSTM
for time-series information. They used the standard statistical
information captured via CICFlowMeter [12] as the last input
features and fed it to an MLP layer. Finally, the output of each
part of their model is concatenated and fed into a dense layer
followed by a Softmax output layer. The authors claim that
their model is protocol agnostic, however, the header bytes are
preprocessed to extract features present in specific protocols,
i.e., TLS handshake. This may cause model performance
to deteriorate for other protocols or newer version of TLS.
Furthermore, this type of information leakage in the header
during handshake may not be present in newer protocols such
as QUIC, which uses additional encryption in the handshake
phase. However, the time-series and statistical parts of their
model can be applied on all traffic flows regardless of the
protocol.

B. Novel Class Approaches

There have been several notable works for TL in traditional
ML (e.g., [13, 14]). In our case, for DL-based ENTC, semi-
supervised approaches generally apply TL when only a small
labeled dataset is available. Iliyasu and Deng [15] leverage
a small portion of real unlabeled samples, while employing

a Deep Convolutional Generative Adversarial Network (DC-
GAN) to generate a large amount of unlabeled samples. They
used two baseline models, an MLP and a CNN model, to
compare the performance of their approach. They used the
public ISCX VPN-NonVPN dataset [12] and a synthetically
generated QUIC dataset. They showed that their approach out-
performs a similar approach in [16]. Since we are introducing
a novel approach that has not been studied in the DL-based
ENTC domain, we also use the same method to evaluate our
models, i.e., we also evaluate two separate models to obtain a
more comprehensive analysis.

Many works apply techniques from other domains to ENTC.
For example, Shi et al. [17] explain how existing solutions for
DL in the NLP domain can be applied to ENTC. Also, Chen
et al. [8] converted raw bytes of traffic flow to complete 2-
D images and leveraged computer vision techniques for DL-
based ENTC. Similarly, there are significant works on TL
methods that are not specific to ENTC. For example, Chen
and Moschitti [18] investigated several TL approaches in NLP.
They first implemented a base model with a few categories
in the output layer, then applied TL to construct a target
model with additional output classes. In order to mitigate a
phenomenon known as catastrophic forgetting, where a model
that learns to classify new classes forgets how to classify old
ones, they proposed a “Neural Adaptor”.

The authors in [18] assume that the training data for the
base model is not available for the target model, and the only
data available for the target model is mixed with new and old
classes. Due to the high relevance of their approach to ours, we
incorporate their approaches with additional variations in our
experiments for DCA. However, unlike our work, the authors
in [18] did not address how to discover new classes since they
focused on TL to known target domains.

More recently, Zhu and Li [19] proposed a framework for
emerging new labels, named SEEN, which is similar to our
work. SEEN combined three components: (i) a novel class
detector, (ii) a classifier, and (iii) a method for updating
the model with the novel class. Unlike our approach, the
novel class detection in this framework is done automatically
using a tree-based ensemble for anomaly detection. The SEEN
framework also used a Label Propagation-based algorithm as
the classifier, while our framework uses a DL model. Their
primary limitation is that they assume that only a single
novel class can be added at a time, therefore, their framework
is unable to accommodate for multiple novel classes at the
same time. We will use a framework for detecting new
classes, which is inspired by SEEN. However, unlike SEEN,
our AL approach for labeling novel classes can be used to
simultaneously label and train on multiple new classes.

III. METHODOLOGY

In this section, we discuss the methodology for our ap-
proach. First, we describe our proposed protocol-agnostic
ENTC models. Second, we expose the various TL methods
used to extend the output dimension of ENTC models for



Input
LayerDense Dense

Softmax
Dense

23
150

200
50

21
5

MLP Statistical
Model

Softmax
Output

Dense

(a)

LSTM LSTM LSTM

Input Layer

Dense
Dense

Softmax

LSTM Time-series
Model

Softmax
Output

513x102

512

256 256 256
128 128

(b)

Fig. 1: High-level architectures of DL models with outputs

DCA. Finally, we show how the ENTC and TL methods are
integrated into an AL framework, named FSTC.

A. Protocol-Agnostic Encrypted Network Traffic Classification

We propose two different protocol-agnostic approaches for
ENTC, each with their own input features and DL model archi-
tecture. These separate models and features could be merged
into a singular DL model to benefit from both approaches, such
as in [2], as these input features are independant of any specific
protocol and available for any encrypted network traffic. We
assume a flow to be a series of packets that share the source
IP, destination IP, source port, destination port, and protocol.

(i) Input features: We utilize two different types of input
features, namely standard flow statistics and flow time-series
information.
(a) Statistical features: For each flow, we use the standard
statistical features available from CICFlowMeter and used in
the ISCXVPN2016 dataset [12]. These features include, but
are not limited to, duration of the flow, and mean, max, min
and standard deviation of forward and backward inter-arrival
times. A total number of 23 features are employed.
(b) Time-series features: Similar to [2], for each flow, inter-
arrival times, size, and direction are calculated for 1024
packets. Inspired from signal processing, we also compute
the Short Time Fourier Transform (STFT) on the time series
to help the model detect pattern changes in the input. The
STFT parameters of the number of points to overlap between
segments is set to 30, the length of each segment is set to 32,
and polar coordinates are used.

