

To Fork or Not to Fork:
Fork Motivations in SourceForge Projects

Linus Nyman1 and Tommi Mikkonen2
1 Hanken School of Economics, Helsinki, Finland

linus.nyman@hanken.fi
2 Tampere University of Technology, Tampere, Finland

tommi.mikkonen@tut.fi

Abstract. A project fork occurs when software developers take a copy of
source code from one software package and use it to begin an independent
development work that is maintained separately from its origin. Although
forking in open source software does not require the permission of the original
authors, the new version, nevertheless, competes for the attention of the same
developers that have worked on the original version. The motivations
developers have for performing forks are many, but in general they have
received little attention. In this paper, we present the results of a study of forks
performed in SourceForge (http://sourceforge.net/) and list the developers’
motivations for their actions. The main motivation, seen in close to half of the
cases of forking, was content modification; either adding content to the
original program or focusing the content to the needs of a specific segment of
users. In a quarter of the cases the motivation was technical modification;
either porting the program to new hardware or software, or improving the
original.

1 Introduction

A project fork takes place when software developers take a copy of the source code
from one software package and use it to begin an independent development work. In
general, forking results in an independent version of the system that is maintained
separately from its origin. The beauty of open source software development is that
no permission from the original authors is needed to start a fork. Therefore, if some
developers are unhappy with the fashion in which the project is being managed, they
can start an independent project of their own. However, since other developers must
then decide which version of the project to support, forking may dilute the
community as the average number of developers per system under development
decreases.

Despite some high-visibility forks, such as the forking of OpenOffice
(http://www.openoffice.org/) into LibreOffice (http://www.libreoffice.org/), the
whole concept of forking has seen little study. Furthermore, developers’ motivations
for forking are understood even less, although at times it seems rational and
straightforward to identify frustration with the fashion in which the main project is
being managed as a core reason.

2 Linus Nyman and Tommi Mikkonen

In this paper, we present the results of our investigation of SourceForge
(http://sourceforge.net/) for forked projects and the motivations the authors have
identified for performing a fork. Furthermore, we categorize the different
motivations and identify some common misbeliefs regarding forking in general.

The rest of this paper is structured as follows: Section 2 discusses the necessary
background for explaining some of the technical aspects associated with forking,
Section 3 introduces the fashion in which the research was carried out, Section 4
offers insight into our most important findings, and Section 5 discusses them in more
detail. Section 6 proposes some directions for future research, and Section 7
concludes the paper with some final remarks.

2 Background

When pushed to the extreme, forks can be considered an expression of the freedom
made available through free and open source software. A commonly associated
downside is that forking creates the need for duplicated development efforts. In
addition, it can confuse users about which forked package to use. In other words,
developers have the option to collaborate and pool resources with free and open
source software, but this is enforced not by free software licenses, but only by the
commitment of all parties to cooperate.

There are various ways to approach forking and its study. One is to categorize the
different types to differentiate between, on the one hand, forks carried out due to
amicable but irreconcilable disagreements and interpersonal conflicts about the
direction of the project, and on the other, forks due to both technical disagreements
and interpersonal conflicts [1]. Still, the most obvious form of forking occurs when,
due to a disagreement among developers, a program splits into two versions with the
original code serving as the basis for the new version of the program.

Raymond [2] considers the actions of the developer community as well as the
compatibility of new code to be a central issue in differentiating code forking from
code fragmentation. Different distributions of a program are considered ‘pseudo-
forks’, because at first glance they appear to be forks, but in fact are not, since they
can benefit enough from each others’ development efforts not to be a waste, either
technically or sociologically. Moody [3] reflects Raymond’s sentiments, pointing out
that code fragmentation does not traditionally lead to a split in the community and is
thus considered less of a concern than a fork of the same program would be. These
sentiments both echo a distinction made by Fogel [1]: it is not the existence of a fork
which hurts a project, but rather the loss of developers and users. Here it is worth
noting, however, that forking can potentially also increase the developer community.
In cases in which developers are not interested in working on the original (for
instance due to frustration with the project direction, disagreements with a lead
developer, or not wanting to work on a corporate sponsored project), not forking
would lead to fewer developers as the developers in question would likely simply
quit the project rather than continue work on the original.

To Fork or Not to Fork:
Fork Motivations in SourceForge Projects

3

Both Weber [4] and Fogel [1] discuss the concept of forks as being healthy for

the ecosystem in a ‘survival of the fittest’ sense; the best code will survive. However,
they also note that while a fork may benefit the ecosystem, it is likely to harm the
individual project.

