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Abstract—We propose a privacy-preserving strategy based
on federated learning to localize soft failures in multi-carrier
optical networks using a self-supervised approach on unlabeled
data. Evaluations conducted on data from a testbed demon-
strate the effectiveness of the proposed strategy.

I. INTRODUCTION

Fault management plays a crucial role in efficiently op-
erating optical networks as failures can result in service
interruptions and loss of critical data, leading to revenue loss
and customer dissatisfaction [1]. In particular, soft failures
(i.e., failures that do not entail a complete interruption of the
communication but only a degradation of signal quality, in
contrast to hard failures) lead to complex non-linear patterns
that cannot be easily extracted by manual inspection of
performance logs of the network equipment. Thanks to the
emergence of machine learning (ML), novel techniques can
efficiently analyze such complex patterns.

Relying on ML-based anomaly detection techniques [2],
Ref. [3] proposes a hybrid learning approach to localize
soft failures in multi-carrier optical networks, where a self-
supervised model extracts normal and abnormal patterns
from data and a federated learning (FL) model localizes
failures at the node/domain levels. Similarly, Ref. [4] pro-
poses to localize soft failures, derived from laser drifts
and filter misalignments by training different supervised
classifiers specific to each carrier to detect anomalies. The
aforementioned approaches require sending telemetry data
to a central entity for training, raising concerns about the
privacy of data belonging to the carriers; in this regard, FL
is a promising approach, as it allows model training without
requiring raw data to leave the local carriers. For example,
Ref. [5] develops a flavor of FL, namely vertical FL model,
which incorporates diverse features from different operators
using data instances of the same type, to localize soft
failures in partially-disaggregated optical networks, in which
the transceivers are from a different vendor than the one
providing the open line system (OLS). Similarly, Ref. [6, 7]
leverages the principal component analysis (PCA) technique
to transmit telemetry data to an unreliable third party for
further failure localization analysis, thereby ensuring the
privacy of data among each carrier.

Existing methods in the literature, such as [4], are heavily
based on supervised failure data, which is expensive and
time consuming to collect. Furthermore, these methods lack
a generalized approach for localizing soft failures in varying
magnitudes of the same failure type. For instance, each
carrier in [6] shuffles its own data and sends them to the third
party. The third party then performs a clustering algorithm

Fig. 1: Testbed topology for failure scenarios.

on the received data and localizes failures. Although this
preserves the privacy of the data, when applied to unsu-
pervised datasets from domains different from the training
data, new models often require retraining to achieve high
localization accuracy. However, this retraining process is
resource intensive and time consuming.

To address these limitations, this paper introduces a novel
framework designed for multi-carrier systems, where dif-
ferences in the topological characteristics of carriers lead
to variation in data distribution. Hence, each carrier op-
erates within a unique domain represented by unlabeled
datasets with diverse distributions. Consequently, incorporat-
ing contributions from multiple carriers with distinct domains
is essential to enhance model generalization and improve
localization accuracy. The key contributions of this work
are threefold: (i) generalize a model that can effectively
localize failures of varying magnitudes; (ii) deploy a self-
supervised learning phase for making localization; and (iii)
preserve privacy of carriers’ data during training phase. To
this end, we propose the Privacy-Preserving Strategy (PPS)
that integrates domain adaptation and knowledge distillation
techniques to generalize the model in a federated manner,
preserving data privacy. It also exploits high-performance
unsupervised clustering models to support the self-supervised
learning phase.

II. TOPOLOGY AND DATASET STRUCTURE

The primary network topology is a multi-carrier sys-
tem comprising a central provider-neutral entity (PNE) [8]
and multiple carriers. For each carrier, the study uses real
telemetry data collected from a testbed at NICT in Sendai,
Japan. The testbed topology, shown in Fig. 1, consists of
four nodes and three links, each node equipped with pre-
and post-optical amplifiers (OAs). Link-level soft failures
are emulated as additional attenuation imposed by variable
optical attenuators (VOAs), effectively simulating amplifier
malfunction. Attenuation levels of +5, +7, and +11 dB were
tested, with optical signal-to-noise ratio (OSNR) measured
at the receiver node. The datasets are defined as follows:
(i) 888: 80 km links, 100 Gbps transponders, and 192.4
THz frequency; (ii) 555: Similar to 888, but with 50 km
links; (iii) 888 10G: Similar to 888, but with 10 Gbps
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Fig. 2: Flow diagram of PPS.

