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Abstract—Predicting the geographical location of an IP host is
a fundamental and valuable but long-standing challenge in the
field of network research. Although delay-based methods have
relatively high coverage and low time consumption, currently
this type of method is not accurate enough and requires a large
number of vantage points, making its cost high. In this paper, we
propose a novel delay-based framework to make IP geolocation
more accurate and cheap. Firstly, we collect 373 Looking Glass
with known geographical addresses and overcome the high cost
problem by using them as vantage points. Secondly, we make
the prediction of geographical coordinates more accurate by
using the machine learning algorithm and regional information
of the target IP. Finally, we propose a method based on machine
learning to supplement missing values in the delay data and
improve the accuracy of geolocation successfully. Our experiment
results validate the feasibility and improvement of our method.
Using our method, we have an average error of 69.49 km for the
geolocation of our test set, which is approximately 160 km less
than the state-of-art work.

Index Terms—IP Geolocation; Network Measurement

I. INTRODUCTION

Knowing the geographical location of an Internet host is
becoming increasingly important in the digital age as it enables
more accurate personal services, such as weather forecasting,
targeted advertising, and online copyright management [1].
Although GPS is one such technology, it requires specialized
hardware on the client side, making it inaccessible for many
users. In order to address this challenge, IP geolocation,
which is based on a host’s IP address, provides a client-
independent method for determining geographical location
without requiring any support from the client.

There have been many IP geolocation methods in recent
years, which can roughly be divided into passive and active.
Passive methods rely on information about an IP address, such
as its hostname, to infer its geographical location [2]–[4]. On
the other hand, active methods use machines to actively send
packets to the target IP and predict its location based on
the measurement data [5]–[7]. There is no clear superiority
between these two methods, as they are respectively suitable
for different application scenarios. In this article, we focus
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on improving active methods. Compared with passive meth-
ods, active methods have broader coverage since they can
geolocate an IP as long as it is able to reply to the packets.
They also have strong timeliness as active probing when
geolocating avoids outdated source data effectively. Some
active methods use traceroute to collect topology to geolocate.
However, the use of traceroute can result in increased time
and network traffic, causing these methods low scalability.
Another active method, called delay-based, uses only the ping
command and attempts to geolocate based on latency. This
method is less accurate but requires less time and is suitable
for scenarios where time and coverage are a high priority,
but accuracy is less critical. However, there are still some
challenges associated with delay-based methods.

The first challenge with delay-based methods is their high
cost, as they require multiple controlled machines to ping
the target. Traditional approaches involve using cloud servers
or measurement platform probes [8], which can be relatively
expensive. In this paper, we take advantage of the Looking
Glass (LG) to address this challenge. LG are tools deployed
on routers by some network operators and some of them can
be accessed through webpages, making them a more cost-
effective solution. We collect 373 LG with known locations
that can be automatically used based on a public list from
[9]. These LG can be used for geolocation purposes and can
also be applied to other research that requires location-known
machines.

Another challenge with delay-based methods is the difficulty
of converting latency to geographical location, as latency can
be influenced by many factors such as geographical distance,
physical media, and congestion level, meaning the collected
delay data often contains significant amounts of noise. We
pinpoint that it is suitable to use machine learning algorithms
to address this challenge. After comparing various common
machine learning algorithms, we choose the Random Forest as
the algorithm for geolocating. We also discover that including
the target IP’s regional information when geolocating can
further improve accuracy. The last challenge is the presence
of missing values in the measurement data, which can render
certain algorithms unavailable. To address this, we propose
a novel method based on the XGBoost model to supplement
missing data. To the best of our knowledge, this is the first
method to address this issue in the IP geolocation.ISBN 978-3-903176-57-7© 2023 IFIP



To evaluate our method, we conducted a large-scale exper-
iment. We used 175 Looking Glass to ping 17,276 terminal
addresses and 26,625 router addresses with known locations.
The results of the experiment demonstrate the feasibility of
using Looking Glass for IP geolocation, achieving an average
error of 69.49 km for the IPs we collected. This represents
a significant improvement over previous methods, as the best
result achieved by previous techniques had an average error
of 230.40 km. Furthermore, the results showed that our novel
method for dealing with missing values in measurement data
reduced the mean error by 20 km. In summary, the main
contributions of this work are as follows:

• We have collected 373 Looking Glass with known loca-
tions, which can be leveraged for IP geolocation purposes
and for other research that requires access to machines
with known positions for packet transmission.