(ii) Model architectures: We leverage two model architec-
tures each designed for one of the input features. The simpler
and more efficient model uses MLP to classify application
protocols in encrypted network traffic, while the more sophis-
ticated model uses stacked LSTM to classify services in a
more recent encrypted traffic protocol.
(a) MLP model: The high-level architecture of the MLP model
is shown in Figure 1a. The values in each layer were set
via hyper-parameter search. We use the MLP model with and
without the “Softmax output layer” in our TL approaches for
MLP model in Section III-B.
(b) LSTM model: The high-level architecture of the LSTM
model is depicted in Figure 1b. The LSTM model with
and without the “Softmax output layer” are used in our TL
approaches for the LSTM model in Section III-B.

(iii) Training strategies: To enable a fair comparison of our
results using the LSTM model with the flow time-series model
in [2], we use the same training strategy as in [2]. We use an
up-sampling strategy to overcome the problem of imbalanced
classes in the datasets.

B. Transfer Learning for New Traffic Classes

In this section, we present our TL approaches for DCA. We
evaluate our TL methods on both the MLP and LSTM models.
These approaches can be applied to any source model, other
than the ones presented in this paper, as long as they have a
Softmax output layer.

(i) TL without Neural Adapters: The first group of ap-
proaches for TL is presented in Figure 2. The source model
is the already trained model with optimal weights, to which
we want to add additional classes. To apply DCA, we need
to duplicate the source model and copy its weights. Here, we
presume the source model has 3 output classes and the goal
is to expand it to 4. The choice of these values is due to the
dataset we used. The first approach (cf., Figure 2a) is named
“Replace the whole output method”. As the name implies, it
replaces the old output layer with 3 classes with a completely
new output layer with 4 classes. The “Trainable” parameter in
a layer decides whether a layer’s weights can be updated or
not. The source model has the “Trainable: ?” parameter, i.e.,
whether the weights are fixed or not. The “Sample weights”
parameter controls how weights are sampled. If true, the
new Softmax layer’s weights are sampled from a Normal
distribution calculated from the weights of the source model’s
Softmax output layer.

The second TL approach (cf., Figure 2b), inspired from
[18], concatenates a new output to the existing Softmax output
layer in the source model. This is known as the “Add new
dimension output method”. The “Trainable” parameter of the
Softmax output layer in the source model is set to False, as
we know that these outputs already have good performance for
classifying points for those 3 classes. The Softmax output layer
outputs only for the new class with the “Trainable” parameter
set to “True”, and the input to the layer is the last hidden layer
of the model. The two outputs concatenated create a combined
model output with 4 classes.

The third and final approach (cf., Figure 2c), uses the same
underlying method as the second approach, but provides more
degrees of freedom for classification on the new class by
adding a dense layer between the last hidden layer and the
output. For this layer, the parameter of “Sample weights” is
configurable. This is called the “Add new dimension output
with dense layers method”.

(ii) TL with Neural Adapters: The neural adapter method
duplicates the source model to create a new model with re-
initialized weights. The source model has fixed weights and the
new model has trainable weights. The “BLSTM neural adapter
method” (cf., Figure 3b) is the neural adapter from [18] with a
minor change. Despite having a retraining phase with both new
and old classes, there is still a chance that some catastrophic
forgetting will happen. However, after retraining, the TL model



New Softmax
Output

Parameters
Sample weights: ?

Trainable: True

Input Output
(Size: 4)

Source Model

Parameters
Trainable: ?

(a) Replace the whole output
method

Input

Source Softmax
Output

Parameters
Trainable: False

+

Source Model

Parameters
Trainable: ?

New Softmax 
Output

Parameters
Sample weights: ?

Trainable: True

Output
(Size: 4)

Output
(Size: 3)

Output
(Size: 1)

(b) Add new dimension output method

Input

Dense

+

Source Model

Parameters
Trainable: False

New Softmax 
Output

Parameters
Sample weights: ?

Trainable: True

Source Softmax
Output

Parameters
Trainable: False

+ Output
(Size: 4)

Output
(Size: 3)

Output
(Size: 1)

(c) Add new dimension output with dense layers
method

Fig. 2: TL methods without neural adapters for adding a new class to the output of source model with 3 classes

Input
+

Dense

Source Model

Parameters
Trainable: False

New Model

Parameters
Trainable: True

New Softmax 
Output

Parameters
Sample weights: ?

Trainable: True

Output
(Size: 4)

(a) Dense neural adapter method

Input
+

BLSTM

Source Model

Parameters
Trainable: False

New Model

Parameters
Trainable: True

New Softmax 
Output

Parameters
Sample weights: True

Trainable: True

Output
(Size: 4)

(b) BLSTM neural adapter method

Fig. 3: Approaches with neural adapter for adding a new class to the output of source model with 3 classes

will be significantly better at classifying the new class. The
method uses a BLSTM layer to further mitigate the knowledge
forgetting (i.e., catastrophic forgetting) learned in the source
model when the model is retrained to preserve the context
information in the source model. Another neural adapter
approach, the “Dense neural adapter method”, is depicted in
Figure 3a. This approach is basically same as the BLSTM
approach but instead of a BLSTM, it uses a dense layer.
This can be used to measure the improvements from using a
BLSTM to better assess the BLSTM approach. With a dense
layer instead of BLSTM, the total parameters and overhead
of TL is significantly reduced. The major improvement our
methods have over the BLSTM method used in [18] is that
the new models have re-initialized weights in the beginning.

