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Abstract. The paper presents a techniqgue for model-baseadk-biax
conformance testing of real-time systems usingTimee Petri Net Analyzer
TINA. Such test suites are derived from a prioeitizime Petri net composed of
two concurrent sub-nets specifying respectively ékpected behaviour of the
system under test and its environment.We desciomethe toolbox TINA has
been extended to support automatic generatiomw-tiptimal test suites. The
result is optimal in the sense that the set ofdases in the test suite have the
shortest possible accumulated time to be execumgdit/output conformance
serves as the notion of implementation correctnessentially timed trace
inclusion taking environment assumptions into aotoliest cases selection is
based either on using manually formulated test gaep or automatically from
various coverage criteria specifying structuraltecia of the model to be
fulfilled by the test suite. We discuss how testpmses and coverage criterion
are specified in the linear temporal logic SE-LT™erive test sequences, and
assign verdicts.

Keywords: real-time system; Prioritized Time Petri Nets; @ynfance testing;
time optimal test cases.

1 Introduction

Real-Time systems are characterized by their chpaw interact with their
surrounding environment and to provide the latteréxpected output at the right date
i.e. the timely reaction is just as important as thedkirf reaction. Testing real-time
systems is even more challenging than testing watineactive systems, because the
tester must consider when to stimulate system, ibi@xpect responses, and how to
assign verdicts to the observed timed event seguénather, the test cases must be
executed in real-time, i.e., the test executionesystself becomes a real-time system.

Model-based testing has been proposed as a teehtucautomatically verify that
a system conforms to its specification. In thihtéque, test cases are derived from a
formal model that specifies the expected behavafua system. In this paper, we
propose a technique for automatically generatirgf teases and test suites for
embedded real time systems based on Prioritize@ Peatri Nets.

We focus on conformance testing i.e. checking bgpmaeof execution whether the
behaviour of some black-box system, or a systery patled SUT (system under
test), conforms to its specificatiomhis is typically done in a controlled environment



where the SUT is executed and stimulated with igmabrding to a test specification,
and the responses of the SUT are checked to corfoit: specification.

An important problem is how to select a very lirditeet of test cases from the
extreme large number (usually infinitely many) aftgntial ones. So, a very large
number of test cases (generally infinitely manyh ¢se generated from even the
simplest models. The addition of real-time addglaerosource of explosion, i.e. when
to stimulate the system and expect response. Tdusutomatically generated test
suite easily becomes costly to execute. To guidestiection of test cases, a test
purpose or coverage criterions are often used. pgdper demonstrates how it is
possible to generate time-optimal test cases astdstetes, i.e. test cases and suites
that are guaranteed to take the least possiblettmagecute. The test cases can either
be generated using manually formulated test pugposeautomatically from several
kinds of coverage criterion—such as transition lace or marking coverage— of the
PrTPN model. The coverage approach guaranteestlieatest suite is derived
systematically and that it guarantees a certaiel lefrthoroughness. We describe how
the real-time model checkseltand the path analysis toplan of the toolbox TINA
have been used to support automatic generationintd-daptimal test suites for
conformance testing i.e. test suites with optimadaaition time. Such test suites are
derived from a PrTPN composed of two subnets syiagifrespectively the expected
behavior of the SUT and its environment. Especidhg required behaviour of the
SUT is specified using a Deterministic Input endblnd Output Urgent PrTPN
(DIOU-PrTPN). Time optimal test suites are inteirggtfor several reasons. First,
reducing the total execution time of a test suliens more behaviour to be tested in
the (limited) time allocated to testing; this meansiore thorough test. Secondly, it is
generally desirable that regression testing caexXeeuted as quickly as possible to
improve the turn around time between changes. Whiitlis essential for product
instance testing that a thorough test can be paddrwithout testing becoming the
bottleneck, i.e., the test suite must be appliedlt@roducts coming of an assembly
line. Finally, in the context of testing of reatr systems, we hypothesize that the
fastest test case that drives the SUT to some, sitde has a high likelihood of
detecting errors, because this is a stressfultgitudor the SUT to handle. To know
other advantages on Time optimal test suites,ahdar can see [31].