• We have proposed a systematic approach based on Ran-
dom Forest to improve the accuracy of delay-based IP
geolocation methods. This approach resulted in a mean
error reduction of 160 km when compared to the best
method in previous studies.

• We have addressed the issue of missing measurement
data, which is a common challenge in delay-based ge-
olocation methods, by introducing a novel method based
on XGBoost, which has not been previously studied.

II. RELATED WORKS

Previous works of IP geolocation can be classified into two
categories: passive geolocation and active geolocation. The
difference between them mainly lies in whether to send packets
to the target IP actively.

A. Passive Geolocation

Passive geolocation tries to find some information about an
IP which can be used to infer geographical location. Some use
RDNS hostnames to geolocate because network operators may
encode city names or other location hints in hostnames [2]–[4].
Wang et al. found that some entities host web services locally.
They mined this information through the mapping service
[10]. Guo et al. presented an approach called Structon, which
extracts location from the web content of some IPs [11]. Liu
et al. proposed Checkin-Geo which leverages the location data
that users share in social networks [12]. Wang et al. discovered
that the source code of some websites hosting live webcams
exposes the IP address and corresponding location [13]. They
used the natural language processing technique to extract these
web pages and got the location of some IPs. Passive methods
are fast, but they fail to apply to too many addresses because
few IP addresses have information that can be used to infer.
In this paper, we choose some of these methods to generate
some IP addresses with known location which we will show
in section III-C.

B. Active Geolocation

Active geolocation uses some machines with known lo-
cations to send packets to the target. The sender is called

the vantage point, and the receiver is called the end point.
Depending on whether only using ping to send packets, we can
split it into two categories: delay-based and topology-used.

1) delay-based: These methods only use ping to send
packets and use delay obtained to geolocate. This type of
method has a great coverage because it can geolocate any
IP as long as this IP can respond to ping. Some methods
geolocate by a process called multilateration, which converts
latency to a physical distance for each vantage point and then
draws circles around each vantage point with its corresponding
distance as a radius [5]–[7]. The target must be in the area
where these circles intersect, and its geographical coordinate
is marked as the centroid of that area. The main problem with
multilateration is that it is hopeless to predict accurate physical
distance by latency. Many factors can influence latency, such
as circuitous routing path, processing delay, etc. Much of the
research on active focuses on increasingly complex models.
Eriksson et al. converted the prediction to a classification
problem [14]. They divided the region into several categories
and use naive Bayes to predict the category of the target.
But the accuracy is not good when predicting in a large
area because the number of categories is too much. Jiang
et al. trained a two-stage neural network to estimate the
geolocation [15]. Their method can not be used in practice
because its neural network does not adapt for geolocation,
leading prediction not accurate. In summary, the accuracy of
these delay-based methods still needs to be improved.

2) topology-used: Some methods not only use ping but
also traceroute for sending packets to end points. In other
words, these methods combine network delay and network
topology to infer location [1], [16], [17]. These methods are
more accurate than delay-based methods. However, there are
three drawbacks to them. First, using traceroute additionally
takes more time than just using ping. Second, traceroute causes
too much network traffic, making it impossible to extend the
method to the entire Internet. Finally, some IP addresses deny
only traceroute traffic causing these addresses cannot to be
inferred. To summarize, there are problems with efficiency
and coverage in this type of method.

III. DATASETS

In this section, we describe our process of building datasets.
First, we constructed a location hint dictionary, which is used
to build some other datasets in our study. Next, we collected
Looking Glass with known locations to serve as our vantage
points. We obtained endpoint data from some public resources
such as RDNS hostname dataset. Finally, we use vantage
points to ping the end points, recording the minimal round-trip
time (RTT) between each pair. This RTT data was compiled
into our delay dataset.

