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Abstract—A novel multistage ML model identifies the type,
severity, and localization of failures based on their optical fin-
gerprint. Data is sourced from a test-bed emulating two common
optical network failures: connector issues and laser drift.
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I. INTRODUCTION

Managing failures within the fiber optic transport network
is a complex undertaking. Until now, identifying and locating
faults has been a largely manual and time-consuming process.
The intricate nature of optical network failures has increased
the demand for a robust and reliable failure management
system. This system should tackle not only hard failures
(e.g., fiber cuts) but also predict soft failures, such as those
caused by equipment aging, which can gradually degrade
performance and result in significant consequences if not
addressed promptly [1]. The use of Machine Learning (ML)
techniques for soft-failure management in optical networks
has been widely explored in the literature. The long-short-
term memory (LSTM) neural network-based approach has
shown high accuracy in anomaly detection in optical networks
[2], while the authors in [3] used a hybrid model combining
Convolutional Neural Networks (CNN) and LSTM to achieve
higher accuracy in failure prediction compared to approaches
using a single model. In [4], the authors proposed an approach
based on the Deep Neural Evolution Network (DNEN) to
accurately locate the link where a failure occurred. Despite
these advancements, there is still a need for a comprehensive
model that can not only detect the soft failures, but also
evaluate their severity and accurately localize them within the
optical network.

In this paper, we propose a novel multistage ML model for
managing soft failures in optical networks based on XGBoost
(XGB) and Random Forest (RF) algorithms. This model is ca-
pable of identifying the type, the severity and the localization
of the failures solely based on the optical fingerprint associated
with each failure. By fingerprint, we refer to the variation in
Quality of Transmission (QoT) metrics resulting from these
failures on the receiver side. The model was trained and tested
using data generated from an industrial-grade test-bed optical
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network designed to emulate two of the most common types of
soft failure in optical networks. In the following sections, we
will describe the test-bed setup used to generate data, followed
by an explanation of our ML model. Finally, we will evaluate
the performance of the model.

II. TEST-BED SETUP

The test-bed illustrated in Fig. 1 features a transmission line
designed to replicate a real operational transport network. This
line includes six amplifiers with constant gain, arranged in five
spans over a distance of 374 km of fiber. On the transmission
side, we have two transmitters, operating at 193.1875 THz and
193.275 THz, with a bandwidth of 87.5 GHz, a symbol rate of
67 Gbaud, and using 8-QAM modulation format. The channels
under study share the C-band spectrum with 33 channels, each
with a bandwidth of 37.5 GHz. These channels are filled with
optical noise generated by an Amplified Spontaneous Emission
(ASE) comb source. All optical signals are shaped and injected
into the optical line using a waveshaper, which adjusts the
input power per channel based on the experimental require-
ments. On the reception side, a filter extracts the signals under
study before they are processed by the receiver. Using this test-
bed, we conduct two set of experiments involving controlled
perturbations that enable the emulation and investigation of
the impact of two prevalent soft failures in optical networks.

o Connector failure: is emulated by positioning a Variable
Optical Attenuator (VOA) across spans 1 to 5 and varying
its attenuation from O to 10 dB in 0.5 dB steps. Addition-
ally, the channel power launched from the waveshaper
was adjusted between -5 dBm and 5 dBm in 1 dB
increments.

o Laser drift: is emulated by keeping the VOA attenuation
at 0 dB while introducing a frequency shift on the
transmission laser source ranges from -20 to +20 GHz in
5 GHz steps. As in the previous experiment, the channel
power is adjusted between -5 dBm and 5 dBm in 1 dB
increments.

In order to perform multiple efficient failure emulation expe-
riences and an accurate data collection, an automated stream-
ing telemetry system was implemented using gRPC/gNMI
protocol. This system operates in parallel with Telegraf as
the collection agent and InfluxDB as the database, capturing
the receiver’s QoT performance metrics (shown in Table I)
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Fig. 1: Test-bed setup for emulating soft failures.

every 10 seconds during each 10-minute experiment. The
parameters of the inline equipment were automatically and
remotely adjusted according to the requirements of the failure
use-case experiments using the SSH protocol, as noted in
Table I The proposed multistage ML approach was trained
exclusively using QoT metrics collected from the optical
terminal transponders without relying on the inline equipment
parameters. The dataset also includes supplementary informa-
tion such as timestamps, experiment descriptions, and failure
characteristics (VOA attenuation, VOA localization, and fre-
quency shift). The collected QoT metrics demonstrated that
each failure scenario exhibits a distinctive optical performance
fingerprint, characterized by unique patterns in the monitored
performances, thereby associating specific fingerprints for each
type of failure.

TABLE I: Dataset parameters.