Another dimension to forking lies in the intention of the fork. Again, several
alternatives may exist. For instance, the goal of forking can be to create different
branches for stable and development versions of the same system, in which case
forking is commonly considered to serve the interests of the community. At the other
extreme lies the hostile takeover, which means that a commercial vendor attempts to
privatize the source code [5]. Perhaps somewhat paradoxically, however, the
potential to fork any open source code also ensures the possibility of survival for any
project. As Moody [6] points out, the open source community and open source
companies differ substantially in that companies can be bought and sold, but the
community cannot. If the community disapproves of the actions of an open source
company, whether due to attempts to privatize the source code or for other reasons
related to an open source program, the open source community can simply fork the
software from the last open version and continue working in whichever direction it
chooses.

3 Research Approach

In the study, we used SourceForge (http://sourceforge.net/) as the repository of open
source programs from which we collected forks. SourceForge contains over 260,000
open source projects created by over 2.7 million developers. Creating new projects,
participating in those that already exist, or downloading their contents is free, and
developers exercise this freedom: programs are downloaded from SourceForge at a
pace of more than 2,000,000 downloads daily.1

SourceForge offers programmers the opportunity to briefly describe their
program, and these descriptions can be searched using keywords. Using this search
function, we compiled a list of all of the programs with the word “fork” – as well as
dozens of intentionally misspelled variations of the word fork, none of which turned
up any hits – in their description. We then analyzed all the descriptions individually
to differentiate between them and to sort out programs that the developers claimed
had forked their code base from another program (which we call “self-proclaimed
forks”) from those which included the term ‘fork’ for some other reason, either to
describe a specific functionality of the program or as part of its name (i.e. false
positives). Consequently, a program that stated “This is a fork of …” was considered
a fork, while a program which noted that it “…can be used to avoid common security
problems when a process forks or is forked” was not. If it was impossible to
categorize a project based on the available data, it was discarded. Our data consisted

1 Source: http://sourceforge.net/about, accessed March 9, 2011

4 Linus Nyman and Tommi Mikkonen

of all programs registered on SourceForge from its founding in late 1999 through 31
December 2010, resulting in a time span of slightly more than 11 years. This search
yielded a total of 566 programs that developers report to be forked.

We then analyzed the motivations stated in the descriptions of the forked
programs. The coding process was done in three phases. First, we went through all of
the descriptions and wrote a brief summary of the motivations, condensing the stated
reasons to as few words as possible. Then, we went through all of the motivations
and identified common themes, or subgroups of motivations, among them. In cases
where the fork included elements from more than one theme, we placed it in the
subgroup that seemed the most central to the motivation behind the fork. Finally, we
examined the subgroups to identify overarching groups of themes.

To give some examples of the coding, one fork stated: “[Project name] is a fork
of the [original project name] project. [The] purpose of [project name] is to add
many new features like globule reproduction, text to speech, and much more.” The
motivation behind the fork was identified as belonging to the subgroup “add
content”, which in the final step was combined (with a subgroup of programs which
sought to focus content) into a group called content modifications. A fork which
sought to fix bugs, and a fork which was motivated by porting a program, were first
put into separate subgroups, “technical: improvement” and “technical: porting”, and
then these subgroups were combined into the “technical modifications” group.
Further examples from the data are presented in the next section.

Based on the descriptions entered by the developer, we were able to identify
motivations for 381 of the forks. The group of forks which we were unable to
categorize consisted of two main types of descriptions: firstly, descriptions which
offered no insights as to underlying motivations, e.g. programs which simply stated
which program they were forked from; secondly, cases in which it was unclear from
the description if the elements described were added in the fork or if they existed in
the original; in other words, one couldn’t determine if the description of the program
included the motivation behind the fork, for instance new technical features, or if
they were describing pre-existing features common to both the original and the fork.

4 Reasons for Forking

Based on the data obtained, developers commonly attribute their reasons for forking
the code to pragmatism. For a variety of reasons, some of which were well
documented and some of which were unclear, the original version of the code failed
to meet developers’ needs. To expand the scope of the system, the developers then
decided to fork the program to a version which serves their own needs. The
descriptions of the forks include programs which note that certain changes have been
made to the fork, as well as those programs which discuss which changes will or
should be made to the forked version. In this paper, we have not distinguished
between the two: both planned and already implemented changes are treated equally,
since the goal was to study motivations rather than eventual implementations. In

To Fork or Not to Fork:
Fork Motivations in SourceForge Projects

5

general, the forks appear to stem from new developers rather than the original
developing team splitting into two camps. In fact, the data contain almost no
references to disagreements among developers that might have led to the fork.
However, this does not mean that such disagreements could not have existed.