The main contributions of the paper are: Re-impleinike toolbox Tina and add
functionality to support the composition of PrTPNuefinition of a subclass of
PrTPN from which the diagnostic tracessedt can be used as test cases; application
of time optimal paths analysis algorithms to thetest of test case generation; a
technique to generate time optimal covering tesésu

The rest of the paper is organized as follows: iBec2 surveys related work.
Section 3 presents the LPrTPN model (syntax andsBeas). In section4, we present
test case generation based on the DIOU-PrTPN naoiklve describe how to encode
test purposes and test criteria. Section 4 consltiiepaper.



2 Motivation and Related Works

Among the models proposed for the specification amdfication of real-time
systems, two are prominent and widely used: Time Rets (TPN) [39] and Timed
Automata (TA) [2]. The TA formalism has become a popular and widesprea
formalism for specifying real-time systemi. has a rich theory and is cited in
important research works e.g. fundamentals aspemsiel checking, testing...etc.
TPN are characterized by their condensed expregsawer of parallelism and
concurrency, and the conciseness of the modeladtition, the efficient analysis
methods proposed by [5] have contributed to thélewase. Many other extensions of
Petri Nets exist e.g. p-time Petri Nets [29] amdetil Petri Nets [43] but none of them
has the success of TPN. Much research works compaie and TA in terms of
expressivity w.r.t. language acceptance and terhpbisimilarity or propose
translation from TA to TPN or vice versa e. g. [, [7], [14], [18] and [37]. It was
shown in [14] that bounded TPN are equivalent to PAterms of language
acceptance, but that TA are strictly more expresdiv terms of weak timed
bisimilarity. Adding priorities to TPN (PrTPN) [7] preserves thekpressiveness in
terms of language acceptance, but strictly incrediseir expressiveness in terms of
weak timed bisimilarity: it is proven in [7] thatriprities strictly extend the
expressiveness of TPN, and in particular that BednBrTPN can be considered
equivalent to TA, in terms of weak timed bisimitgri.e. that any TA with invariants
is weak time bisimilar to some bounded PrTPN, amuversely. The TPN state space
abstractions were prior to those of TA and TPNeggonentially more concise than
classical TA [14]. In addition, interestingly, arambnversely to the constructions
proposed for model checking Prioritized TA the damstions required for PrTPNs
preserve convexity of state classes; they do nquire to compute expensive
polyhedra differences [8]. Although, not many pappropose TPN for testing real-
time systems e.g. [1] and [38]. So, until this pap® test tool based on TPN, in
particular conformance testing, is available. @a tther hand, a lot of works on
model based testing is based on TA or their exteisse.g. [15], [16], [17], [21],
[24], [26], [28], [31], [32], [33], [34], [35], [3B [40], [41], [42], [45]; and there exist
many tools for testing real-time systems based Amibre then ten years e.g. [24],
[31], [36], and [40].

Many algorithms for generating test suites follogvitest purposes or a given
coverage criterion have also been proposed [28223], including algorithms
producing test suites optimal in the number of testes, in the total length of the test
suite, or in the total time required to executettrsd suite. In this paper, we study test
suite generation inspired by the analysis technigsed in the State-Event LTL
model-checkesselt [8]. The schedules computed by the path analysisflan, in
particular the fastest schedules and the shor@fispassociated to the diagnostic
sequences (counterexamples), exhibitedsely will be exploited to compute the
optimal-time test suites.



3 Modeling the System and its Environment

A major development task is to ensure that an edddystem works correctly in its
real operating environment and it's only necessargstablish its correctness under
the modelled (environment) assumptions (Figure)l@herwise the environment
model can be replaced with a completely unconstthione that allows all possible
interaction sequences. But, due to lack of resauittes not feasible to validate the
system for all possible (imaginary) environmentewsdver, the requirements and the
assumptions of the environment should be cleareapticit. We assume that the test
specification is given as an LPrTPN composed of swbnets: the first models the
expected behaviour of the SUT, notét,, while the second models the behaviour
of its environment, and notetl: (Figure 1(b)).

