
Flow Prioritization for TSN Asynchronous Traffic
Shapers

Julia Caleya-Sanchez∗, Jonathan Prados-Garzon∗, Lorena Chinchilla-Romero∗, Pablo Muñoz ∗,
and Pablo Ameigeiras∗

∗Department of Signal Theory, Telematics and Communications (DTSTC), University of Granada, Spain
Emails: jcaleyas@ugr.es, jpg@ugr.es, lorenachinchilla@ugr.es, pabloml@ugr.es, pameigeiras@ugr.es

Abstract—Time-Sensitive Networking (TSN) technology is key
to the development of current networks due to its capacity
to provide a deterministic Quality of Service (QoS) mainly in
terms of delay for different industrial traffic. It also simplifies
management and improves the scalability of industrial networks.
This articles focuses on Asynchronous Traffic Shape (ATS) for
TSN. The key aspect of ATS is that by prioritizing flows delay
requirement can be satisfied for each priority level. To that end,
we formally formulate the problem of flow priority assignment in
an network and we demonstrate the optimality of our proposed
algorithm. We have compared our algorithm with the brute force
search obtaining that the execution time of brute force is much
higher than ours with exactly the same prioritization results.

I. INTRODUCTION

Time-Sensitive Networking (TSN) is a set of layer 2 stan-
dards that are specified as a series of amendments to the IEEE
802.1Q standard. These standards solve critical challenges
in various sectors by ensuring the deterministic transmission
of flows with Quality of Service (QoS) in terms of strict
requirements for latency, jitter, reliability and packet loss.
Thanks to these capabilities, TSN technology is currently
key to the development of deterministic networks, such as
industrial or 5G networks.

TSN guarantees deterministic traffic transmission by the use
of sophisticated and complex schedulers for the transmission
of frames on the output ports of a TSN bridge. We can
distinguish two types of schedulers defined in TSN standards:
Asynchronous Traffic Shaper (ATS) and Time-Aware Shaper
(TAS). In this case, we focus on asynchronous TSN networks,
where a common and precise time reference is not necessary.
The asynchronous TSN network uses the ATS, defined in
IEEE 802.1Qcr. The ATS is based on the Urgency-Based
Scheduler (UBS) proposed by Specht and Samii [1], which
uses interleaved shaped queues to regulate traffic and a strict
priority queue for traffic prioritization. In addition, ATS-based
TSNs are more suitable for large-scale scenarios. Specifically,
an ATS TSN is considered at each output port of the TSN
bridge.

There are different alternatives that address the configu-
ration of ATS-based TSN networks [1]–[3]. However, all of
them present scalability problems, and it is necessary to find

This work has been partially funded by the H2020 research and innovation
project 5G-CLARITY (Grant No. 871428), 6G-CHRONOS (TSI-063000-
2021-28) and the Spanish Ministry of Universities (FPU Grant 21/04225).
ISBN 978-3-903176-57-7© 2023 IFIP

solutions that can handle and adapt correctly to the increase in
traffic smoothly and without losing the QoS offered. Therefore,
scalability is a key factor in order to be able to adapt
correctly to the growing evolution of new services with more
stringent requirements in terms of QoS. Additionally, due to
the nature of the proposed solutions, these solutions are all
computationally complex to implement.

In this work, a solution is proposed to solve the above
problems, by a novel ATS-based TSN network configura-
tion method, which minimizes the number of priority levels
with respect to known techniques, under deterministic QoS
requirements. The proposed solution attempts to find a feasible
prioritization of a set of traffic flows in a single concrete ATS
instance while fulfilling the delay requirements of the flows.
This solution scales well with the increase in flows to be
accommodated. That is, for a large number of flows, the pro-
posed solution attempts to determine the feasible prioritization
in an efficient way. The solution assumes that the requirements
of the flows are previously known, being suitable, for example,
for industrial networks where the types of traffic are known a
priori. Additionally, the algorithm that develops the proposed
solution presents a feasible and uncomplicated implementation
and is valid for both online and offline solutions.