A. Location Hints Dictionary

The location hints dictionary returns the geographical coor-
dinate of the corresponding location when entering a location
hint. We obtain city information from the cities 1000 file in the
June 2022 snapshot of a free geodatabase called GeoNames



[18]. This file contains information about all cities with a pop-
ulation over 1000, such as name, population, and geographic
coordinates. The city name is used as the location hint, i.e., the
key of the dictionary. In addition to it, we use three other types
as location hints, which network operators may sometimes use
to represent cities:

CLLI: This 11-character code is used in the North Amer-
ican telecommunications industry, and the first six characters
specify the location. We get a CLLI code list from [19].

UN/LOCODE: It is a code representing trade and transport
locations. We use the dataset released by United Nations
Economic Commission for Europe (UNECE) [20].

IATA and ICAO: Both of them are the airport code, which
is used to designate airports. Some operators prefer to use them
to represent the city where the airport is located. We collected
these codes from the OurAirports database [21].

Although some location hints can be used to represent a
city, network operators may use them for other purposes. For
example, the word normal can represent the city Normal,
Illinois, USA, but the operator probably uses it to indicate
that the device is normal. To solve it, we manually build a
blacklist of such words that may cause false representation.

B. Vantage Points

Previous methods of active IP geolocation have relied on
expensive vantage points, such as cloud servers or probes
from measurement platforms like RIPE Atlas. However, our
approach offers a more cost-effective solution. By using Look-
ing Glass as our vantage points, we are able to significantly
reduce the cost of geolocation. LG are tools that are deployed
on routers by network administrators for diagnostics, and many
can be accessed through a web interface at a minimal cost. In
addition to being cost-effective, LG ,which is deployed on the
router, can offer a more stable network environment than many
of the terminal probes used in previous methods. In Appendix
A, we check that whether the accuracy is reduced when using
LG as vantage points.

In this paper, we collected a set of 373 Looking Glass
with known locations that can be used automatically for IP
geolocation. To obtain the LG, we crawled the source code
of the webpages of each LG in a list published by [9].
We analyzed the structure of the source code and extracted
possible geographical location keywords using regular expres-
sions. For example, we looked for phrases in the form of ’X,
Y’ where Y is the name of a country or state (we found
that only the US, Canada, and Brazil used state name as
Y). We considered X as a potential geographical name and
included it in our list of candidates. We then matched these
candidates against our location hint dictionary to obtain the
corresponding geographical coordinates for each LG. Next,
we analyzed the API of each LG and checked for availability
to ensure that it could be used for geolocation. Although there
are already public available LG [9], [22], their geographic
locations are derived from IP geolocation databases, which
can compromise their accuracy. The locations of our LG
were obtained by analyzing the content of their corresponding

Fig. 1: Geographical location of vantage points

webpages, providing a more accurate and reliable source of
information. Fig. 1 shows the geographical locations of the
LG we collected.

C. End Points

We obtain our end points with two types: terminal address
and router address.

1) terminal address: To collect terminal addresses, we used
two sources. The first source was the probes from the RIPE
Atlas platform, from which we obtained 23,746 addresses.
For the second source, we used the GeoCAM method [13],
which found that the source code of some camera-hosting
websites could expose the IP address. To this end, we parsed
two websites, pictimo.com and insecam.org, collected 21,343
IP addresses along with their corresponding city names and
used the location hint dictionary to obtain the corresponding
geographical coordinates finally.

2) router address: To obtain router addresses, we used the
RDNS-based method described in Section II-A. Specifically,
we used the November 2021 version of the RDNS dataset
maintained by Rapid7 [23], which contains reverse DNS host-
names for all non-blacklisted and non-private IPv4 addresses.
Some regular expressions for the hostnames were publicly
released by [4], which we used to obtain the location hint
for the corresponding hostname. In addition, we defined our
own regular expressions. If the rightmost label of a hostname
is an ISO-3166 country code and includes a full city name
in that country, we geolocated the hostname to that city. We
considered a /24 subnet to be geo-good if we geolocated over
200 IP addresses to the same city. To construct our router
address set, we used the 2021 version of the CAIDA ITDK
dataset [24]. We added a router IP to our set if its /24 prefix
was geo-good. Our rules and those from [4] yielded a total of
1,058,016 router addresses.