C. Active Learning for Dynamic Category Adaptation

Our proposed AL framework, FSTC, integrates both the
classifiers from Section III-A and the TL approaches outlined
in Section III-B with AL. The framework requires two models,
the original traffic classification model, and a clone of the
traffic classification model for use in TL. The algorithm is
composed of three main steps: (i) identify network traffic most
likely to be new classes, (ii) prompt a human to label the
traffic, and (iii) use the labeled traffic to update a model.

The first step is accomplished using the models in the
framework. By interpreting the output of the model as a set of
probabilities, we can construct a confidence score by taking
the maximum over the probability of all the classes. If the
model strongly believes that an input belongs to a certain class,
then the probability for that particular class would be high.

However, if the model is unsure of the class the input belongs
to, then none of the probabilities for any of the classes should
be high. The data points with the lowest confidence scores
would then be prompted to be labeled in the next step.

The second step is taking the lowest confidence score data
points to be labeled by a human. We assume that labeling
data points is expensive, hence, only a limited budget b of
data points can be labeled. Our framework utilizes both the
original ENTC model as well as the cloned TL model to sort
data points by confidence score into two lists, one for each
model. Then, we take the first b instances of each list and send
them to the human for labeling. The least confident points in
the original ENTC model mainly serve to find instances of
all new classes, while the least confident points in the cloned
TL model are for finding the classes that the TL model does
not recognize. This is because the original model may be
less confident about one particular new class, and thus, the
number of instances returned for any other new class may
not be sampled if we rely exclusively on the original ENTC
model. However, once the TL model has learned the new class
detected by the original model, it will increase confidence in
that class, so the least confident points returned by the TL
model will likely be of a different new class, mitigating this
effect.

The final step is to fit the labeled instances to the TL
model. We first check if a new class is present in the labeled
instances from the human. If there is, then we use one of
the DCA techniques in Section III-B to extend the model.
Finally, we use the labeled data points to update the model
by backpropagation. During the update, we also include a



sample of labeled data for old classes to mitigate the effects
of catastrophic forgetting, as detailed in Algorithm 1.

Our AL framework has two different variations. The first is
the full dataset variation, where the first batch of data points
consists of the entire dataset. Each iteration excludes points
chosen to be labeled from the batch in the next iteration.
The maximum number of iterations must be specified for
this variation. The full dataset variation focuses specifically
on the least confident points of the models from the entire
dataset, which should be the points that are the most critical
for improving the accuracy of the TL model.

The second variation is the streaming dataset variation,
where the dataset is broken into batches according to a batch
size, and the algorithm loops through every batch. The batch
size must be specified for this variation. This achieves a
more balanced sampling of the data, as the least confident
points are sampled from each batch, increasing the diversity
of the sampled points. Furthermore, unlike the static dataset
variation, the streaming dataset variation can easily be applied
in scenarios with continually increasing data, which is true
in many real-world production environments where network
traffic logs continue to accumulate over time.

Algorithm 1 The Four Seasons Classifier Algorithm
D: Dataset
Dold: Small labeled dataset of existing/old classes
Morig : Original ENTC model
Mtl: Cloned version of the ENTC model
b: Budget

1: Initialize empty list LabeledSamples
2: for TrainingBatch in D do
3: Initialize empty list ConfidenceScoreOrig
4: Initialize empty list ConfidenceScoreTL
5: for output in Morig(TrainingBatch) do
6: Append(ConfidenceScoreOrig, max(output))
7: for output in Mtl(TrainingBatch) do
8: Append(ConfidenceScoreTL, max(output))
9: I1 ← TakeFirst(Argsort(ConfidenceScoreOrig), b) ▷ Get the indices of

first b least confident samples according to original model
10: I2 ← TakeFirst(Argsort(ConfidenceScoreTL), b) ▷ Get the indices of

first b least confident samples according to TL model
11: I ← Union(I1, I2)
12: Dsample ← TrainingBatch[I] ▷ Store data points corresponding to the

indices in I to Dsample

13: Append(LabeledSamples, SendToLabel(Dsample)
14: UpdateSamples← Union(LabeledSamples,Dold) ▷ Train the

labeled samples along with old data to mitigate catastrophic forgetting
15: UpdateModel(Mtl, UpdateSamples)

We also experiment with adapting the AL algorithm to do
unsupervised DCA, which we call “Unsupervised FSTC”. This
approach is similar to the SEEN framework [19] in that it
assumes only one new class is presented at a time. Thus, we
can assume that all the least confident points belong to one
new class and label them as such. Then, we can use these
points to fit the model to perform unsupervised DCA.