For evaluation purposes, we consider an industrial scenario
with different types of traffic with different QoS requirements.
An analysis of the degree of optimality and accuracy of the
proposed algorithm is provided. Specifically, we demonstrate
that proposed algorithm minimizes the number of priority
levels required in an ATS instance, fulfilling the queuing
delay requisites of the flows traversing the ATS instance.
Furthermore, we compared the performance and flow prior-
itization by our algorithm with the exhaustive search of all
possible configurations (brute force). The results show that
our algorithm scales correctly, with execution times six orders
of magnitude lower than brute force and with exactly equal
prioritization results for both approaches.

The remainder of the paper is organized as follows: Section
II review of the ATS description and existing work addressing
the performance of an ATS-based network. Section III de-
scribes the system model and the prioritization problem and
its formulation. Section IV defines the developed algorithm
with its analysis and design principles. Section V provides the
experimental results and section VI draws the conclusions.



II. BACKGROUND

A. ATS Description

The ATS defines an asynchronous method for handling
frames on the TSN bridge output ports [4], [5]. The TSN
standards [5], which specify the ATS, are based on the UBS
proposed by Specht and Samii in [6]. In [6] is considered
a leaky bucket in the asynchronous shapers for flow traffic
regulation. The ATS can be a practical implementation of the
UBS in 802.1Q standards [5]. In this work, we adopt the
nomenclature used in [6].

The queuing model of the ATS is shown in Fig. 1 [3]. For
simplicity, only one egress port is shown in Fig. 1, but there
is an ATS instance for each egress port of the bridge. The
ATS consists of two queuing stages: i) a set of shaped queues,
which are First In, First Out (FIFO) queues with an interleaved
regulator, for interleaved shaping and ii) a set of priority
queues. In the first stage, interleaved shaping, to perform traffic
control of a set of flows, each with its own requirements,
the use of a single queue (shaped queue) can be employed.
The use of shaped queues before strict priority queues avoids
arbitrarily large worst-case delays, because the burstiness of
the flows remains constant with each hop. However, it can
lead to packet losses of flows. Remarkably, in [7] LeBoundec
demonstrated that the Worst-Case Queuing Delay (WCQD) is
not enhanced by the use of shaped queues in the ATS. That is,
placing a minimal interleaved regulator after an arbitrary FIFO
queue has no negative effect on the delay for the worst case
combination. The second stage uses First Come, First Served
(FCFS) queues with a strict priority transmission selection
algorithm. In each of the queues, all the shaped queues with
the same priority level are merged.

B. Related Works

This section overviews existing works related to the solu-
tions proposed for the flow prioritization in asynchronous TSN
networks [1]–[3], [8], [9].

In [1], Specht and Samii consider a Satisfiability Modulo
Theories (SMT) solver to find a feasible configurations in
ATS-based networks. They propose a Topology Rank Solver
(TRS) heuristic to cope with the high complexity of the
pure SMT solution. Nonetheless, TRS relies on SMT for
flow prioritization in at least a single ATS instance. In [3],

Fig. 1. ATS queuing model.

Prados et al. propose a solution combining heuristic and
convex optimization to seek a long-term configuration of ATS-
based TSN network. Specifically, the work in [3] addresses
the problem formulated in [9] which aims to minimize the
probability of flow rejection. Although the cited works are
armed with heuristics methods to cope with computational
complexity, they uses exact optimization method to address
the flow prioritization in the ATS instance, which limits their
scalability with the number of flows.

In [2] and [8], Prados et al. suggest an online approach
based on Deep Reinforcement Learning (DRL) to determine
the configuration of each flow as it arrives at the network.
The requirements of the flows in this solutions are unknown
and present a low capability, i.e., they depend on the network
topology and have to be trained specifically for each scenario
which leads to a large training time. Additionally, these
works do not include a model of the flow allocation problem
in asynchronous TSN networks. Moreover, all the solutions
proposed are complex to implement.