1? 12
ENVIRONMENT | System o
O! Under Test e
(a) A SUT with its environment (b) The SUT mod#lsyrand its environmenile

Figure 1. A SUT with its environment. The SUT modésyrand its environmenie

3.1 Labeled Prioritized Time Petri Nets

Time Petri Nets (TPN introduced in [39], are obtained from PN by assiing a
temporal interval [tmin, tmax] with each transiti@pecifying firing delays ranges for
the transitions. tmin and tmax respectively indictite earliest and latest firing times
of the transition (after the latter was enabled)pf®se that a transitionbecome
enabled for the last one at the tithethent can’t be fired before +tmin and it must
be done at the latest & +tmax, unless disabled by firing some other tramsit
Prioritized TPN (PrTPN) extend TPN with a prioriglation on the transitions; so a
transition is not allowed to fire if some transitiwith higher priority is firable at the
same instant. Such priorities increase the expresgwer of TPN. Since we address
the testing of reactive systems, we add an alphabetctionsA and a labelling
function for transitionsA is partitioned in two separate subsets: inpubastiy,, and
output actiong\,;. Inputs are the stimuli received by the systemmfrohe
environment. Outputs are the actions sent by trEtes to its environment. An input
(output) is post fixed by ? (!). In addition, wesame the existence of internal actions
denoted- (v ¢ A). An internal action models the internal eventaafystem that are

not observed by the tester.
Let 1" be the set of nonempty real intervals with nonriggatational endpoints.
For icI™, i represent its lower endpoint, and its superior endpoint (if it exists)

orco . For anyf € R", i+ ¢ denotes the intervglx— 0| xe in x>0}



Syntax. Formally, a Labelled Prioritized Time Petri Net (@PN in short) is a 9-
uplet (P, T,Pre,Postyy | < A& L) where:

- (P,T,Pre,Postyy)is a Petri Net wheré is the set of placesT is the set of
transitionsmo: P~ N™is the initial marking andPre, PostT ~ P~ N"are the
precondition and post-condition functions.

- 1g:T -~ 17 is the static interval function which associatesemporal interval
Is(t)e 1T with every transition in the net. The rational(t) and I t) are the static
earliest firing time and the static latest firinghé of t, respectively. In this paper,
intervals[0,eo[ are omitted and in the right end point of an interval denotes

- < OTxT is the priority relation, assumed irreflexive, asyetric and transitive,
between transitiong; - t, orto <t; meand; has priority ovet,.

- A=A, 0 Ay O{7} is afinite set of actions
- L:T - A isthe labelling function that associates to eaghsition an operation.

A marking is a functiom: P~ N*. A transition t is enabled at marking
m iff m=Pre(t). The set of transitions enabled ah are denoted by
En(m)={ { Pre(f)< n}.

The predicate specifying whehnis newly enabled by the firing of an internal
transitiont from markingm is defined by:

NSt,m) (K = k3 Ef m-Pre{ Y+ Post ) O( K Ef m Pre)}0 & ).
The predicate specifying whednis newly enabled by the firing of a couple of
complementary transition@,t') from markingmis defined by:

NGt ( §= 10 Ef m{Pre{ )i+ Pre ) +Post )t Post }) 0 &0 Bn m{ Pt PEIND %t %)
The sets of internal, input and output transitiohthe net are defined respectively
by: T, ={t0T/ () =7}, Tin ={ 10T, / ()0 An} and Toue ={t0T/ L(1) 0 Ay} (with

T =T-T =T 0 Bu)-
The set of environment model transitions which clermgnt a transition of the
SUT model is note@T(t) ={t OMg | if t=4d (resp.a?) thert=a ? (resm@}L.

A state of an LPrTPN is a pair=(m I) in whichmis a marking of the net and

I:T - 1", a partial function called the interval functi@ssociates exactly a temporal
interval in 1" with every enabled transitiond En(m) . The initial state isy =(m, lg) ,
where | islgrestricted to the transitions enabledngt The temporal information in
states will be seen as firing domains, insteachtervals functions. The initial state
ep =(my, Dy) of the LPITPN of Figures 2 and 3.a is defined by:
My: Py, @ andDp: &ty
Ticketg
05y



Semantics. The semantic of an LPrTPN\l:(P,T,Pre,Postnb ls< A ) is the
Timed Transition Systengy =(E, g, Ay, Aut.— ) WhereEis the set of state@m, I) of
the LPrTPN and ey=(m, lg)its initial state. Ap =L(Tn) and Agyr=L(Toyy) -

00- OExTORsgx E is the transition relation between states. Itesponds to two

kinds of transitions witch includes discrete tréinsis (labelled with synchronized or
internal actions) and temporal or continuous tit#orss (labelled by real values).
The continuous (or delay) transitions are the testiltime elapsing. We have

m OB (mr) iff dORsy and:
1. (0toT) (toEn(m= dst (D))
2. (0toT) (tOEn(m= (()=1() = d)

A continuous transition of siztis possible iffd is not greater then the latest firing
time of all enabled transitions. All firing intedgaof enabled transitions are shifted
synchronously towards the origin as time elapses, tauncated to non negative
times.