To implement “Unsupervised FSTC”, we use the full dataset
variation, but only perform a single iteration. We do not want
to sample by batches since this will increase the likelihood
of the model picking points that do not belong to the new
class. Since the original ENTC model is not updated for
each iteration, there is no need to iterate through the dataset
more than once because the resulting selected points will be

DL Model Dataset Accuracy (%) W. Avg F1 (%)

Akbari et al. [2] ISCXVPN2016 [12] 65 64
MLP Model 69 69

Akbari et al. [2] QUIC [16] 99.37 99.47
LSTM Model 97.9 97.9

TABLE I: Accuracy and weighted average F1-score of models

identical. We only use the original classifier to generate the
confidence score instead of both classifiers. Finally, we can
assume that all the instances selected are new class instances
and update the model accordingly. As before, we mix these
labeled instances with a labeled sample of old data to mitigate
the effects of catastrophic forgetting. The algorithm is detailed
in Algorithm 2.

Algorithm 2 Unsupervised Four Seasons Classifier Algorithm
D: Dataset
Dold: Small labeled dataset of existing/old classes
Morig : Original ENTC model
Mtl: Cloned version of the ENTC model
b: Budget

1: Initialize empty list ConfidenceScoreOrig
2: for output in Morig(D) do
3: Append(ConfidenceScoreOrig, max(output))
4: I ← TakeFirst(Argsort(ConfidenceScoreOrig), b) ▷ Get the indices of first

b least confident samples according to original model
5: Dsample ← D[I] ▷ Store data points corresponding to the indices in I to

Dsample

6: LabeledSamples← Label(Dsample, newClass) ▷ Label all points in
Dsample with the new class

7: UpdateSamples← Union(LabeledSamples,Dold) ▷ Train the labeled
samples along with old data to mitigate catastrophic forgetting

8: UpdateModel(Mtl, UpdateSamples)

IV. EVALUATION

In this section, we present details regarding the employed
datasets. We then discuss the performance of the protocol-
agnostic ENTC models with all 5 classes. After that, we
evaluate the performance of our TL approaches when we
add the fourth class to a three-output class source model and
compare it to the base model without TL. Finally, we use
the framework to add the two remaining classes to the source
model, and analyze the performance by comparing it to the
base model’s performance without TL and dynamic category
adaptation.

A. Protocol Agnostic Encrypted Network Traffic Classification

(i) Dataset description: We employ two publically available
datasets in our evaluations, namely ISCXVPN2016 [12] and
QUIC [16] datasets. For both datasets, we use 80% of the data
for model training and the remaining 20% for validation.
(a) ISCXVPN2016 dataset: This dataset includes the statistical
features described in Section III-A. We use 5 types of appli-
cations as the output classes: CHAT, STREAMING, VOIP,
P2P, and FT. Each application traffic is encrypted and routed
through OpenVPN.
(b) QUIC dataset: This dataset includes the time-series fea-
tures described in Section III-A. There are 5 type of ap-
plications as the output classes: GoogleDoc, GoogleDrive,
GoogleMusic, GoogleSearch, and YouTube. The QUIC proto-
col uses UDP and brings the encryption to the transport-layer.



Moreover, it is more comprehensively encrypted in comparison
to the TLS protocol.

(ii) Performance Evaluation: When comparing the perfor-
mance of the “MLP Model” with a “Statistical sub-model”
that encapsulates the statistical section of the model from [2],
we achieved a 4% increase in accuracy and a 5% increase
in F1-score with our modified approach for dense layers. The
results of the two models are shown in Table I.

The performance results of our “LSTM Model” along with
the flow time-series model from [2] are also presented in Table
I. When compared to each other, we can see that our “LSTM
Model” lags behind by 1.47% and 1.57% in accuracy and F1-
score, respectively. This indicates that STFT does not help to
improve performance, possibly due to not preserving all the
information present in the time-series input features.

B. Transfer Learning in DL for New Traffic Classes

We now evaluate the two groups of approaches explained
in Section III-B for our two base models. Because of the
imbalanced dataset, the accuracy metric would not be a fair
metric for evaluating the model’s performance. Therefore, the
performance metrics evaluated in this section are weighted
average F1-scores, unless specified otherwise. Weighted av-
erage F1-score is a weighted metric that better reflects the
performance of a model across all classes. The retraining phase
of all TL methods use Adam optimizer with a learning rate of
0.001, and 10 epochs.

(i) MLP Base Model: The results for the first group of
TL approaches (cf., Section III-B) is summarized in Table
II. The “sample size” hyper-parameter in the Tables is the
total number of available flows for the retraining phase of
the TL model. We used only a small part of the available
flows for retraining the model on the new class. The reasoning
behind this is that it is likely that emerging new traffic classes
have less available flows to train the model. The number
of available flows for the new traffic class is the equal to
the samplesize/divide, with other flows being from old
traffic classes. Sampling is done randomly from the old and
new class traffic data in the dataset. The decision for the
best values of these hyper-parameters is dependent on the
scenario that these TL approaches and source models are being
used in. Therefore, we examined the effects of changing the
proportions.

The results for the second group of TL approaches (cf., Sec-
tion III-B) are presented in Table III. For each approach in both
groups, all possible combinations of parameters of “Trainable”
and “Sample weights” were tested to examine their effects on
the performance. The “-” values for “Trainable” and “Sample
weights” in the tables means that they are either fixed in the
model’s design and not configurable or are not applicable.
We also tested the performance of 3 different proportions of
available flows from the new class to the existing classes.
The first column shows the performance of TL with sample
size: 120, divide: 4. The second column (i.e., sample size:
90, divide: 3) has a sample that reduces the proportion of
samples from existing classes while having the same number

of new class samples as the previous column. The third column
(i.e., sample size: 120, divide: 3) increases the proportion of
samples from the new class while preserving the total number
of samples from the first column. The maximum value of the
“Average” column for each TL method is colored in green. If
the first and second maximum values of “Average” column for
a approach are very close (i.e., less than 3% difference), both
of them are marked.