In this work, unlike [2], [3], [8], [9], the proposed solution
considers known flow characteristics and requirements, which
is the common situation in many scenarios such as industrial
networks. Furthermore, unlike the exact optimization methods
considered in [1], [3], it is scalable as it allows to increase the
number of flows in the scenario proving that the computational
time complexity is maintained while providing a feasible
prioritization. Last, remarkably, the proposed algorithm is
easier to implement.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, first we describe the considered system
model. and then we formally formulate the ATS flow prioriti-
zation problem addressed in this work.

A. System Model

Let us consider an asynchronous TSN network comprising
a set of ATS-based TSN bridges. There are a set of delay-
sensitive flows to be conveyed through the network whose
traffic is constrained by r · t + b [10], where r and b are the
committed data rate and burst size (burstiness), respectively.
The number of flows, their respective traffic features r and
b, and their end-to-end (E2E) delay requisite are known be-
forehand. This is the common situation in industrial networks.
For instance, we might have critical flows to communicate
alarm events, control the motion of the operational technology
devices, and steer the mobile robots through the factory floor.
Each flow follows a specific path in the TSN network and
its E2E delay requisite is somehow distributed among the
different hops of the path.

Each TSN bridge includes an ATS instance at every egress
port to handle the packets transmission at the link according
to the operation described in the previous section. The ATS
instances include P priority levels and enough shaped queues
as to use all the priority levels regardless of the asynchronous
TSN network configuration (e.g., number of ingress ports at
the respective TSN bridge and prioritization considered in the



previous hop). Without loss of generality, we assume that each
priority level is associated with an integer index p and lower
indexes mean higher priority levels. In this way, priority 1
is the level with the highest priority. The priority levels 1 to
P − 1 are reserved to accommodate delay-sensitive traffic,
whereas the priority level P is destined for best-effort traffic
(e.g., remote access and maintenance in manufacturing [11]).

Given the per-flow chosen paths and delay requisite distribu-
tion among hops, there is a set of delay-sensitive flows F to be
prioritized at each ATS instance. We assume there is a worst-
case delay requisite, denoted as Df , for each flow f ∈ F at
the respective ATS instance. Thus, we can define the WCQD
requisite at the ATS instance for flow f as Rf = Df − lf/C,
where lf is the maximum frame size of the flow f and C is
the nominal capacity of the link handled by the ATS instance.
Without loss of generality, we assume that each flow f ∈ F
is associated with an integer index i according to its WCQD
requisite Rf , also denoted as Ri, Ri = Rf . Specifically,
lower indexes mean more stringent WCQD constraints, i.e.,
Ri−1 ≤ Ri ≤ Ri+1 being the flows with indexes 1 and
F = |F| those with the most stringent and most lenient
WCQD requisites, respectively.

Let Fp be the set of flows allocated to a priority level p. The
WCQD Qp experienced by every flow allocated to a priority
level p is upper bounded as follows [6], [7], [12]:

Qp =

∑
∀f∈F1∪...∪Fp

bf +max∀f∈Fp+1∪...∪F8 lf

C −
∑

∀f∈F1∪...∪Fp−1
rf

(1)

where rf and bf are the committed data rate and committed
burst size (burstiness) for the flow f , respectively. Please find
in Table I the primary notation considered in this work.

B. Problem Statement and Formulation

The problem addressed in this work consists in finding a
feasible or satisfiable prioritization for F at the respective ATS
instance, i.e., the delay requisites ∀ f ∈ F are met, to minimize
the number of priority levels used in it. Below is the formal
formulation of the stated problem:

minimize

{
max
∀f∈F

Pf : Pf ∈ [1, 1− P ] ∩ N ∀f ∈ F (C1);

Qp ≤ Rf ∀ f ∈ Fp, p ∈ [1, P − 1] (C2);∑
∀ f∈F

rf ≤ C (C3).


(2)

where N is the set of natural numbers. The decision variables
are Pf which denotes the priority level assigned to flow f ∈
F . This variables are integer and take values in the available
priority levels for delay-sensitive traffic in the corresponding
ATS instance, as specified in constraint C1.

The objective of the problem above is to minimize the
required number of priority levels in the ATS instance. The
motivation of choosing this optimization goal is because the
cost of the asynchronous TSN network directly depends on the

TABLE I
PRIMARY NOTATION

Notation Description
F Set of flows to be prioritized in the ATS instance.