transponders; (iv) 888 F: Similar to 888, but with 194.1
THz frequency; and (v) 888 10G F: 80 km links, 10 Gbps
transponders, and 194.8 THz frequency. Datasets are labeled
as {dataset title} {voa} {magnitude}, e.g., “888 voa 5”
for 888 with 5 dB attenuation. Data is captured under four
conditions: Normal (no failure), Failure 1 (VOA at link 1),
Failure 2 (VOA at link 2), and Failure 3 (VOA at link 3).

III. PROPOSED PRIVACY-PRESERVING STRATEGY

PPS is designed to generalize a model for failure local-
ization across datasets with diverse domains, while preserv-
ing data privacy. To achieve this, PPS leverages three key
paradigms: (i) FL that ensures data privacy by enabling
decentralized model training; (ii) domain adaptation that
adapts the model to varying domain-specific characteristics;
and (iii) knowledge distillation that facilitates the localization
and generalization of soft failures across different failure
magnitudes. Figure 2 illustrates the overall workflow of PPS,
comprising seven distinct steps. These steps (detailed below)
are distributed between the PNE and the carriers.
Self-Supervised Learning: Since PPS relies on domain
adaptation, it is essential to define a source domain for
training. To achieve this, we first normalize the OSNR values
across different datasets using MaxMin normalization which
scales the values between zero and one. Our analysis of sam-
ple datasets–888 voa 5, 888 voa 7, 888 10G F voa 11,
and 888 10G voa 7–presented in Fig. 3 reveals that “Nor-
mal”, “Failure 3”, “Failure 2”, and “Failure 1” consistently
exhibit the highest to the lowest OSNR values. Notably,
dataset 888 10G voa 7 stands out, as its categories are
clearly distinguishable with no overlap between them. How-
ever, overlap between failure classes is observed in other
datasets which suggests that adapting the categories of all
datasets to align with those in 888 10G voa 7 could enable
the model to generalize effectively for failure localization.
Therefore, we designate 888 10G voa 7 as the source do-
main and all other datasets as target domains.

However, sharing 888 10G voa 7 with all entities in
the network will violate the privacy concerns. To avoid
such a violation, PPS exploits Metropolis Hasting (MH)
algorithm [9], which generates synthetic data very similar to
the ground-truth samples, using the statistical measurements
of a predefined distribution. Accordingly, in step 1, the
PNE employs the MH algorithm and generates synthetic
unlabeled source domain data based on 888 10G voa 7.
Each carrier includes its own dataset, referred to as target

domain, which is unlabeled. In step 2, the corresponding
carrier employs K-Means clustering model on target domain
and source domain, separately, to form initial clusters for
training purpose. Considering all four categories of failures,
the number of clusters in K-Means is set to four.

For training purpose, we combine and separately nor-
malize all failure classes within each dataset. However, the
classes of failure are not known in test dataset. To address
this limitation, we develop a random forest (RF) model
trained on unnormalized training data alongside its corre-
sponding normalized data. The model learns to normalize
unseen data effectively in our framework.
Domain Adaptation: Step 3 implements the domain-
adaptation phase. Each carrier in PPS involves a domain
adversarial neural network (DANN) model [10] consisting of
three main components: a feature extractor, a label predictor,
and a domain classifier. The feature extractor is a deep
neural network (DNN) with an input layer, two hidden layers,
and an output layer. The first and second hidden layers are
composed of 100 and 50 neurons, respectively. The label
predictor is a neural network with a hidden layer of 100
neurons and an output layer of size 4, corresponding to the
four failure categories. The domain classifier includes two
hidden layers with 100 neurons each and an output layer
with 2 neurons to differentiate between the source and target
domains. Each carrier trains its own DANN model using the
pseudo-labeled source and target domains obtained from the
self-supervised learning phase in step 2. The trained models
are referred to as teacher models. Notably, all hyperparameter
values are determined through extensive trials.
Knowledge Distillation: To generalize a failure localiza-
tion model without retraining for changes in attenuation
magnitude, PPS leverages an offline knowledge distillation
mechanism [11]. The PNE defines a smaller DANN-based
student model that learns failure localization from teacher
models trained by the carriers. In step 4, carriers normalize
a portion of their unlabeled test data using the developed
RF model, train the student model, and send the updated
weights back to the PNE. PNE then averages the weights,
updates the global student model, and sends the weights back
to the carriers during steps 5-7, enabling PPS to generalize
failure localization without sharing sensitive carrier details.