In the following section, we provide a more detailed view of the different
motivations we were able to find in the data (n = 381). The main motivations fall
into two large groups (content and technical modifications) which comprise nearly
three quarters (72%) of all forking motivations. Four smaller groups, all of similar
size, comprise an additional 23% of the motivations. These four groups included the
reviving of a project, license- or FOS-related motivations, language- or country-
related reasons, and experimental forks. The remaining motivations, grouped simply
as “other”, consisted of diverse yet uncommon reasons. An overview reflecting the
numbers of forks appears in Figure 1.

Fig. 1. Fork motivations in SourceForge projects

4.1 Content modifications

Comprising almost half of all forks, content modifications is the largest group. The
two main subgroups within the content modifications category, both of which are
nearly equal in size, were the adding and the focusing of content; these are briefly
discussed below.

6 Linus Nyman and Tommi Mikkonen

Adding content is a self-explanatory reason for making a fork. The developers
added new features or other content (e.g. adding better documentation, helper
utilities, or larger maps to a game). Quite often, developers didn’t describe additions
in detail; one developer, for instance, simply noted that the program was a fork “that
has the features I’m missing from [the original].” Another developer stated that the
fork was “A [program name] fork with more features”. In several cases, this group of
forks also included bugfixes.

Focusing content implies focusing on the needs of a specific user segment. This
category includes forks with both a technical and content-related focus, along with
the addition of functionalities and features as well as the removal of elements or
features unnecessary for a specific segment or purpose. Examples of content-related
focus include programs forked in order to focus on serving the needs of dance
studios, radio talk shows, catering companies, program developers, and astronomers,
to name but a few. Examples of technical focus include forks “aimed at higher-
resolution iOS devices”, a fork which “features improvements and changes that
make it more oriented for use in a Plone intranet site”, and a fork intended “to run on
machines that have 800x600 screen resolution”. In a minority of the cases in the
focusing content category, the original program was forked mainly to remove
elements from the original. The main goal in this group was to create a lighter or
simpler version of the original, with speed and ease of use as the main focus. One
developer stated that the fork was “lightweight, less bloated” and that it was forked
to “make [the original] simpler, faster, more useable.” Another developer noted that
the fork was “Smaller, faster, easy to use.”

4.2 Technical modifications

This group, comprising just over a quarter of all forks, can be divided into two
subcategories: porting and improving. A characteristic of this category was that little
if anything was visibly different to the user; the forked programs simply focused on
either porting or improving the original.

Porting the original code to new hardware or software was the more common of
the technical motivations for forking, usually involving porting the original to fit a
certain operating system, hardware, game, plug-in, migrate to a different protocol, or
other such reasons. Examples from the data for this group include a “fork of
[program name] to GNU/Linux”, a fork “compatible with the NT architecture”, “a
simple C library for communicating with the Nintendo Wii Remote […] on a Linux
system”, and a program fork whose main target was to create a version “which works
with ispCP.” Some forks were ported to reduce a dependency; for instance, one
developer who noted that the fork was “geared towards ‘freeing’ [the original
program] from its system dependence, [thus] enabling it to run natively on e.g. Mac
OS X or Cygwin.” Another developer noted that the program was forked because the
developer could not find a “good and recent [program type] without KDE
dependency.”

To Fork or Not to Fork:
Fork Motivations in SourceForge Projects

7

Improving the original program was slightly less common in the technical

motivations category than porting, which focuses on improving already existing
features and contains mostly bugfixes, code improvement and optimization, and
security improvements. Some cases were very general in their descriptions, noting
only that it was an “upgraded” or “improved” version of the original, or that the code
was forked “to fix numerous problems in the code” or to “improve the quality of
emulation”. Others were more specific, as with the developer of one fork, who notes
that “The main goal is to build a new codebase which handles bandwidth restrictions
as well as upcoming security issues and other hassles which showed up [during] the
last 6 months.”

4.3 Reviving an abandoned project

The third common motivation for forking was to continue development of a project
considered abandoned, deceased, stalled, retired, stagnant, inactive, or unmaintained.
In several of these cases, the developers of the fork note who the original developers
are and credit them. In a few cases, the developers of the fork note that they
attempted (unsuccessfully) to reach the original developers; in other words, forking
the code was the last available option for these developers, as the original developers
could no longer be reached. One such example is a fork which the developer notes
was “due to long-time inactivity” and then goes on to state “We want to thank the
project founder [name] for starting this project and we intend to continue the work”.
In another case, also due to the inactivity of the original developer, the developer of
the fork acknowledges the original author and notes that the fork “includes changes
from comments made on his forum.” Other examples from the data are: “This project
is a fork of the excellent but dead [project name] project”, “This project is a fork of
the stalled [project name]”, “a code fork from the (deceased) [project name] source”,
and, finally, “The previous maintainer is unresponsive since 2008 and the library
[has] some deficiencies that need to [be] fixed. Anyway, thanks for creating this
great library [name of original developer]!”