By looking at the maximum general performance of all the
models (i.e., green cells in “Average” column), we can infer
that the two neural adapter methods (cf., Table III) perform
better than all the approaches without neural adapters (cf.,
Table II). It can be seen that on average, the “BLSTM neural
adapter method” performs around 2% better than the “Dense
neural adapter method”, which confirms our assumption that a
BLSTM layer has higher performance than a Dense layer in a
neural adapter as it can retain context information in the source
model. However, this performance boost is not that significant,
so perhaps for some models using a Dense neural adapter
would be sufficient because of the lower number of parameters
it has in comparison to the more complex BLSTM neural
adapter. The BLSTM neural adapter method in [18] is also
presented in Table III. The average performance of their model
is 38%, which is 47% lower than the performance we achieve
with our “BLSTM neural adapter method”. This indicates that
our modified approach for the new model we presented has
a significant performance boost over the unmodified model in
[18].

Regarding the TL approaches without neural adapters (cf.,
Table II), the “Replace the whole output method” is the
best-performing, achieving the two top “Average” scores of
78.33% and 77.33%. In this approach, the output Softmax
layer is replaced with a different layer with more outputs.
Due to the fact that the data is a mixture of existing and
new class, the weights are tuned for both classes and thus the
model gets good results distinguishing between the different
traffic classes. The other two approaches were not nearly as
performant, with “Average” scores of 33.66% and 31% for
“Add new dimension output method” and “Add new dimension
output with dense layers method”, respectively. The “Add new
dimension output method” approach is from [18], while the
“Add new dimension output with dense layers method” is its
modified version. One possible explanation is that since there
is only one new class but the data is a mixture of new and
existing classes, the model wants to update the weights of the
Softmax output layer for all classes. However, as the model’s
output layer has only one output dimension with weights that
are not fixed (i.e., only the new Softmax output layer), the
model cannot be trained properly. Therefore, we see degraded
performance.

As a comparison, base model results are also provided in
Tables II and III. The base model is the “MLP Model” that
has been trained from scratch with four classes on the entire
dataset without any TL methods. The weighted average F1-
score for this model is 86%. By comparing this score to the
neural adapter TL approaches, we can see that they are very



Approach Model name Parameters sample size: 120, divide: 4 sample size: 90, divide: 3 sample size: 120, divide: 3 Average
Trainable sample weights W. average F1-score (%) W. average F1-score (%) W. average F1-score (%) (%)

Replace the whole output method

swap output layer TRUE TRUE 82 72 78 77.33
swap output layer notrain FALSE TRUE 36 17 72 41.66

swap output layer nosampleweights TRUE FALSE 82 74 79 78.33
swap output layer notrain nosampleweights FALSE FALSE 37 54 58 49.66

Add new dimension output method

concat output layer TRUE TRUE 31 32 31 31.33
concat output layer notrain FALSE TRUE 31 31 31 31

concat output layer nosampleweights TRUE FALSE 38 30 33 33.66
concat output layer notrain nosampleweights FALSE FALSE 31 31 31 31

Add new dimension output with dense layers method concat with hidden notrain - TRUE 18 31 31 26.66
concat with hidden notrain nosampleweights - FALSE 31 31 31 31

N/A MLP Statistical Model with four classes (base model) - - - - - 86

TABLE II: Performance evaluation of the first group of TL approaches for DCA using the “MLP Model”

Approach Model name Parameters sample size: 120, divide: 4 sample size: 90, divide: 3 sample size: 120, divide: 3 Average
Trainable sample weights W. average F1-score (%) W. average F1-score (%) W. average F1-score (%) (%)

Dense neural adapter method dense neuraladapter - TRUE 85 82 79 82
dense neuraladapter nosampleweights - FALSE 85 86 80 83.66

BLSTM neural adapter method blstm neuraladapter - - 86 85 84 85
Chen and Moschitti [18] BLSTM neural adapter chen blstm neuraladapter - - 36 38 40 38

N/A MLP Statistical Model (base model) - - - - - 86

TABLE III: Performance evaluation of the second group of TL approaches for DCA using the “MLP Model”

close. The “BLSTM neural adapter method” has an “Average”
score of 85% and the “Dense neural adapter method” has a
score of 83.66%. These results show that our TL approaches
with neural adapters can achieve similar performance with
only a small portion of data for a new class and a limited
number of old data samples. We are able to achieve the same
results as the base model that trained on a much larger number
of samples. For the TL approaches without neural adapters,
the “Replace the whole output method” has an “Average” of
78.33%, which is roughly 7.77% lower than the base model.
However, with parameter tuning, we can achieve an 82%
weighted average F1-score for this model (cf., row one of
Table II in bold font), which is only 4% lower than the base
model. We also consider this a success because not only does
the model have all of the advantages of the TL neural adapter
methods, the number of model parameters for this method is
way lower than the neural adapter methods, which makes it
extremely fast and lightweight.