In this paper, 175 vantage points are used to ping a selection
of end points. The reason for not utilizing all collected LG is
that in some areas, the number of LG is relatively high, which
may lead to bias in the measurement data. The minimal RTT
between each pair is recorded. End points that violate the rule
that data travels through fiber optic cables at almost 2/3 the
speed of light in a vacuum are removed [16]. This results in
an end point dataset with 26,625 router addresses and 17,276
terminal addresses. Table I shows the distribution of these end
points in each Regional Internet Registry (RIR).



TABLE I: Number of end points in 5 RIRs

APNIC RIPE NCC LACNIC ARIN AFRINIC
Terminal IP 4126 10108 443 2568 31
Router IP 4606 14157 2637 5225 0

IV. ANALYSIS

A. Is IP geolocation database accurate?

Commercial IP geolocation databases are frequently used
by researchers to determine the location of an IP address.
However, previous studies have shown that these databases
may not be accurate enough [25]. Since our end points are
obtained by some geolocation methods, which are also the
principle of databases, using them will lead to highly biased
results. To re-evaluate these databases based on our data,
we used LG as the evaluation standard, since we geolocated
them by analyzing their webpage content, which differs from
how the databases obtain their information. We evaluated the
free versions of two commonly used databases, IP2Location
and MaxMind [26], [27]. The results showed mean errors of
1376.00 km and 1098.34 km, respectively. Additionally, their
country-level accuracy was found to be 80.16% and 82.31%.
These findings indicate that the accuracy of these databases,
even at the country level, is questionable. These results prove
the necessity of the IP geolocation method.

B. Is missing RTT inevitable?

As we all know, some packets might be lost in transmission
, so we cannot ensure successfully getting the RTT of each
pair. During our data collection, we also encountered some
pairs do not have RTT even though we make ping several
time. In our first data collection, 8.61% of pairs did not
have RTT. We attempted to obtain RTT for these pairs by
having the vantage points in these pairs ping the corresponding
endpoints five times, but 29.8% of the pairs still did not
have RTT. We explain that it may be due to geoblocking, a
technology restricting access to Internet content based on the
sender’s geographical location. This missing data can reduce
the accuracy of geolocation methods that rely on RTT and can
also slow down the geolocation process due to the need to re-
ping. We propose a method to supplement the missing RTT
data, which improves the accuracy of geolocation.

C. Is traveling speed related to region?

For convenience, we call the traveling speed by dividing the
geographical distance by half of the RTT. Previous delay-based
methods did not consider any factors affecting the traveling
speed. However, many factors affect the traveling speed, such
as physical media, congestion level, and geographic region.
Among these factors, the geographical region can be inferred
easily. Before geolocating, we analyze the relationship be-
tween the geographical region and traveling speed. Fig. 2
shows the traveling speed of vantage points in the United
States (US), Singapore (SG), Australia (AU), and Russia (RU)
to some different regions. We can see that the traveling speed
of vantage points to end points in different regions varies

significantly, and that the speed of a vantage point to end
points in a specific region varies across different regions.
For example, the speed of most US, SG, and AU vantage
points to western Europe end points is between 100 and 150
km/ms while most RU vantage points to these end points have
traveling speeds between 50 and 100 km/ms. Based on this
analysis, we incorporated the regional information of the target
IP address when geolocating by RTT.