4.4. License/FOS-related issues

This group consists of forks which were motivated by license-related issues or a
concern for the freedom of the code. Some of the forks appear to be simply a form of
backup copies: stored open source versions of well-known programs. The motivation
for this subgroup was a concern that the original version might become closed
source. In one case, the developer stated that the fork was due to concern about the
future openness of the code. In a similar case, a developer noted about the fork that
“This is a still-GPL version of [program name,] just in case.” One fork simply
identifies the motivation as a “license problem”. In five cases, the program was
forked because the original was deemed to have become either closed source or

8 Linus Nyman and Tommi Mikkonen

commercial, and in one case, developers noted that the fork occurred because certain
bits of the original code were closed source. One fork notes that the new version
removes proprietary (boot) code from the program, but that “there is no need to use
this version unless you are concerned about the copyright status of the embedded
boot code.”

4.5 Language- and/or country-specific modifications

A small group of the forks were motivated by language and country. This group
could well be considered a subcategory of the “focusing content” group, but was
considered separate due to its clear language-related focus. The simplest, though not
most common, form of forks included programs which were merely translated into
one or more languages; in most cases, however, new content was also added to
customize the fork for a specific country and/or group. Some examples are forks
created for elections in New Zealand, the right-to-left reading of Hebrew texts, and a
program “customized to meet German requirements regarding accounting and
financial reporting.”

4.6 Experimentation

This group consisted mostly of forks which declared that they existed for
experimental purposes, with a handful citing development reasons. A feature
common among many of these forks is that the developers state that the fork is
temporary and that successful new features or improvements will be incorporated
into the original program. Some describe the fork as simply “for testing”, while
others go into greater detail, noting for instance that the fork is “aimed at
experimenting with a number of features turned up to maximum.” One developer
notes that the fork is simply “for fun”, and then goes on to tell readers where they
can find the original project.

4.7 Other reasons

Of the remaining forks, a handful described it as a “community fork.” In some of
these cases, it was possible to identify an overarching motivation behind the
community fork; in others it was not, the implications of the term in those cases
remaining unclear. Two cases cite a reprogramming in a different programming
language as the reason for the fork. The remaining reasons for the forks defied
categorization, and included such motivations as a desire to create a study tool for
the developer, as well as to test SourceForge for a different project.

Finally, the most surprising of the remaining groups was the group motivated by
disagreement or breach of trust. In the beginning of the study, we assumed that a
significant number of forks would stem from disagreement between developers. In
reality, we were able to identify such forks, but their proportion is quite small: we

To Fork or Not to Fork:
Fork Motivations in SourceForge Projects

9

identified only four cases, three of which stated that the users sought something the
original developers did not intend to implement and one which noted that the fork
was a reaction to a breach of trust. Furthermore, even some of these cases may be
attributed to the original developers’ loss of interest in the project.

5 Discussion

The data in this paper are based on information provided by developers themselves.
Many of the cases of self-proclaimed forking – such as when a developer continues
an abandoned project – could arguably be defined as something other than a true
fork. However, determining forks any other way (other than through the self-
proclaimed approach used here) would require a technical definition of a fork that
would have to be mined from the project data. At present, no such mechanism seems
to exist, and in general, differentiating between forked and fragmented code is an
ambiguous practice, unless defined by elements outside of the code itself.
Consequently, we have identified the developers as the most reliable source of
information, at least at present.

Beyond the challenge of defining a fork, one here also needs to note two issues:
how the choice of SourceForge as a sampling frame might affect the data, as well as
how accurate, or complete, the descriptions offered there are. The choice of
SourceForge could affect the data in several ways. The main question would seem to
be whether the characteristics of the average program – or program fork – on
SourceForge differ from those of programs hosted on other sites, or from
independently hosted programs. For example, given that larger projects often have
their own hosting, it is possible that we are seeing only a small number of forks in
some categories because projects that would face such issues are not using
SourceForge. As to the completeness of the motivations offered by developers, there
could be a number of reasons why the information offered is incomplete. For
instance, the low frequency of disagreements as a motivational factor in forking may
perhaps in part be explained by either a reluctance to mention such disagreements or
the limited space offered by SourceForge in which to describe the program. It is also
possible that such information, while not stated on SourceForge, would be available
on project homepages. Indeed, we came across a project which noted elsewhere that
a disagreement among the developers of the original was a factor in the fork;
however, the same project did not mention this disagreement in their description on
SourceForge.