Fp
Set including all the flows currently allocated to prior-
ity level p in the target ATS instance.

C Nominal link capacity of the target ATS instance.

rf , bf , and lf
Committed data rate, committed burst size, and maxi-
mum frame size of the flow f , respectively.

Rf and Df
WCQD and delay requisites for the flow f at the target
ATS instance, being Rf = Df − lf/C.

Qp and Qf WCQD of priority level p and experienced by flow f .

R1 and RF
The most stringent and most lenient WCQD requisites
among all the flows F .

P
Maximum number of priority levels (queues) available
in the target ATS instance.

available priority levels in the ATS instances. The higher the
number of available priorities is, the higher the deployment
costs (capital expenditures) as the ATS-based TSN bridge’s
price raises. Moreover, it is easier to configure and operate
an asynchronous TSN network whose ATS instances have a
lower number of priority levels.

Regarding the primary constraints, we must ensure that the
aggregated rate traversing the ATS instance is lower than the
nominal capacity (C3). In fact, this technological constraint is
a primary assumption to derive (1) [6], [7]. On the other side,
the WCQD requisites for all the flows has to be met (C2).

IV. ATS FLOW PRIORITIZATION ALGORITHM

A. Design Principles

Let us start introducing some relevant propositions that can
be directly proven from (1) and are behind the rationale of the
proposed algorithm. Also, these propositions are cornerstone
for assisting the proof of the correctness and degree of
optimality of our proposal.

Proposition 1: The WCQD Q1 for the first priority level
(highest priority) is given by Q1 =

∑
∀ f∈F bf/C when

there is a single priority level or Q1 = (
∑

∀ f∈F1
bf −

max∀f∈F\F1
lf )/C when there are two or more priority levels.

Moreover, Q1 is the lowest WCQD in the ATS instance, i.e.,
Q1 < Qp ∀ p ∈ [2, P ].

Proof: Q1 can be directly derived from (1). From (1),
the aggregated burstiness of any priority level p ∈ [2, Q] will
include the aggregated burstiness of level 1 and by definition
lf ≤ bf∀f ∈ F . Also, the effective capacity of p ∈ [2, Q] is
reduced by the aggregated committed rate in level 1. Then, it
always holds that Q1 < Qp ∀ p ∈ [2, P ].

Proposition 2: Decreasing one priority level from p to p+1
of any flow f will increase its WCQD, but reduce or does not
affect the WCQD of the rest of flows. Equivalently, increasing
the priority level of any flow f will decrease its WCQD, but
increase or does not affect the WCQD of the rest of flows.

Proof: From (1), lowering the priority level of a flow
f will reduce the aggregated burstiness of the priority level
p it was originally accommodated by bf . Since by definition



bf ≥ l
(max)
f , the WCQD of p is reduced. For the new priority

level p + 1 of f , the aggregated burst size will remain the
same, but its effective capacity C −

∑p
k=1 r

(k) will increase
by rf , thus, decreasing the WCQD of p+1. For priority levels
k > p+1 or k < p, the WCQD does not change. On the other
hand, the maximum aggregated burst size seen by f remains
the same, but its effective capacity is reduced by

∑
f∈Fp

rf ,
thus increasing its WCQD. Last, increasing the priority level
of a flow f is equivalent, in terms of the resulting WCQDs
experienced by the flows, to keep the same priority level for
f and decrease one priority level for the rest of the flows.

Proposition 3: If, in the highest priority level (p = 1), the
most lenient WCQD requisite RfF1

, i.e., RfF1
≥ Rf ∀ f ∈ F1,

which is imposed by the flow fF1 = f|F1|, is not fulfilled, i.e.,
Q1 > RfF1

, then, problem (2) has no satisfiable solution.
Proof: From Proposition 1, Q1 < Qp ∀ p ∈ [2, P ]. From

Proposition 2, decreasing the priority level of fF1 will increase
its WCQD. On the other hand, decreasing the priority level of
any flow f ∈ F1 s.t. f ̸= fF1 to reduce the Q1 is neither
possible because the WCQD of f will increase (Proposition
2) and from the premises of the proposition RfF1

≥ Rf , thus,
Rf would not be met.