Discrete transitions are the result of the traosgifiring of the net. They may be
further partitioned into purely SUT or ENV traneitis (hence invisible for the other
part) or synchronizing transitions between the Sisi@l the ENV (hence observable
for both parties). Internal transitions are fireadividually while synchronizing
transitions are fired by complementary actions t¢esip(e.g. a? and a! are
complementary synchronization actions). The firsmponent of the couple is a
transition of the SUT model, labelled by an inpetsp. output) action, and the second
component is an environment transition and labddedn output (resp. input) action.

The discrete internal transitions: we hgwe 1)0 5. (m, 1) iff L(t)=7 and:

1. tOEn(m)

2. 001 (t)

3. (0kOT;) (kOB mO( k- =00 ( K)

4. (kOT, OKOTO(K)( k kI Ef hO( k Jt= 00 ( kood ()
5. m=m - Pre(1)+ Pos)

o

(OkOT)(mi= Pre §= 1(R=if Ngm( kthen d( k eise ( K
An internal transitiont may fire from the statgm,1)if it is enabled atm (1),

immediately firable (2) and no transition with hegtpriority satisfies these conditions
(3 & 4). In the target state, the transitions thethained enabled whilefired (t
excluded) retain their intervals, the others asmeaiated with their static intervals (6).
The discrete synchronizing transition: we have:
(m 1) oHHEE (n, 1) i ¢ ¢OT, t0Tq() and:
1. t,t'0ENn(m)
2. 001 (t)Oodl (t)



3.(0kOT;) (kO En mO( k- y= 00 (K)
4. (OkOT,OKOTO K)( k kO EG MO( k @ 'k X=00 (1 k303 ('K
5. m=m- (Prg )+ Prét))+ Pogt)+ Post)

6. (OkOT,)(m=Pre H= 1( =it N m)( kthen d( k else { k
The complementary transitionsandt’' may fire from the state(m, I)if they are

enabled (1), immediately firable (2) and neithdeiinal transition (3) nor couple of
complementary transitions with higher priority séiés these conditions (4). In the
target state, the transitions that remained enallféi@ t andt’ fired (t andt’ excluded)
retain their intervals, the others are associatiéldl their static intervals (6).

If the light controller and its environment (Figu2eand 3) are in their initial state

and make a delay of 0.6 time unites [ . ). The new state, = (my, D) will be:
my: Pp, pandDy: & ty
Tidle - Osbtg
95
The firing of the synchronizing transiti¢i, sg) from the stateg leads to the state
e (6 OB, o). The new statee, = (m, Dy) will be:
m: p, qgandDy: & < O
Treagts) <
D)<
Dz <
Dsy <0
A firing schedule, or a time transitions sequence, is aesegualternating delay
and discrete transitionga;da,Mthay,. ojis a pure transition(q; =keT.)or a

synchronizing transitio(ui =(t.t) teT_T/\t’eTC(t)) and d; are the relative firing
times. A schedule is realisable from the staté the discrete transitions of the
sequenceo = ma, o, are successively firable frora at the associated relative

firing timesd,, dy, (M d, . The sequence is called its support.

If the pausing time Tidle and the switching timenTare respectively equal to 20
and 4 time units then the following time sequense ai realisable schedule
20(touch?,touct .0 bright, bright? 5. touct?, tougt .. dim!,din? (4. touctr?,eby) !(.0ff , off?)

3.2 Tina (TIme Petri Net Analyzer)

Tina is a software environment for editing and gnalg TPN [6]. It includes the
tools:

— nd(NetDraw) : an editor for graphical or textual cigtion of TPN.

— tina: For analysing LPrTPN models, it's necessaryinitely represent the state
spaces by grouping some sets of statiés builds the strong state classes graph



(SSCG in short), proposed in [8], which preservases and maximal traces of the
state graph, and thus the truth value of all thnmfdae of the SE-LTL logic.
— planis a path analysis tool. It computes all, or ageintimed firing sequence
(schedule) over some given firing transitions segae In particular, it computes the
fastest schedules and shortest paths. Accorditiggylatter schedules are used for test
case generation.
— selt is a model checker for an enriched version aes¢éwent LTL [19], a linear
temporal logic supporting both state and transitpoperties. For the properties
found falseselt produces a timed counter example. It's calledagmstic schedule
of the property. The realization of this schedulenf the initial state satisfies the
property.

