

Implementing MSC Tests with Quiescence Observation

Sergiy Boroday1, Alexandre Petrenko
1
, Andreas Ulrich

2

1 Centre de recherche informatique de Montreal (CRIM), 550 Sherbrooke West, Suite 100

Montreal, Quebec, Canada

Sergiy.Boroday@crim.ca, Alexandre.Petrenko@crim.ca
2 Siemens AG, Corporate Technology, CT SE 1, 80200 Munich, Germany

Andreas.Ulrich@siemens.com

Abstract. Given a test scenario as a Message Sequence Chart (MSC), a method

for implementing an MSC test in a distributed asynchronous environment is

suggested. Appropriate test coordination is achieved using coordinating

messages and observed quiescence of a system under test. A formal definition

and a classification of faults with respect to the test scenario are introduced. It is

shown that the use of quiescence observation improves the fault detection and

allows implementing sound tests for a wider class of test scenarios than before.

Keywords: Distributed testing, Message Sequence Charts, sound tests, test

implementations, fault detection power.

1 Introduction

With the recent trend towards multi-core processing, multithreading, and system-on-

chip development as well as the emergence of Web services and service oriented

architecture, asynchronous communication paradigms, concurrency, and distribution

become mainstream in software development. This trend poses high strains on the

testing process that needs to deal with the concurrent and distributed nature of such

systems.

Various proprietary and open-source platforms for distributed testing have

emerged in diverse application areas. While quite a variety of programming and

scripting languages are used in the testing domain, including TTCN-3, an

internationally standardized testing language, a common choice for designing and

visualizing tests is the use of Message Sequence Charts (MSC) and derivatives, such

as UML2 Sequence Diagrams [5, 6, 9].

Development of supporting tools for distributed testing faces a number of technical

challenges. One of them is the fact that test components of the tester have often to be

deployed in different environments. However, in our opinion, the major obstacle

limiting the success of distributed testing is the lack of a solid theoretical foundation

and efficient distributed test generation algorithms and tools.

In this paper, we study the problem of implementing a test derived from a test

scenario specification described by an MSC. We focus on a distributed asynchronous

environment to run tests, where several independent test components communicate

with the system under test (SUT) and between themselves via FIFO channels. The

contributions in this paper are twofold. First, a classification of faults that characterize

the faulty functional behavior of a distributed system at its external interfaces is

proposed. Second, we elaborate a way of observing the SUT quiescence in order to

increase the fault detection power of the implemented tests, thus improving previous

work in this respect. Based on the suggested classification, the fault detection power

of the presented test implementation algorithms is determined.

Section 2 introduces the problem of distributed testing and discusses briefly the

related work. Afterwards, the theoretical foundations of the proposed approach, which

is based on the poset theory, are laid down in Section 3. In Section 4, the problem of

soundness of test implementations is addressed and an algorithm for obtaining a

sound test implementation from a given test scenario is elaborated. Section 5

introduces a systematic analysis of distributed system faults resulting in an improved

algorithm with a higher and defined degree of fault detection power. Section 6

concludes the paper.

2 The Distributed Testing Problem

Given a distributed system, hereafter called SUT, we assume that a test system is also

distributed, executing tests by several cooperating test components, which access

different ports/channels of the SUT. All the communications are assumed to be

bidirectional, asynchronous and use unbounded FIFO channels. We consider that a

test specification is available as an MSC describing the expected order of test and

SUT events in a particular test scenario. Thus, test specifications contain no explicit

verdicts, which are produced by a designated Master Test Component (MTC). The

verdict pass should indicate that no error in the SUT has been detected when a given

test is executed, namely, that all the expected test events (and only them) have

occurred in a correct order. Errors in the SUT manifest themselves as violations of

these conditions and should trigger the verdict fail. Note that sometimes other

verdicts, such as inconclusive, are also considered, e.g., within the ptk tool [3].