Proposition 4: If currently Qp ≤ Rf ∀ f ∈ Fp and ∀ p ∈
[2, P −M ], Fp == ∅ ∀ p ∈ [P −M +1, P ], and we decrease
M priority levels ∀ f ∈ F \F1, then, we can freely distribute
the flows originally allocated to p = 1 among the levels p ∈
[1,M + 1] and the requisites of the rest of the flows will be
still met, i.e., Qp ≤ Rf ∀ f ∈ Fp and ∀ p ∈ [2 +M,P ].

Proof: From (1), decreasing M priority levels for all the
flows originally allocated in p ∈ [2, P − M ] will keep the
same WCQD for them as Fp == ∅ ∀ p ∈ [P −M + 1, P ].
Then, no matter the prioritization we consider for the flows
originally allocated in p = 1 among the levels p ∈ [1,M +1],
also from (1), the WCQD will remain the same for all the
flows originally allocated in p ∈ [2, P −M ].

B. Algorithm

The proposed ATS flow prioritization algorithm is shown in
Algorithm 1. The goal of the algorithm is to find a satisfiable
prioritization, if at least one exists, for the set of flows F at
a given ATS instance according to the optimization program
(2). To that end, it iterates (lines 7−20) until either a feasible
solution is found, i.e., the delay requisites for all the flows are
met while the link utilization is lower than 100% (line 10),
or the problem infeasibility is determined (line 17). Please
refer to Propositions 1 and 3 for the rationale behind the latter
algorithm exit condition.

At each iteration, first, the algorithm checks whether the
WCQD requisites for all the flows allocated to the second
priority level F2 are met (line 8). Please note that this
condition is always met at the very first iteration as F2 initially
equals the empty set. If the condition is met, which is verified
using (1), the algorithm checks, again using (1), whether the
WCQD requisites for all the flows allocated to F1 are met. If
so, a feasible solution is found (line 10) and the algorithm
finishes. Otherwise, the algorithm creates a new set Fk if

needed and decreases the priority level for all the flows by one,
leaving the set F1 empty (lines 12−13). We refer hereinafter
to this process as partition k or kth. The reason to follow the
operation described above is that, once the algorithm finds a
satisfiable prioritization for the flows allocated to the current
priority levels 2 to k, the highest priority level can be further
partitioned to find a feasible solution without affecting the
WCQDs of the current priority levels 2 to k (Proposition 4).

If conditions in line 8 or line 9 are not met, then, the
algorithm moves the flow f∗ with the most stringent WCQD
requisite currently in priority 2 to priority 1, i.e., it increases
the priority of f∗ (lines 15− 16). Nonetheless, if it turns out
that f∗ is the last flow in F2, the algorithm realizes that the
problem has no solution (line 17).

C. Algorithm Analysis

This section includes the analysis of the proposed priori-
tization algorithm for ATSs detailed in Section IV-B. More
precisely, we rely on the principle of mathematical induction
to formally prove the theorem stated next.

Theorem 1: Algorithm 1 finds always a satisfiable solution
for the ATS prioritization problem (2) if any exists and the
solution found is optimal for that problem, i.e., it minimizes
the number of priority levels used in the ATS instance.

Proof: Let k denote the current partition index as in
Algorithm 1 to find a solution for prioritizing a set of TSN
flows F . As previously defined, a partition is the process
carried out by Algorithm 1 for partitioning the current highest
priority level into two. That is, decreasing the priority level of
all the flows by one and, after, moving as many flows from
p = 2 to p = 1 according to Algorithm 1 (see lines 7− 20).
Last, observe that for k = 1 Algorithm 1 just checks whether
a satisfiable prioritization exists for a single priority level, i.e.,