(ii) LSTM Base Model: The “LSTM Model” performance
results are summarized in Tables IV and V. The poor-
performing approaches from the “MLP Model” were excluded.
We also included the accuracy metric since the QUIC dataset
used for this model is more balanced.

The best method here is the “Replace the whole output
method” which does not use a neural adapter approach. The
average accuracy and weighted average F1-score for the best
approach are 72.3% and 63.8%, respectively. Compared to the
base model, which is the “LSTM Model” trained from scratch
using all the data for four classes, it lags behind by around
26.7% in accuracy and 35.2% in weighted average F1-score. It
is important to note that the “LSTM Model” is very complex
and costly to train from scratch. Moreover, the QUIC protocol
is also one of the most sophisticated algorithms for encrypted
communication in the Internet. Therefore, considering the tiny
amount of data used to train the new class and the low training
overhead with this TL approach, the results are particularly
relevant for resource-constrained use cases.

The “BLSTM neural adapter method” comes in at the
second place with an approximately 10% performance gap
compared with the “Replace the whole output method”. The
BLSTM neural adapter in [18] also shows the same perfor-

mance as our “BLSTM neural adapter method”. Therefore,
the catastrophic forgetting that was solved by our model’s
modified approach in the “MLP Model” does not have that
much of an effect here. The reason behind this may be that
the source model itself already uses 3 stacked LSTM layers
(cf., Figure 1b), with the first and second one already acting
as a BLSTM layer in the “BLSTM neural adapter method”.
This may also be the reason why the “Replace the whole
output method” performs well when using “LSTM Time-series
Model” as the source model.

C. Active Learning for Dynamic Category Adaptation

We present the results of three different experiments uti-
lizing our AL learning framework: (i) Static dataset AL,
(ii) Streaming dataset AL, and (iii) Unsupervised learning
using the AL framework. Each of these experiments are
conducted using the “MLP Model”, and the three highest-
performing techniques presented in Section IV-B. For the AL
experiments, we test the model’s ability to adapt both one and
two additional classes. For the two-class case, we have one
experiment that utilizes the same parameters as the one-class
case, and another experiment which adjusts various hyper-
parameters to optimize for the two-class case, which is denoted
“2 (Adjusted)”. The results of the experiments are detailed in
Table VI.

(i) Static dataset AL: The static dataset AL variation
samples a budget b of points from the entire dataset using
both the original classifier as well as the TL classifier. In
the evaluation of the static dataset AL, we decided to use
the following AL hyper-parameters: a budget size of 3, and 5
iterations of the dataset. Since we sample from both classifiers,
this means we sample 6 points per iteration. Hence, the total
number of instances to be prompted by a human to label is
30. We can then add a sample of 90 old data points in order to
match the most optimal ratio derived in the previous section,
which is a sample of 120 data points of which 1/4 of them
are new classes. We disable sample weights for all models
and train for 10 epochs. For the two-class adjusted case, our
model uses 10 iterations instead of 5. All other parameters
remain the same.



Approach Model name Parameters W. average F1-score (%) Accuracy (%)
Trainable sample weights

Replace the whole output method

lstm swap output layer TRUE TRUE 36.9 52.1
lstm swap output layer notrain FALSE TRUE 4.4 11.5

lstm swap output layer nosampleweights TRUE FALSE 65.8 71.9
lstm swap output layer notrain nosampleweights FALSE FALSE 63.8 72.3

N/A LSTM Time-series Model with four classes (base model) - - 99 99

TABLE IV: Evaluation of the first group of of TL approaches for DCA using the “LSTM Model”

Approach Model name Parameters W. average F1-score (%) Accuracy (%)
Trainable sample weights

Dense neural adapter method lstm dense neuraladapter - TRUE 3.1 11.5
lstm dense neuraladapter nosampleweights - FALSE 18.1 30.5

BLSTM neural adapter method lstm blstm neuraladapter - - 51.21 62.84
Chen and Moschitti [18] BLSTM neural adapter lstm chen blstm neuraladapter - - 51.2 62.84

N/A LSTM Time-series Model with four classes (base model) - - 99 99

TABLE V: Evaluation of the second group of TL approaches for DCA using the “LSTM Model”

AL Variation # New Classes Method Model name W. average Precision (%) W. average Recall (%) W. average F1-score (%)

Static dataset AL

1
Replace the whole output method swap output layer nosampleweights 86 84 84

Dense neural adapter method dense neuraladapter nosampleweights 85 85 85
BLSTM neural adapter method bltsm neuraladapter 86 86 86

2
Replace the whole output method swap output layer nosampleweights 70 63 59

Dense neural adapter method dense neuraladapter nosampleweights 65 58 56
BLSTM neural adapter method bltsm neuraladapter 67 64 61

2 (Adjusted)
Replace the whole output method swap output layer nosampleweights 72 69 67

Dense neural adapter method dense neuraladapter nosampleweights 68 65 63
BLSTM neural adapter method bltsm neuraladapter 71 67 65

Streaming dataset AL

1
Replace the whole output method swap output layer nosampleweights 86 84 85

Dense neural adapter method dense neuraladapter nosampleweights 85 85 85
BLSTM neural adapter method bltsm neuraladapter 87 86 86