Transponders parameters
and QoT metrics
Pin» Pout, CD
Pre-FEC BER
Q-Margin, ESNR
Experiment parameters
VOA attenuation, Frequency shift
Label, Timestamp, Failure location

III. MULTISTAGE FAILURE MANAGEMENT ML APPROACH

The solution proposed in this paper is designed for diag-
nosing soft failures (Fig. 2), specifically targeting the two
previously mentioned cases that are the focus of our test-bed
experiments. Our multistage ML model is described in Table
IT and aims to meet the following objectives:

1) Soft failure identification: is based on a multi-class Ran-
dom Forest (RF) classifier enable to determine whether
a connector failure, laser drift, or no failure is present.
Severity estimation: is an XGB classifier for multi-class
classification to estimate the severity of the failure (i.e.,
low, moderate or severe) according to the failure type
identified earlier in the previous stage. For our two use-
cases under study - connector failure and laser drift - the
severity is determined by the extent of power attenuation
and the frequency shift, respectively.

2)

3) Failure localization: is based on a multi-class RF clas-
sifier. This stage pinpoints the location of the failure.

The usage of multistages approach combining RF and XGB
models enables specialized performance in each stage, which
potentially leads to improving the accuracy of the failure
management approach and taking advantage of the strength
of each algorithm. RF showed better performance in handling
high-dimensional data one-to-one classification justifying its
selection for identification and localization stages. Meanwhile,
XGB’s gradient boosting approach is more capable of cap-
turing nuanced patterns in the severity estimation stage [5].
The model continuously receives streaming telemetry data. In
each iteration, as described in Table II, the first stage analyzes
the optical fingerprint to determine if any previously learned
failures are present. If a failure is detected, the model then
uses the second and third stages to assess its severity and
localization. It is important to note that the latter two stages are
trained on data specific to the identified failure, while the first
stage is trained using a combination of data from all failures.

Stage 1:
Failure identification
(RF classifier)

Stage 2:
Severity estimation
(XGB classifier)

Stage 3:
Failure localization
(RF classifier)

Fig. 2: The proposed ML approach flowchart.

IV. RESULTS ANALYSIS

The models were trained and tested on dataset collected
from the test-bed, considering two failure types: connector
failure and laser drift under different scenarios and with variety
of optical inline parameters. Fig. 3 shows the proposed ML-
approach performances in the form of confusion matrices.
The Random Forest classifier used for failure identification
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TABLE II: The proposed ML stages description.

Stage

UC 1: Connector Failure

UC 2: Laser Drift

Failure Identification

Determine if there is a failure and its type or not

Severity Estimation

The severity depends on the attenuation value in

dB GHz
Low: [1-3] Low: [-5, 5]
Moderate: [4-6] Moderate: [-10, 10]
High: [7-10] High: [-20, 20]

Failure Localization (Specific to UC 1 only)

The span where the failure occurred

Not applicable

achieved an overall accuracy of 95.12%. It demonstrated
high precision in distinguishing connector failures (97%) and
laser drift (98%) from no-failure scenarios. However, there
was some misclassification between no-failure and connector
failure cases. For severity estimation, the XGBoost classifier
achieved an accuracy of 94.30%. It showed strong perfor-
mance across all severity levels, with the highest accuracy
for high-severity cases at 97.6%. There was minor confusion
between adjacent severity levels, particularly between low and
moderate severities. The model demonstrated minimal misclas-
sification between non-adjacent severity levels, indicating its
ability to distinguish between significantly different severity
degrees. The Random Forest classifier for failure localization
in connector failure scenarios achieved an impressive accuracy
of 99.13%. It showed exceptional performance across all
spans, with correct classifications ranging from 1675 to 1756
instances per span. There were minimal misclassifications
between adjacent spans, and near-perfect distinction between
non-adjacent spans.

V. CONCLUSIONS

In this paper, we introduce a novel multistage machine
learning approach for diagnosing soft failures in optical net-
works. Our solution integrates Random Forest and XGBoost
algorithms to achieve three key objectives: failure identi-
fication, severity estimation, and localization. By utilizing
streaming telemetry data from limited set of QoT metrics, the
model can detect failure fingerprints (i.e., variations in QoT
caused by failures) thereby minimizing the need to collect data
from multiple line equipment ports and focusing telemetry on
the transponder’s reception side. Using data from an industrial-
grade and fully automated test-bed that emulates connector
failures and laser drift scenarios, our model demonstrated
impressive performance, achieving accuracy rates of 95.12%
for failure identification, 94.30% for severity estimation, and
99.13% for failure localization. We are currently working to
replicate additional failure scenarios with the same test-bed to
expand our model’s capability to address a wider range of soft
failures in optical networks.
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