Algorithm 1 ATS Prioritization Algorithm
1: Problem Solved = 1; ▷ BC O1
2: No Solution = 2; ▷ BC O2
3: Searching Solution = 3; ▷ BC O3
4: Initialize F1 ← F ; F2 ← ∅; k = 1;
5: function PrioritizeF lows(F1, F2, k)
6: prob status = Searching Solution;
7: while prob status == Searching Solution do
8: if Q2 ≤ Rf ∀f ∈ F2 then
9: if Q1 ≤ Rf ∀f ∈ F1 then

10: return Problem Solved;
11: end if
12: k ++; Fk = {};
13: Fp ← Fp−1 ∀ p = [2, k]; F1 ← ∅;
14: end if
15: f∗ ← argmin

f∈F2

Rf ;

16: F2 ← F2 \ f∗; F1 ← F1 ∪ {f∗};
17: if F2 == ∅ then
18: return No Solution;
19: end if
20: end while
21: end function



Qspl ≤ R1. Trivially, if Algorithm 1 finds a solution for k = 1,
the main hypothesis holds true.

BASE CASE (k=2): For the base case Algorithm 1 may re-
sult in three possible outcomes: i) a satisfiable solution is found
for two priority levels (BC O1) ii) the prioritization problem
has no solution (BC O2), and iii) further partitions are
required to find a potential feasible prioritization (BC O3).
For BC O1, the hypothesis holds true as Algorithm 1 has
previously explored the single priority level configuration and
determined it is unfeasible. For k = 2, output BC O2 is
issued when the flow fF verifying that RfF ≥ Rf ∀ f ∈ F
cannot be even accommodated in a single priority level. That
is because, in k = 1, the algorithm could not accommodate all
the flows in a single priority level and in k = 2 the algorithm
has move all the flows to p = 1 except fF without fulfilling
RfF (see in lines 8 and 17). Then, from Proposition 3, the
problem (2) has no solution and the hypothesis still holds true.

It remains to show that for BC O3 no satisfiable solution
for two priority levels exists. For this output, the WCQD
requisite of f1 (the most stringent constraint), allocated to
p = 1, is not fulfilled as Rf1 ≤ Rf ∀f ∈ F and, in k = 2,
BC O3 happens when condition in line 9 is unfulfilled. From
Proposition 2, increasing the priority of any of the flows
allocated to p = 2 only contributes to the nonfulfillment of
R1. On the other hand, if moving any of the flows f ̸= f1 in
p = 1 to p = 2 would result in a feasible solution, then, from
Proposition 2, decreasing the priority of any other flow s in
p = 1 verifying that Rs ≥ Rf will also result in a feasible
solution. Last, observe that Algorithm 1 accommodates as
many flows with the most lenient requisites as possible in
p = 2 at each partition, thus minimizing Q1. Considering all
above, we can conclude that no satisfiable solution exists for
two priority levels if the Algorithm 1 status is BC O3 at the
end of k = 2. Then, the hypothesis still holds true.

INDUCTION CASE (k=n+1): For partition n, Algorithm
1 has distributed the flows with the most lenient requisites in
p = [2, n] and their requisites are met. Then, if the requisite of
f1, accommodated in p = 1, is not met further partitions are
needed. The induction method allows us to assume that the
hypothesis holds true for iteration n, i.e., the prioritization of
the flows in p ∈ [2, n] is satisfiable and it is the one requiring
the minimum number of priority levels (induction hypothesis).
For k + 1, similar to the “BASE CASE”, Algorithm 1 will
keep partitioning p = 1 in search of a feasible solution. From
Proposition 4, the analysis carried out for the “BASE CASE”
is also valid for the “INDUCTION CASE”. Considering this
fact together with the induction hypothesis, we can conclude
that the main hypothesis holds true. Observe, after k = n +
1, Algorithm 1 might keep making partitions until letting f1
alone in p = 1. At that point, the feasibility of the problem is
easily checked from Proposition 3.

Last, note that Algorithm 1 might output a feasible prioriti-
zation that requires a number of priority levels higher than the
one supported by the respective ATS instance. In this case,
the solution would be unfeasible due to the aforementioned
constraint. However, that does not affect the analysis.

V. RESULTS

In this section we provide the experimental results to show
the scalability, optimality, and correctness of our proposal.