2
Replace the whole output method swap output layer nosampleweights 71 68 67

Dense neural adapter method dense neuraladapter nosampleweights 71 64 63
BLSTM neural adapter method bltsm neuraladapter 70 66 64

2 (Adjusted)
Replace the whole output method swap output layer nosampleweights 68 65 63

Dense neural adapter method dense neuraladapter nosampleweights 71 68 67
BLSTM neural adapter method bltsm neuraladapter 64 63 63

Unsupervised Learning 1
Replace the whole output method swap output layer nosampleweights 61 58 55

Dense neural adapter method dense neuraladapter nosampleweights 64 62 60
BLSTM neural adapter method bltsm neuraladapter 73 60 63

Baseline (with 5 classes) - - MLP Statistical Model 74 69 69

TABLE VI: Performance evaluation of the various AL variations

For one additional class, the “BLSTM neural adapter
method” is the highest-performing model. We expected the
“BLSTM neural adapter method” to perform the best as our
results in Section IV-B show that method to be the best-
performing overall. However, the other two methods have
comparable performance. With two additional classes with
non-adjusted settings, the BLSTM still performs quite well
overall, but model performance was significantly decreased.
This is likely because applying the “BLSTM neural adapter
method” twice results in double the number of parameters
that need to be trained, since both the source model and
target model of the original model need to be cloned in order
to create a new target model. After adjusting the iterations
to increase the number of labeled samples, the “Replace the
whole output method” becomes the most optimal. This may
be due to the fact that this method produces a model with the
least amount of parameters to be trained, and thus requires
less data to train than other methods.

(ii) Streaming dataset AL: The streaming dataset AL vari-
ation samples a budget b of data points in batches of fixed
size until the end of the dataset is reached. Unlike the static
dataset AL variation, the number of iterations for the streaming
dataset AL variation depends on the total size of the training
dataset strain and the batch size bs, i.e., ceiling(strain/bs).
After reserving the sample of 90 old data points, the number
of training instances was 1264. Thus, we set a batch size of
253 to ensure that the number of iterations is 5, which is

the same as the number of iterations in the static dataset AL
experiment. The other parameters are identical to the static
dataset AL variation experiment. For the two-class adjusted
case, our model uses a batch size of 127 instead, ensuring
that the number of iterations is 10. This matches the number of
iterations in the adjusted case of the static dataset AL variation.

For one additional class, the results show that the “BLSTM
neural adapter method” is the best performing method yet
again, having the highest weighted average precision, recall,
and F1-score. However, the other two methods are within 1-2%
for all three statistics. This result is also in line with the results
from Section IV-B. For two classes, however, the “Replace the
whole output method” is the clear winner. This may again be
due to the fact that each application of the “BLSTM neural
adapter method” causes the number of trainable parameters to
double. Thus, the large number of parameters may be reducing
the performance of the model. After adjusting batch size, the
“Dense neural adapter method” has the highest efficacy in
this case, which is surprising as the number of parameters
is comparable to the “BLSTM neural adapter method”. We
speculate that the “Replace the whole output method” may not
be robust to smaller batches as they increase the likelihood of
sampling data that is not part of the new class.

(iii) Unsupervised learning: The unsupervised model sam-
ples a budget b of data points from the entire dataset using
only the original classifier. Unlike the AL approaches, the
unsupervised learning approach only samples a budget b of



points from the entire dataset once. Thus, to ensure that the
number of labeled samples is identical to other experiments,
we set b to be 30. The 30 data points sampled this way are
labeled as a new class, As before, we combine this with the
sample of 90 old data points before updating the model. Again,
the “BLSTM neural adapter method” performs the best overall,
achieving a weighted average F1-Score of 63%, although the
“Dense neural adapter method” has a slightly higher recall.

Overall, both the static dataset AL and streaming dataset
AL variations are very similar in performance in both the
one-class and two-class cases. However, the streaming dataset
AL variation only iterates through the dataset once, which
reduces training time significantly, especially on large datasets.
Additionally, the streaming dataset variation can be used in
streaming environments where dataset is constantly growing.
Hence, due to practical considerations, we consider the stream-
ing dataset variation of “FSTC” to be the best AL approach.
For one new class, the “BLSTM neural adapter method” seems
to perform the best overall. However, with two new classes,
the “Replace the whole output method” seems to perform
more optimally as the number of parameters does not increase
exponentially with each additional class, and thus the model
converges faster with the addition of more classes.

Comparing the two-class cases with the performance of
the base model, we find that the performance of both AL
models are comparable to the base model, with only a slightly
lower weighted average precision, recall, and F1-score. This is
expected, since the AL models are trained on a much smaller
dataset than the base model. The AL model only requires
labeling 30 data points in the non-adjusted case, and 60 data
points in the adjusted-case. Even if the sample of 90 data
points from old classes are factored in, the resulting dataset
only consists of 120-150 data points in total, whereas the full
training set consists of 1264 data points. Thus, achieving simi-
lar performance to the base model is already quite impressive.

The performance of the unsupervised learning approach,
on the other hand, is significantly worse compared to AL
approaches, with a weighted average F1-Score that is lower
by more than 20%. Therefore, we believe this approach may
require further adjustment to meet performance milestones for
learning new categories.