A diagnostic sequence of a property is a sequence of discrete transitions
(internal and/or complementary transitions). Thecsssive firing of these transitions,
from m,, at the corresponding dates, allows satisfyinggrapertyp. A diagnostic

trace is a schedule whose support is a diagnasjigence.

3.3 Deterministic, Input Enabled and Output UrgentLPrTPN

To ensure time optimal testability, the followingnsantic restrictions turn out to be
sufficient. Following similar restrictions as i81] and [45], we define the notion of
deterministic, input enabled and output urgent LHNT DIEOU-LPrTPN, by
restricting the underlying timed transition systdefined by the LPrTPN as follows:
(1) Deterministic: For every semantic state(m D) and an actionyOAO{Rx} ,

y y d
whenevere- é and e- €thene = €. (2) (Weak) input enabled: whenever. for

a
some delay dORyg thendaOA, ,e- . (3) Isolated outputSia O Ay, U{7},
a B
080 Ayt U AnU{7} whenever e and e~ thena=p3. (4) Output urgency:

a d
whenevee- ,0a00U{7} thene+,d0R5g.

We assume that the tester can take the place afrthieonment and control the
SUT via a distinguished set of observable input @mgput actions. For the SUT to be
testable the LPrTPN modelling it should be consdolé in the sense that it should be
possible for an environment to drive the model tigto all of its syntactical parts
(transitions and places). We therefore assumetlieaSUT specification is a DIEQU-
LPrTPN, and that the SUT can be modeled by someawk DIEOU-LPrTPN. The
environment model need not be a DIEOU-LPrTPN. Theeseimptions are commonly
referred to as the testing hypothesis.

Figure 2shows anLPrTPN modelling the behaviour of a simple light-controlle
(this example is taken from [31]). The user intésagith the controller by touching a
touch sensitive pad. The light has three interisitgls: OFF, DI MVED, andBRI GHT.
Depending on the timing between successive toutches;ontroller toggles the light
levels. For example, in dimmed state, if a secanath is made quickly (before the
switching time Tg,, =4 time units) after the touch that caused the coetrab enter

dimmed state (from either off or bright state), ttantroller increases the level to



bright. Conversely, if the second touch happengrathe switching time, the
controller switches the light off. If the light cmaller has been in off state for a long
time (longer than or equal T, =20), it should reactivate upon a touch by going
directly to bright level. We leave to the readewnify for herself that the conditions
of DIEOU-LPrTPN are met by the given model.

Figure 2. Msyr: the light controller model

Figure 3 shows two possible environment modelstlier simple light controller.
Figure 3a) models a user capable of performing any sequent®ioh actions. When
the constanfreact is set to zero he is arbitrarily fast. A more rsiidi user is only
capable of producing touches with a limited raltés tan be modeled settifigeact to
a non-zero value. Figure(t§ models a different user able to make two quick
successive touches, but which then is requiredatasg for some time (to avoid
cramp), e.g.Tpause = 5. The LPrTPN shown in Figure 2 and Figure 3 respelst can

be composed in parallel on actiohs= {touch} andA,,. = {off, dim, bright}.

(a) MEl (b) ‘/M“EZ

Figure 3. Two light switch controller environment models

The firing of (,s;) from the state e;=(m,D,) leads to the state
e3=(my, Dy) (& 0. @):

Mp: pg, qand Dy: TsWE tr< oo
Oty <o
Treasts; <
Iy <o
fs3< 0
Ey<so



4 Test Generation

4.1 From Diagnostic Traces to Test Cases

Let M be the LPrTPN model of the SUT together with iteinded environment ENV;
and ¢ the property, formulated in SE-LTL, to be verifieder M. As SE-LTL
evaluate the properties on all possible executimsconsider the formula ¢ then
we submit it toselt If the response is negative, i.e. all the exeni don't
satisfy- ¢, so at least one satisfy its negatjarseltprovide simultaneously a counter
example forg, i.e. a diagnostic sequence that demonstrates pittgierty gis
satisfied. This sequence is submitted to the jpexh for computing a schedule, or all
the schedules having this sequence as support. Sdfiedule is an alternating
sequence of discrete transitions, synchronizataninternal) actions, performed by
the system and its environment, and temporal caingsr (or transitions firings time-
delays) needed to reach the goal (the desirablkimgaor event).