The main challenge in implementing a test specification is to ensure that all the test

events are executed in the right order, especially if test components run concurrently

and in a distributed way. To address this problem, a proper coordination between test

components has to be added to obtain a test implementation. The test engineer can be

relieved from solving this task manually by tools that automate the transformation of

a test specification into a test implementation with a required coordination. With a

proper coordination of test components a test implementation becomes sound, i.e., it

avoids false positives (false alarms), when a correct SUT is considered to be faulty by

a flawed test implementation; moreover, coordination can improve fault detection,

i.e., reduce the number of false negatives. The problem of soundness is important

because false positives produced due to ill-conceived coordination can confuse the

test engineer and discourage her from further using the test tool. The fault detection

power of a test is equally important; although detection of all the possible faults is

hardly feasible in distributed testing as shown later. Devising coordination

mechanisms in test implementations such that they are sound and have a guaranteed

fault detection capability especially when communication delays may mask SUT

faults is the main subject of this paper.

Major work on the generation of distributed tests that has been reported previously

is given in [1, 2, 3]. The proposed algorithms can deal only with a subclass of

distributed test specifications. While the problem of guaranteeing the detection of

deviations of the observed behavior from the expected behavior is resolved with the

assumption of negligible latency of coordinating messages compared to SUT

messages [2], we propose a different solution based on the assumption of the

availability of a null event (a timeout which suffices for the SUT or test component to

send and receive messages over FIFO channels). This event occurrence is interpreted

as the observation of the SUT quiescence and is used to resolve races. A designated

quiescence observation output was previously used in automata-theoretical testing

theories, see, e.g., [15]. An MSC adaptation of the automata based testing approach

with quiescence is suggested in the context of centralized testing [17].

The problems of soundness of test implementation and fault detection, formalized

in this paper resemble the controllability and observability problems encountered in

distributed FSM-based testing [16].

Fault detection in distributed systems is discussed in [7], where the expected

behavior is modeled by a partial order input/output automaton which can be viewed as

an HMSC. While the work [7] focuses on the generation of several tests to discover

faults in implementations of a given transition, we aim to obtain a single test

implementation for a test scenario given as an MSC and target the necessary

coordination among test components. If several test scenarios are given then we

assume that they are mutually output (or verdict) consistent [18].

The work in [10] discusses the synthesis of concurrent state machines from an

MSC. The authors consider an MSC scenario description as a closed system

(complete MSC). Thus, their contribution is more relevant to the system design

process than to the test process. The main difference here is that from the provided

scenario a part that represents the test specification (incomplete MSC) has to be

extracted before an implementation can be synthesized. It turns out that the test

synthesis algorithms are quite different from the algorithms that synthesize the

complete, i.e., closed, system. A similar work that considers the behavior model

synthesis from scenarios as closed systems can be found in [13].

The authors of [12] present another method to generate tests from UML models

using the TGV tool. The obtained tests are represented by input/output transition

systems, which can then be transformed into sequence diagrams. In our work, we

avoid such an intermediate representation of tests and are more concerned with races

and fault detection in the resulting test implementations.

3 A Poset Theoretical Framework for Analyzing Distributed Tests

3.1 Posets

A binary relation ρ over a ground set E is a subset of E × E. A transitive closure of ρ

is the smallest transitive relation [ρ] over E that contains ρ. A (strict) partial order

over a set E is an irreflexive transitive and anti-symmetric binary relation over E. A

poset is a pair of a set E and a partial order over this set.

Two elements e1 and e2 of a poset (E, <) are incomparable if neither e1 < e2 nor e2 <

e1. In the context of distributed systems, incomparable elements represent concurrent

events. A poset element e1 immediately precedes (follows) another element e2 if e1 <

e2 (e2 < e1) and there exists no e ∈ P such that e1 < e < e2 (e2 < e < e1).

A cover relation of a partial order is the minimal relation, the transitive closure of

which equals the partial order.

A poset P1 = (E1, <1) is called the restriction of the poset P2 = (E2, <2) onto E, and

denoted P2 ↓ E, if E1 is the restriction of E2 onto E, i.e., E1 = E2 ∩ E and <1 is the

restriction of <2 onto E1 × E1, i.e., <1 = <2 ∩ E × E.