V. CONCLUSION

In this paper, we introduced two groups of novel TL
approaches (i.e., neural adapter and non-neural adapter) for
DCA applied on two distinct models based on the state of the
art. These models were evaluated using two public datasets
with different protocol-agnostic input features. We showcased
that our models can achieve similar results to baseline by
leveraging TL using only 120 samples (i.e., flows), only 30 of
which corresponded to the new class. Our TL approaches used
only around 7% of the samples from all classes and only 3.7%
of the samples available for the new class during the retraining
phase. We also proposed an AL framework and evaluated two
different variations of AL, as well as unsupervised learning
using a small modification of the AL approach. We found

the streaming dataset AL to be the best due to practical
considerations. Our framework achieves similar performance
to the base model despite being trained on a dataset that is
nearly 10x smaller.

For future work, we believe that our novel TL approach can
be further improved when applied to a stacked LSTM model.
Additional experimentation with weight transfer algorithms
and sample weights can also be conducted to improve the
performance of the TL methods. For the AL framework,
additional experiments may be conducted on the performance
of other class detection methods, such as using Isolation Forest
[20] or clustering-based approaches to detect new classes.

REFERENCES
[1] M. Lotfollahi, M. Jafari Siavoshani et al., “Deep packet: A novel

approach for encrypted traffic classification using deep learning,” Soft
Computing, vol. 24, no. 3, pp. 1999–2012, 2020.

[2] I. Akbari, M. A. Salahuddin et al., “A look behind the curtain: Traffic
classification in an increasingly encrypted web,” ACM on Measurement
and Analysis of Computing Systems, vol. 5, no. 1, pp. 1–26, 2021.

[3] N. Malekghaini, E. Akbari et al., “Deep learning for encrypted traffic
classification in the face of data drift: An empirical study,” Computer
Networks, vol. 225, p. 109648, 2023.

[4] N. Malekghaini, “Adapting to data drift in encrypted traffic
classification using deep learning,” Master’s thesis, 2023. [Online].
Available: http://hdl.handle.net/10012/19058

[5] P.-O. Brissaud, J. Francçis et al., “Transparent and service-agnostic
monitoring of encrypted web traffic,” IEEE Transactions on Network
and Service Management, vol. 16, no. 3, pp. 842–856, 2019.

[6] S. Rezaei, B. Kroencke, and X. Liu, “Large-scale mobile app identifi-
cation using deep learning,” IEEE Access, vol. 8, pp. 348–362, 2019.

[7] A. Khajehpour, F. Zandi et al., “Deep inside tor: Exploring website
fingerprinting attacks on tor traffic in realistic settings,” in International
Conf. on Computer and Knowledge Engineering, 2022, pp. 148–156.

[8] Z. Chen, K. He et al., “Seq2img: A sequence-to-image based approach
towards ip traffic classification using convolutional neural networks,” in
IEEE Big Data, 2017, pp. 1271–1276.

[9] N. Malekghaini, E. Akbari et al., “Data drift in dl: Lessons learned from
encrypted traffic classification,” in IFIP Networking, 2022, pp. 1–9.

[10] W. Wang, M. Zhu et al., “End-to-end encrypted traffic classification
with one-dimensional convolution neural networks,” in IEEE Int. Conf.
on Intelligence and Security Informatics, 2017, pp. 43–48.

[11] S. Rezaei and X. Liu, “Deep learning for encrypted traffic classification:
An overview,” IEEE Comm. Magazine, vol. 57, no. 5, pp. 76–81, 2019.

[12] G. Draper-Gil, A. H. Lashkari et al., “Characterization of encrypted
and vpn traffic using time-related features,” in International Conf. on
Information Systems Security and Privacy, 2016, pp. 407–414.

[13] G. Sun, L. Liang et al., “Network traffic classification based on transfer
learning,” Computers & electrical engineering, vol. 69, pp. 920–927,
2018.

[14] F. Shang, S. Li, and J. He, “Improved application of transfer learning in
network traffic classification,” in Journal of Physics: Conference Series,
vol. 1682, no. 1, 2020, p. 012011.

[15] A. S. Iliyasu and H. Deng, “Semi-supervised encrypted traffic classifi-
cation with deep convolutional generative adversarial networks,” IEEE
Access, vol. 8, pp. 118–126, 2019.

[16] S. Rezaei and X. Liu, “How to achieve high classification accuracy with
just a few labels: A semi-supervised approach using sampled packets,”
arXiv preprint arXiv:1812.09761, 2018.

[17] Y. Shi, D. Feng et al., “A natural language-inspired multilabel video
streaming source identification method based on deep neural networks,”
Signal, Image and Video Processing, vol. 15, pp. 1161–1168, 2021.

[18] L. Chen and A. Moschitti, “Transfer learning for sequence labeling
using source model and target data,” in AAAI Conference on Artificial
Intelligence, vol. 33, no. 01, 2019, pp. 6260–6267.

[19] Y.-N. Zhu and Y.-F. Li, “Semi-supervised streaming learning with
emerging new labels,” in AAAI Conf. on AI, 2020, pp. 7015–7022.

[20] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest,” in 2008 Eighth
IEEE International Conference on Data Mining, 2008, pp. 413–422.