D. Is using Looking Glass feasible?

Now we explore the advantages of using LG as vantage
points compared with the widely-used RIPE Atlas platform
for geolocation measurements. We employed 175 LG to ping
about 40,000 endpoints, which would require approximately
42,000,000 credits in RIPE Atlas. To earn credits, one can
either become a sponsor or host a probe to earn credits.
However, sponsoring 50,000 EUR would be necessary to
obtain such a number of credits, while hosting a probe can
earn about 25,000 credits per day, meaning that completing
this measurement would take 2000 days if credits were earned
by hosting one probe. Our estimation shows that LG reduce
the cost of such measurements significantly. In addition to
reducing costs, LG can also expand geographical coverage, as
the 175 LG we used are distributed across 75 cities, including
25 that are not covered by RIPE Atlas. Our aim is to offer
more choices for researchers looking for vantage points with
known positions, rather than replacing existing measurement
platforms. We believe that our published Looking Glass can
be a valuable resource for researchers seeking more affordable
and diverse measurement options.

V. METHOD

A. Overview and defined symbols

Fig. 3 illustrates the framework of our method, which is
comprised of three stages. In stage 1, we predict the missing
data in the measurement data whose details are described in
Algorithm 1. Random Forest is used in stage 2 to predict
regions, followd by the predition of geographical coordinates
in stage 3. We now define some symbols later used. Several
symbols are used later, including K to represent the number of
vantage points, N for the number of end points in the training
set, and M for the number of end points in the test set. The
RTT matrix, denoted as X, is defined as the matrix with each
row representing the RTT between one end point and each
vantage point. The size of Xtrain, which represents the RTT
matrix of the training set, is N ×K, while the size of Xtest,
the RTT matrix of the test set, is M ×K.

B. Stage 1: infer missing RTT

The presence of missing values can adversely affect ma-
chine learning models, especially those that cannot handle
missing data, such as fully connected neural networks. Addi-
tionally, traditional methods of replacing missing values with
median or mean may not be optimal for the IP geolocation
problem. We claim that the succefully obtained delay between
vantage points and end points can help to infer missing RTT
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values. The details of this stage are described in Algorithm 1.
It comprises K rounds, where in each round, we supplement
the RTT between one specific vantage point and end points.
That is to say, we predict the missing value of one column
of the RTT matrix in each round. For round i, we select the
rows whose ith element is not null in Xtrain, and use the data
from these rows to train a machine learning model. The model
takes the data of all columns except column i as input, and
the data of column i as output. Once the model is trained, it is
used to predict missing values for both Xtrain and Xtest. We
use XGBoost as the machine learning algorithm in this stage.
XGBoost is a scalable, distributed gradient-boosted decision
tree (GBDT) machine learning library [28]. The reason of
choosing this algorithm is that it supports missing values by
default so the missing values of some columns of data can be

Algorithm 1 Handle missing values

Input: RTT Matrices Xtrain and Xtest

Output: New RTT Matrices NXtrain and NXtest

1: M ← Array(size: K)
2: for col← 1 to K do
3: Initialize two empty arrays TX and TY
4: for row ← 1 to N do
5: if Xtrain[row, col] is not none then
6: TX.append(Xtrain[row].RemoveIndex(col))
7: TY.append(Xtrain[row, col])
8: M [col]← XGBoost trained with TX and TY
9:

10: NXtrain = Xtrain, NXtest = Xtest

11: for col← 1 to K do
12: for row ← 1 to N do
13: if Xtrain[row, col] is none then
14: L← Xtrain[row].RemoveIndex(col)
15: NXtrain[row, col] = M [col].predict(L)
16: for row ← 1 to M do
17: if Xtest[row, col] is none then
18: L← Xtrain[row].RemoveIndex(col)
19: NXtest[row, col] = M [col].predict(L)
20: return NXtrain, NXtest

dealt with well in the training stage. After stage 1, Xtrain and
Xtest no longer have any missing elements.

C. Stage 2: infer region of target

In stage 2 of our method, our objective is to predict the
region of an IP address. While RIRs may provide regional
information, their data can be outdated, and IP geolocation
databases may contain incorrect passive source information.
To address these limitations, we propose using RTT measure-
ments to predict the region, which is a classic classification
problem. Specifically, our method formulates the problem as
r = F(L), where r is the predicted region, F is the machine
learning algorithm, and L represents the RTTs between the
target and our vantage points. Due to the complexity of the
relationship between delay and geographical distance, as well



as the presence of noisy data, we adopt the Random Forest
algorithm in our approach, which is known for its robustness to
outliers and non-linear data. Further details on our algorithm
selection and a comparison of accuracy with other machine
learning algorithms are provided in Appendix B.