IV. NUMERICAL EVALUATION

We compare the performance of PPS with two counterpart
DNN models, namely DNN Supervised (DNN-S) and DNN
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Fig. 3: Normalized OSNR.

Self-Supervised (DNN-SS). The former is a model developed
on fully-labeled datasets, wherein the information of all
carriers is shared as a centralized dataset with DNN-S. The
latter assumes that data are unlabeled and leverages K-Means
clustering to label data. Similar to DNN-S, all data belonging
to carriers are shared with DNN-SS for training purposes.

After conducting multiple trials, we set the hyperparame-
ters as follows: For both teacher and student models, batch
size and learning rate are set to 64 and 0.001, respectively;
for the student model, we consider 64 neurons in the first
hidden layer of the feature extractor and 32 neurons in the
second layer. The number of neurons deployed in hidden
layers of the label predictor and domain classifier is set to
64; each teacher model is trained over 1000 epochs, while it
is 10 epochs for the student model.

To show the proficiency of PPS in preserving the privacy
of source and target domains, we consider two versions of
PPS: fully privacy-preserving PPS (PPS-FPP) and partially
privacy-preserving PPS (PPS-PPP). The former feeds the
teacher model with the synthetic source domain, while the
latter directly feeds the teacher model with 888 10G voa 7.
Figure 4a indicates the corresponding results wherein PPS-
PPP and PPS-FPP achieve very similar performance in
failure localization with accuracy of around 97.2% (their
difference is about 0.0004%). As expected, DNN-S achieves
the highest accuracy of 99.95% among all four strategies.
However, it not only violates the privacy of data for training
purposes, but also requires all data to be fully labeled. On
the other hand, DNN-SS relaxes the need for labeled data
by leveraging the self-supervised learning mechanism; it still
violates the privacy of data for training purposes for less than
1% of performance improvement compared to PPS.

Leveraging the nature of domain adaptation and the sim-
ilarity in data distribution for attenuation magnitudes of 5
and 7 dB, we investigate whether size of the training dataset
can be reduced. Our results show that using only data from
voa 7 and voa 11 yields promising outcomes. To further
validate this, we conducted experiments using an adaptive
training set (ATS) where data corresponding to 5 dB was
excluded and only data for 7 and 11 dB were utilized. The
simulation results obtained in Fig. 4b indicate that PPS-
FPP results in high precision of 96.22% and outperforms
DNN-S and DNN-SS. This emphasizes the ability of PPS to
generalize a model for failure localization, thanks to domain
adaptation and knowledge distillation mechanisms; yet, this
represents a degradation of 1.03% compared to the non-ATS
set which includes data at 5 dB during training. As a result,
if the similarity between data distributions is known, we can

(a)

(b)
Fig. 4: Performance comparison of proposed PPS and base-
lines w.r.t. different training sets: (a) Regular, (b) Adaptive.

optimize the training process for teacher models, reducing
overall training time.

V. CONCLUSION

We proposed PPS, a distributed strategy designed to
generalize soft-failure localization across varying magnitudes
of the same failure in multi-carrier systems. PPS utilizes
federated learning to ensure data privacy while employing
domain adaptation and knowledge distillation techniques
to enhance generalization of the model. Evaluation results
demonstrate that PPS achieves high precision in failure
localization requiring fewer carriers to participate in the
training phase which reduces the overall training burden
across the network.
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