In general, the results of our study suggest that forking is not a particularly
extreme situation in real-life projects. For the most part, developers’ motivations are
easily understandable, and forking can be considered a reasonable action. However,
this does not mean that hostile takeovers are absent from high-profile projects, but
simply that in the vast majority of cases, developers appear simply to seek to satisfy
their own needs and to develop interesting systems. Such motivations were evident

10 Linus Nyman and Tommi Mikkonen

in the documentation in many ways. Some of the forks note that the changes or
improvements have already been made, whereas others announce the intended
direction of the fork and mention features to be added to it. Furthermore, crediting
the original developers was a rather common practice among those who forked a
program, which further emphasizes the fact that forks sought to achieve certain
goals, not to compete with existing communities. Perhaps more telling still is that a
number of forks noted that they hoped to be temporary, and clearly stated their desire
that the bugfixes and improvements introduced in their fork be incorporated into the
original program.

6 Future Work

Future work regarding issues associated with forking could take numerous
directions. Below we list some of the most promising directions that merit further
investigation.

Defining a fork. All of the programs in the data for this article define themselves
as forks. In practice, upon more careful review, many of them could perhaps more
accurately be categorized as pseudo-forks, code fragmentation, or simply different
distributions of a code. The creation of a commonly agreed-upon view of forking vs.
fragmentation (or distributions) vs. code reuse would be a very practical step that
could benefit both researchers as well as the entire open source community. It could
also be possible to define a fork based on technical details, rather than depend on
information provided solely by the developers.

Licenses before and after forking. Future researchers could conduct a survey of
developers who have forked a program in which they explain their choice of license
in comparison to the license of the original program from which they forked.

Perception of forking. Another practical aspect related to forking is how
programmers view it; in other words, when is it acceptable to fork, and when is it
not? Furthermore, discovering whether certain behaviors make forking more
acceptable among developers would be an important direction for such work.

Expanding the data set. Performing a similar study for other sites that host open
source projects would contribute to a deeper understanding of forking. Because all
the data come from only one source, certain aspects may skew the results.
Furthermore, it would be interesting to test if one can tie the observed categories to
antecedents or consequences, e.g., are particular kinds of software more likely to
fork in particular ways or are particular kinds of forks more successful?

Forking in relation to business. A number of forks we have identified occurred
because the original project became closed source. Examining what happened to
these projects would deepen our understanding and view of forking in relation to
business.

To Fork or Not to Fork:
Fork Motivations in SourceForge Projects

11

7 Conclusions

Forking is one of the least understood topics in open source development. While
often perceived initially as something malicious, the developers who perform the
actual forking cite rather straightforward reasons for their actions.

In this paper, we addressed the motivations of developers for performing a fork.
The data used in the project originate from SourceForge (http://sourceforge.net/), one
of the best-known hosts of open source projects, and focus on “self-proclaimed
forks”, or programs that the program developers themselves consider to be forks.
The motivations behind forking are based on developer input, not on mining
technical qualities of the project. However, using only the latter to determine forking
would be difficult, as separating forking from other open source-related phenomena
is problematic and inconclusive. At the very least, additional data from developers
are needed to define forking.

In conclusion, while hostile takeovers and the hijacking of a project as well as a
loss of developers after a fork are often associated with forking, the reality is that
forks seem to be a lot less dramatic. In fact, forking appears to be more or less
business as usual, and developers fork because doing so provides certain benefits for
their own goals. While we were able to find forks where the rationale for forking lay
in disagreement or trust issues, such cases were few in comparison to the total
number of projects we studied.

References

[1] Fogel (2006) Producing Open Source Software. O’Reilly, Sebastopol, CA.
[2] Raymond (2001) The Cathedral & the Bazaar: Musings on Linux and Open Source by

an Accidental Revolutionary. O’Reilly, Sebastopol, CA.
[3] Moody (2011) The Deeper Significance of LibreOffice 3.3. ComputerWorld UK,

January 28.
[4] Weber (2004) The Success of Open Source. Harvard University Press, Cambridge, MA.
[5] Lerner and Tirole (2002) Some Simple Economics of Open Source. The Journal of

Industrial Economics, Vol. 50, No. 2, pp. 197-234.
[6] Moody (2009) Who owns commercial open source and can forks work? Linux Journal,

April 23.