A. Experimental Setup

First, we devised a compound traffic model, summarized
in Table II, based on [11], [13], [14] and references therein
to realistically capture in our experiments the typical per-flow
traffic demands and delay requisites in industrial scenarios.
Each performed experiment consisted in finding the flow
prioritization in an ATS instance for F = |F| flows. The
prioritization problem was solved using the brute force al-
gorithm and Algorithm 1 for comparison. Brute force consists
of checking all the possible prioritizations for the flows in
F , and selecting that one requiring the minimum number
of priority levels. Both algorithms were developed in Matlab
and run in a server with Intel(R) Core(TM) i7-6700K Central
Processing Unit (CPU) at 4.00GHz with 4 cores and 32 GB
of RAM. Since problem (2) fast becomes intractable with the
scenario scale when it is solved using brute force, we decided
to do a per IEEE 802.1Q Traffic Class (TC) prioritization.
Specifically, each service in Table II was mapped onto a
TC and the respective Priority Code Point (PCP) (see sixth
column in Table II). For each experiment, the number of
flows F (q) considered for each TC q was proportional to
its per-flow expected committed data rate (second column in
Table II), i.e., F (q) = E[rq]/(

∑7
k=1 E[rk]) · F . Last, the

traffic characteristics and delay requisite of each individual
flow were uniformly sampled from the ranges provided in
Table II according to the TC it belongs to. Please observe
that the procedure described above results in seven TCs to
be prioritized, each characterized by: i) a committed data rate
and a burst size that correspond to the sum of the committed
data rate and burstiness of all of its flows, respectively; ii) a
maximum frame size which is determined as the maximum
frame size among all of its flows; and iii) a delay requisite
established as the most stringent delay requirement among all
the flows. Assuming the traffic conforms to the committed data
rate and burstiness the ATS produces zero packet losses. For

TABLE II
PER-SERVICE FLOW CHARACTERISTICS.

Services rq
(Mbps)

bq
(packet)

Dq (ms) lQ (KBytes) PCP

Cyclic-
Synchronous 8−0.8 1− 4 1− 0.5 1− 0.05 6

Mobile Robots < 10 1− 4 500− 1 0.25− 0.04 3

Cyclic-
Asynchronous

0.2 −
4e−3 1− 4 20− 2 1− 0.05 5

Events: Control > 12 1− 4 50− 10 0.2− 0.1 4

Augmented Re-
ality

20 −
10

1− 4 10 1.5− 0.03 2

Network Con-
trol

8e−3−
4e−3 1− 4

1000 −
50

0.5− 0.05 7

Config. & Di-
agnostics 2 1− 4 100−10 1.5− 0.5 1



each value of F considered, we executed 100 independent real-
izations with different flow characteristics in each realizations.
The execution times measurements reported are the average of
all those runs resulting in the same number of TCs.

B. Performance Evaluation

Fig. 2 depicts the comparison of the average execution time
exhibited by the brute force (labeled as ‘Brute Force’) and our
heuristic-based (labeled as ‘Developed algorithm’) algorithms
as a function of the number of TCs to be prioritized.

As observed, for the considered range of TCs, the results
show that the execution time of the brute force algorithm
exhibits an exponential growth whereas the our proposal
scales well. For instance, for prioritizing seven TCs the brute
force’s execution time is six orders of magnitude higher than
our proposal. This makes unfeasible to use the brute force
algorithm to carry out a per-flow prioritization in the ATS.

Fig. 3 depicts the prioritization outputted by our solution for
different scenarios. Each scenario includes a given number of
flows (x-axis) grouped into TCs as explained in the previous
subsection. For each value of F , 100 independent realizations
were carried out, each sampling the flow features according
to the ranges provided in Table II. The line labeled as ’%’
represents the number of realizations of each scenario in which
a feasible solution were found. Similarly, each bar, labeled as
’Prior P ’, represents the percentage of realizations requiring at
least P priority levels. As expected, the higher the number of
flows in the scenario, which translates into higher utilization
of the ATS link, the higher the probability of not finding a
satisfiable solution, even if the number of priority levels is
increased. Similarly, the minimum number of priority levels
required increases with the traffic load. The most remarkable
result of this experiment is that both our proposal and the brute
force algorithm outputted exactly the same prioritization for
all the experiments, thus validating our proposal’s operation
and optimality. These results support that our solution finds
a satisfiable solution if it exists and that solution requires the
lowest number of priority levels as stated in Section IV.