D. Stage 3: infer geographical coordinate
In stage 3, we incorporate regional information along with

RTT to improve the accuracy of IP geolocation. Specifically,
we add an extra dimension to the input by including the
predicted region from stage 2. The output is the geographic
coordinates of the IP, namely latitude and longitude. To be
more precise, we modify the loss function by using the great-
circle distance, which is the shortest distance between two
points on the surface of a sphere. We denote the predicted
geographical coordinate as y, with y0 representing the lati-
tude and y1 representing the longitude. For two geographical
coordinates yi and yj , their distance ∆d can be calculated:

∆d = 2l ∗ arcsin
√
sin2 ∆lat+ cos y0i ∗ cos y0j ∗ sin

2 ∆lon

where

∆lat = y0i − y0j

∆lon = y1i − y1j

The symbol l represents the arithmetic mean radius of earth
which is 6,371.0088 km [29]. Because the calculation of
great-circle distance requires a lot of trigonometric function
operations which will take too much time, we adjust the format
of (latitude, longitude) to n-vector which can be converted by:

ni =

 cos(y0i ) ∗ cos(y1i )
cos(y0i ) ∗ sin(y1i )

sin(y0i )


where ni represents the n-vector of yi. After this conversion,
the geographical distance can be calculated as:

∆d = 2l ∗ arctan ( |ni × nj |
ni · nj

) (1)

For one IP, the problem can be formulated as:

n = ML(L, r)

where n is the n-vector format of the target, ML is the machine
learning algorithm of this stage, L is the RTTs between this
target and our vantage points, and r is the category of the
target’s region which is inferred in stage 2.

We choose to use the Random Forest for geolocation as
same as stage 2 because of its good robust to outliers. In
addition, the problem of this stage is a multi-output regression
problem where the size of output is not one-dimensional.
Previous work shows that the Random Forest algorithm is
suitable for this problem [30]. From the equation (1), the loss
function of this Random Forest can be set as:

L =
1

N

∑
j

∆d(nj ,nj)

=
2r

N

∑
j

arctan (
|nj × nj |

nj · nj
)

In practical use, we drop the fixed coefficient 2r to improve
the speed. In section VI-C, we compare the impact of our
loss function adjustment on the accuracy of geolocation. Our
results demonstrate that the adaption of the loss function
significantly improves the accuracy. Furthermore, we also suc-
cessfully improved the speed of conversion from geographic
coordinates to n-vector format.

VI. EVALUATION

In this section, we evaluate our method in four aspects. First,
we evaluate the impact of our missing value handling method
on the accuracy. Next, we explore the importance of region
information in our method. Then, we evaluate the impact of
our loss function used in stage 3. Finally, we compare the
accuracy of our method with prior works. For evaluation, we
randomly divide end points into 80% for training and 20% for
testing. It should be noted that the accuracy heavily depends
on the test data, i.e., the IP address being geolocated. The
accuracy of the same method is quite inconsistent in different
papers. Our experiment may get different results compared
with other papers. We have made our code and data publicly
available for further research [31].

A. Handling missing values

In stage 1 of our framework, we propose a novel ap-
proach to handling missing values in RTT data. We compare
our approach to the traditional methods of keeping missing,
imputing with the mean, and imputing with the median.
Keeping missing means using models that support missing
values instead of supplementing the missing data. We use the
XGBoost algorithm, which supports missing values by default,
to train and predict using RTTs as input and geographical
coordinates as output. Fig. 4 depicts the CDF curve of the
error distance when using all end points, which shows that
our method outperforms the other methods in terms of error
distance. The average error of our method is about 20km
smaller than that of other methods. We also evaluate our
method under different degrees of data deletion. We select 150
vantage points and 41,046 end points, which guarantees no
missing RTT between them. Then we remove some recorded
RTT randomly and use different ways of handling missing to
supplement data. We use stage 2 and stage 3 of our method to
geolocate finally. We find that our filling method successfully
improves geolocation accuracy, as shown in Fig. 5. These
results validate the necessity of stage 1 in our framework and
to our knowledge, this is the first proposed solution to address
the problem of missing values of RTT in active IP geolocation.