Once the diagnostic trace is obtained, it's conmenio construct the associated
test sequences. For DIEOU-LPrTPN, a test sequenar alternating of sequence of
concrete delay actions and observable actions duitinternal actions). From the
diagnostic trace above a test sequeacanay be obtained simply by projecting the
trace to the environment componemts, while removing invisible transitions, and
summing adjacent delay actions. Finally, a tese ¢asbe executed on the real SUT
implementation may be obtained frovh by the addition of verdicts. Adding the
verdicts depends on the chosen conformity relabietween the specification and
SUT. In this paper, we require timed trace inclosice. that the timed traces of the
SUT are included in the specification. Thus aftay &nput sequence, the SUT is
allowed to produce an output only if the specifimatalso able to produce that output.
Similarly, the SUT may delay (staying silent) oiflyhe specification also may delay.
The test sequences produced by the technique prdposhis paper are derived from
the diagnostic traces, and are thus guaranteeel itechuded in the specification.

To clarify the construction we may model the temtecitself as an LPrTPML, for
the test sequence Places in M are labelled using two distinguished lab&ass
andFail. The execution of a test case is formalized gsallel composition of the
test case Petri neéil, and SUT Mgy

SUTpasses M, iff M,|| Msyr =~ fail

Figure 4. Test case LPrTPM(, for the sequencé=ig! . delai . @ ?



M, is constructed such that a complete executionitextes in aFail state (the
place FAIL will be marked) if the SUT cannot perford and such that it terminates
in aPassstate (the place PASS will be marked) if the SR execute all actions of
A. The construction is illustrated in Figure 4.

4.2 Single Purpose Test Generation

A common approach to the generation of test casesfirst manually formulate a set
of informal test purposes and then to formalizes¢hsuch that the model can be used
to generate one or more test cases for each teppbgm Because we use the
diagnostic trace facility of the model-checkeitt, the test purpose must be formulated
as a SE-LTL property that can be checked by realityadnalysis of the combined
model M. The test purpose can be directly transformed @ntmple state or event
reachability check. Also, the environment model barreplaced by a more restricted
one that matches the behaviour of the test purpolse

dim?

qo

bright? bright? bright?

Figure 5. JMgs, test environment for TP2

TP1: check that the light can become bright.
TP2: check that the light switches off after three sssive touches.

TP1 can be formulated as a simple SE-LTL propepty= ¢ BRIGHT (State property)
org =90 BRIGHT! (event property) i.e. eventually in some future giface bright of
the light controller Petri net will be marked oetbvent bright! will be executed.

Among all diagnostic sequences exhibited $sit that satisfy the property
@ (orgy), two sequences are more interesting: the shatebthe fastest sequences.
The second is selected as follows: first, we comphe fastest schedule associated
for each obtained sequence, and then we keep balpdhedule with the smallest
accumulated time. Finally, the two schedules assedito the two selected sequences
will be transformed to test cases as explained.in Bhe execution time for each of
these test cases is optimal.

For the light controller, the shortest diagmost trace s

(touch?, toucH) ( bright, brigh®) . It results in the test sequenc®touch!.0.bright?.

However, the fastest sequence satisfyigg is 0 (touch?touch! .¢. dim!,dim? ..
(touch?, touch) . It results in the test sequenegouch!.0.dim?.0touch!.0 bright’

TP2 can be formalized using the propemies= ¢ 3=0 OBJECTIF with Mg; is the

restricted environment model in Figure 5. The fststest sequence is:
Otouch!.0.dim?.0touch!.0.bright ?.0touch!.0.off



4.3 Coverage Based Test Generation

A large suite of coverage criteria may be proposesth as statement, transition,
states, and classes, each with its merits andcapipln domain. We explain how to
apply some of these to TPN models. In this paperuse three coverage criteria of
the LPrTPN model of the SUT:

Transition Coverage. A test sequence satisfies the transition-coveraerion if,
when executed on the model, it fires every tramsitf the net. Transition coverage

n
can be formulated by the propegy= O ¢0t;, wheren is the number of transitions of
i=1

the net. The obtained counter example of the ndisfaetion of the property- g

ensures transition coverage. Once the diagnogiigesees are obtained, we compute
the two schedules: (1) the fastest schedule whishals support the shortest sequence
(2) the fastest schedule among all schedules agHiltly selt We transform these
schedules in test cases as is indicated in 4.1.