Fig. 2. Algorithm execution time.

Fig. 3. Priority assignment for different flows.

VI. CONCLUSION

In this paper, the ability of the developed prioritization
algorithm to obtain a feasible solution with the lowest WCQD
in TSN has been evaluated. We have formally formulated the
prioritization problem and the resolution through our proposal.
Our algorithm and brute force have been compared with
industrial traffic. The outcomes demonstrate that our approach
scales correctly, achieving an execution time that is six orders
of magnitude less than that of brute force and achieving the
same prioritizing outcomes for both algorithms.

REFERENCES

[1] J. Specht and S. Samii, “Synthesis of queue and priority assignment
for asynchronous traffic shaping in switched ethernet,” in 2017 IEEE
Real-Time Systems Symposium (RTSS), 2017, pp. 178–187.

[2] J. Prados-Garzon, T. Taleb, and M. Bagaa, “Learnet: Reinforcement
learning based flow scheduling for asynchronous deterministic net-
works,” in 2020 IEEE Int. Conf. on Commun. (ICC), 2020, pp. 1–6.

[3] J. Prados-Garzon, T. Taleb, and M. Bagaa, “Optimization of flow alloca-
tion in asynchronous deterministic 5g transport networks by leveraging
data analytics,” IEEE Trans. Mob. Comput., pp. 1–1, 2021.

[4] A. Nasrallah et al., “Ultra-low latency (ull) networks: The ieee tsn and
ietf detnet standards and related 5g ull research,” IEEE Commun. Surveys
Tutorials, vol. 21, no. 1, pp. 88–145, Firstquarter 2019.

[5] “Ieee draft standard for local and metropolitan area networks–media
access control (mac) bridges and virtual bridged local area networks
amendment: Asynchronous traffic shaping,” IEEE P802. 1Qcr/D2.1, pp.
1–152, Feb. 2020.

[6] J. Specht and S. Samii, “Urgency-based scheduler for time-sensitive
switched ethernet networks,” in 2016 28th Euromicro Conf. on Real-
Time Systems (ECRTS), July 2016, pp. 75–85.

[7] J.-Y. Le Boudec, “A theory of traffic regulators for deterministic net-
works with application to interleaved regulators,” IEEE/ACM Trans.
Netw., vol. 26, no. 6, pp. 2721–2733, Dec. 2018.

[8] J. Prados-Garzon and T. Taleb, “Asynchronous time-sensitive networking
for 5g backhauling,” IEEE Netw., vol. 35, no. 2, pp. 144–151, 2021.

[9] J. Prados-Garzon, L. Chinchilla-Romero, P. Ameigeiras, P. Muñoz, and
J. M. Lopez-Soler, “Asynchronous time-sensitive networking for indus-
trial networks,” in 2021 Joint European Conf. on Netw. and Commun.
& 6G Summit (EuCNC/6G Summit), 2021, pp. 130–135.

[10] J.-Y. Le Boudec and P. Thiran, Network calculus: a theory of determin-
istic queuing systems for the internet. Springer, 2001.

[11] 3GPP TS22.104 V17.4.0. (2020) Service Requirements for Cyber-
Physical Control Applications in Vertical Domains.

[12] “IEEE Draft Standard for Local and metropolitan area networks–Bridges
and Bridged Networks Amendment: Asynchronous Traffic Shaping,”
IEEE P802.1Qcr/D2.1, Feb. 2020, pp. 1–152, 2020.

[13] “Integration of 5g with time sensitive networking for industrial commu-
nications,” White Paper, 5G ACIA, Feb. 2021.

[14] “A 5g traffic model for industrial use cases,” White Paper, 5G ACIA,
Nov. 2019.