B. Utilizing region information

In this subsection, we investigate the impact of incorporating
regional information in stage 2 of our three-stage geolocation
method. We evaluate four different classification types: (1)
None, which means not using region information; (2) RIR;
(3) Continent; (4) Subregion, which is from Untied Nations
Statistics Division’s geoscheme [32]. Table II shows the pre-
diction errors of using different ways of dividing the world



TABLE II: Average Error (km) when using different region
information

Number

Type
None RIR Continent Subregion

2500 237.96 203.54 231.81 225.58

10000 139.27 132.53 135.92 124.61

17500 93.01 94.23 93.02 88.96

25000 93.59 88.32 87.58 81.32

32500 82.79 81.13 80.52 75.07

40000 78.23 76.25 75.03 70.32

and different numbers of end points. The results demonstrate
that the use of regional information consistently improves
the accuracy of our method, regardless of the classification
type. Using the Subregion classification method yields the best
results, except when the number of end points for training
is limited. Therefore, we select the Subregion classification
method for stage 2 of our method. We further validate the
plausibility of the stage 2 predictions by observing a high
accuracy rate of 99.27% when using all end points with the
Subregion classification. These results support the necessity of
stage 2 and indicate that the inferred results from stage 2 can
be reasonably used in stage 3.

C. Customizing the loss function

In stage 3 of our framework, we developed a customized
loss function that was specifically tailored for the IP geoloca-
tion problem. We compared the performance of two common
loss functions, mean absolute error (MAE) and mean square
error (MSE), with our custom loss function in Table III.
Our results show that using the loss function adapted by
great circle distance achieves the highest accuracy in all our
tests. In the best case, where 17,500 end points were used,
the custom loss function reduced the error by approximately
5km. These results demonstrate the improvement caused by
our defined loss function in the IP geolocation problem.
Additionally, we compared the time consumption of using
geographic coordinates and using (1) to calculate the loss
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TABLE III: Average Error (km) when using different loss
function

Number

Loss function
MAE MSE Our defined

2500 250.60 236.82 228.47

10000 137.24 139.16 135.92

17500 98.06 93.37 89.84

25000 93.59 88.32 87.58

32500 99.29 92.83 89.46

40000 90.13 83.07 81.23

function. Our findings show that converting the geographical
coordinate to the form of n-vector can reduce the time by a
factor of ten, indicating the effectiveness of this conversion
for the IP geolocation problem.

D. Accuracy comparison with prior works

To demonstrate the improvement of our three-stage frame-
work, we compare our method with some prior works. We
choose the following baselines to compare: CBG [5], Octant
[6], Spotter [7], and GeoNN [15]. The first three methods
convert RTT to physical distance and then predict by mul-
tilateration, which we explain in section II-B. The difference
between them is the function of converting RTT to physical
distance. The last method, GeoNN, trains a two-tier neural
network to make a prediction. Fig. 6a shows the experiment
results using our total end points. We achieved the best
performance, with a mean error of 69.49 km in geolocating IPs
in our test set, compared to the best previous work, GeoNN,
which had an error level of 230.40 km. Our method also
achieved the best geolocation results in every test, as shown
in Fig. 6b, validating its success in improving delay-based IP
geolocation accuracy. 36.19% of the addresses had a prediction
error of fewer than 10 km, and 60.36% had a prediction error
of fewer than 50 km. These results confirm the superiority of
our proposed method.