When the environment can touch arbitrarily, the egated fastest transition
covering test has the accumulated execution timeTh@ solution (there might be
more traces with the same fastest execution tirmegated byplanis:

TC: 0.touch!.0.dim?.0.touch!.0.bright?.0.touch!.0.d¥®touch!.0.bright?.4.touctl.dim?.4

touch!.0.off%

Place Coverage.A test sequence satisfies the place-coverage iontdf, when
executed on the model, it marks every place of nbe Place coverage can be

m
formulated by the propergp = O 0p =1, wheremis the number of places of the net.
i=1

Marking Coverage. A test sequence satisfies the marking-coveragerimi if, when
executed on the model, it generates all the maskofgthe net. The test sequences
which ensure the marking-coverage are generatedsddgcting the transition
sequence(s), from the SSCG of the model, which rgéee all the markings of the
SUT model. Test cases generation from the diagndsdices that ensures place
coverage and marking coverage are computed avarage transition.

4.4 Test Suite Generation

Frequently, for a given test purpose criterion,caanot obtain a single covering test
sequence. This is due to the dead-ends in the mbdelolve this problem, we allow
for the model (and SUT) to be reset to its inisiglte and to continue the test after the
reset to cover the remaining parts. The generatgdatill then be interpreted as a test
suite consisting of a set of test sequences sephriay resets (assumed to be
implemented correctly in the SUT).



To introduce resets in the model, we shall allow tiser to designate some
markings as being reset-able i.e. markings thatvallto reach the initial marking, .

Evidently, performing a reset may take some tifpethat must be taken into account
when generating time optimal test sequences. Rédetnarkings can be encoded into
the model by adding reset transitions leading Hactne initial marking. Letm, the
reset-able marking, two reset transitions and aplaeeq which must be added as:
The transitionreset must be added such as their input places aresticeded
places (those ofn, ) and its output place is the plageThe firing ofreset marks the
reset r

placeq. (m;,-) - (a[T,. T 1)~ (. lo)

4.5 Environment Behaviour

Test sequences generated by the techniques présantge may be non-realizable;
they may require the SUT environment to operatmitefy fast. Generally, it is only
necessary to establish correctness of SUT underethéronment assumptions.
Therefore assumptions about the environment cambeelled explicitly and will
then be taken into consideration during test secpiaggeneration. We demonstrate
how different environment assumptions influencegbeerated test sequences.
Consider an environment where the user takes st 2dme units between each
touch action, such an environment can be obtaiyesetiing the constarng,ct to 2

in Figure 3(a). The fastest test sequences bed@ne0.touch!.0.dim?.2.touch!.0.brigh
and TP2: 0.touch!.0.dim?.2.touch!.0.bright?.2.tchi.0.off?

Also re-examine the test suileC generated by transition coverage, and compare
with the one of execution time 32 generated wihgp: equals 2.

TC': 0.touch!.0.dim?.4.touch!.0.0ff?.20.touch!.0.bright®ouch!.0.dim?.2.touch!.Qight?.2.
touch!.0.off?

When the environment is changed to the pausing (eser perform 2 successive
quick touches after which he is required to pawgesbme time: reaction time 2,
pausing time 5), the fastest sequence has exedirien33, and follows a completely
different strategy.

TC": 0.touch!.0.dim?.2.touch!.0.bright?.5.touch!.0.dith®uch!.0.0ff?.20.touch!.right?.2
touch!.0.off%

6 Conclusion

In this paper, we have demonstrated that the pmoldé timed test generation is
transformed to a problem of model checking. We hetvawn that time-optimal test
suites, computed from either a single test purposecoverage criteria can be
generated using the Tina toolbox. We have alswdioized modifications in the
transitions firings algorithms taking into accothné reactive character of embedded
real-time systems. Unlike the technique based on[3}, the advantages of using
TINA are the following: 1) when computing the SS@ bounded PrTPN, contrary



to the zone graph of TA, no abstraction is requiredrder to ensure termination; this
allows to avoid ad-hoc techniques for enforcingnieation of forward analysis; 2) it
may help tackling the state explosion problem dugatrallel composition of TA.

The DIEOU-PrTPN is quite restrictive, and genesian will benefit many real-
time systems.
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