0 400 800 1200 1600
Distance Error (km)

0.00

0.25

0.50

0.75

1.00

C
D

F

(a) router address

CBG OctantSpotter
GeoNN Our method

0 400 800 1200 1600
Distance Error (km)

0.00

0.25

0.50

0.75

1.00

C
D

F

(b) terminal address

0 400 800 1200 1600
Distance Error (km)

0.00

0.25

0.50

0.75

1.00
C

D
F

(a) The CDF curve of prediction error when using all end points

2500 10000 17500 25000 32500 40000
Numbers

500

1000

1500

Av
er

ag
e 

er
ro

r (
km

)

(b) Average error when using different numbers of used end points
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methods

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented a novel framework for IP
geolocation that utilizes a new dataset of 373 Looking Glass as
vantage points and incorporates machine learning and regional
information to improve accuracy while reducing cost. We
addressed the issue of missing RTT data in geolocation and
demonstrated the effectiveness of our approach through exper-
iments, achieving superior results compared to prior works.
Our code and data are publicly available for further research
[31], and we hope our work will contribute to the development
of more efficient and cost-effective IP geolocation methods.

In the future, we will use all collected LG to check
whether the geographical imbalance of the vantage points
have an impact on the accuracy. Additionally, the geographic
distribution of the end points we used is also unbalanced,
resulting in better performance in areas with a higher number
of end points. While this is reflective of the distribution of real-
life IP addresses, it is also necessary to focus on improving
the geolocation accuracy in areas with a lower number of IP
addresses. We plan to further analyze these areas in order to
improve overall accuracy.
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APPENDIX

A. Looking Glass vs Terminal Probes

In this article, we utilize the Looking Glass to reduce the
cost in IP geolocation. Since many LG are deployed on routers,
their network conditions are more stable than the probes
installed in the terminal. We check whether using the LG can
get better accuracy than terminal probes. We use the RIPE
Atlas platform to get the terminal probes. We filter out 50
geographical locations, of which both the RIPE Atlas platform
and our Looking Glass list have probes on that location. Then
we select a probe as our vantage points from the LG and the
RIPE Atlas at each of these geographical addresses. We select
5,000 end points randomly, make the measurement, geolocate
by using our three-stage framework finally. Table. IV shows
the results of our five attempts. There were seven tests in
total where better results could be achieved using the Looking
Glass, which illustrates the potential of using the LG for IP
geolocation problem. However, using LG does not always
ensure that better results will be achieved. Our goal is not to
replace the probe measurement but to provide more choices
for researchers.

B. Router address vs Terminal address

In our study, we collected two distinct types of end points
for IP geolocation, which were combined to evaluate in other
experiments. However, we recognized that different network

TABLE V: Average Error (km) using different algorithms

Number

Algorithm
RF DT KNN NN

2500 226.59 295.52 261.98 623.45

10000 128.69 202.30 152.42 324.26

17500 89.81 184.81 107.17 266.47

25000 81.82 166.06 97.70 230.84

32500 75.88 161.30 90.73 220.86

40000 71.72 148.91 85.97 212.46

conditions may impact the accuracy of our method. To further
investigate this, we trained our model using the same set of
32,000 end points to geolocate two different types of IPs:
3,000 terminal IPs and 3,000 router IPs. Our findings revealed
that we were able to geolocate router IPs with an average
error of 100 km, while the average error for terminal IPs
was 800 km. These results support our hypothesis that a more
stable network environment leads to more accurate geolocation
predictions.

C. Random Forest vs other algorithms

We choose the Random Forest to geolocate in stage 2 and
stage 3. Now we compare its accuracy with other algorithms
in IP geolocation problem. Because this problem is a multi-
output regression problem, we select three other common
machine learning algorithms for this kind of problem: decision
trees (DT), k-nearest neighbors algorithm (KNN), and neural
network (NN). Notably, we use two-tier fully connected neural
network and the size of neurons in the hidden layer is twice
as much as input size. Table V shows the accuracy of different
algorithms. Among these machine learning algorithms, using
the Random Forest achieves the greatest accuracy in our
addresses. It validates our hypothesis that the RF is more
suitable for handling noise-contained RTT data.