A poset P1 = (E, <1) is finer than a poset P2 = (E, <2) if <1 ⊇ <2, that is the former

partial order contains the latter partial order. In this case, we also say that P2 is

coarser than P1. Note that one poset can be finer or coarser than another poset only if

both share the same ground set. A total order that is finer than a given poset is a

linearization of the given poset. Given a set E, a poset P1 = (E1, <1) is finer than a

poset P2 = (E2, <2) on E if the restriction of P1 onto E is finer than the restriction of P2

onto E.

3.2 Messages, Events, and MSCs

An MSC describes message exchange in terms of message send and receive events.

Beside these communication events, events not related to the message exchange are

sometimes considered too, and are called local events.

Given a set of all possible messages, we associate each message m with two

distinct events, send of the message !m and the corresponding receive ?m. Broadcast

is not allowed, that is one send event is always matched with exactly one receive

event. Thus, send-receive matching is a bijective mapping of sends into receives. This

matching is also understood as a send-receive precedence partial order, match, where

each send precedes the matching receive.

An MSC is a collection of pairwise disjoint event posets, called here local posets,

such that no matching send and receive belong to the same local poset. Each local

poset represents the behavior of an MSC instance/liveline. The partial orders of the

local posets are referred to as local orders.

Thus, the MSC considered in this paper can describe complex concurrent behavior

usually visualized with parallel expressions or co-regions, but not branching

(alternatives), cycling, or timed behavior.

Here we introduce a designated local event, called null. The null event models

observation of quiescence, which is usually implemented in practice with a

sufficiently long timer. The left-hand part of Fig. 1 shows an MSC, where a timer

start and timeout indicate the absence of events at T1 during 10 time units. With a

dotted arrow we show that if time progresses at the same rate for all the instances, the

occurrence of a timeout on one instance can have implications on the timing of events

on another component.

In this paper, we in fact assume that time does progress at the same rate for all the

instances and rely on this assumption in interpreting null events. We represent in

MSC timer start and timeout events as a single local null event, as shown in Fig. 1 on

the right. The formal meaning of the null event is explained later.

We allow an MSC to be incomplete, namely, some sends or receives do not

necessarily have counterparts. In this work, MSCs are used in the context of testing.

Thus, for simplicity, we assume that in a complete MSC, there is one distinguished

instance SUT that represents the behavior of the system under test, while all the other

instances represent test components. The messages which neither originate from nor

arrive to an SUT are called coordinating messages.

Fig. 1. An MSC with a null event

3.3 Causal Order, Enforceable Order, and Races of MSCs

We recall the notions of a causal order and a race of an MSC. Let E be a set of all the

events of an MSC M. The MSC M is called consistent (in asynchronous semantics) if

there exists a partial order which is finer than the send-receive precedence partial

order match on the set E as well as the local orders, and which respects FIFO ordering

condition, meaning that if two send events of an instance are ordered in this partial

order, then the matching receive events of the same instance are similarly ordered.

The coarsest partial order on the set E, which satisfies the above conditions, is called

the causal order <M, forming with E the causal poset of the MSC. If the above partial

order does not exist, MSC M is inconsistent.

A race occurs between events which are ordered in the MSC, but this order is not

enforceable. The enforceable partial order of a consistent MSC M is the coarsest

partial order which is finer than the send-receive precedence partial order match and

which respects FIFO ordering condition, ordering of an event and a later send or local

(i.e., null) event of the same instance.

Unlike the causal order, the enforceable order describes only the ordering which

could be guaranteed in a distributed system [4]. For instance, it is impossible to

enforce the order of consecutive receives of the messages sent by different instances,

since channel delays are a property of channels and not the receiving instance. Thus,

an MSC M contains a race when its enforceable partial order differs from the causal

order <M, otherwise it is race-free [4].

i1

T2

c

o1

o2

o3

i1

T2

c

o1

o2

SUT

o3

t(10)

≥10

i2

T1 T1

i2

null

SUT

3.4 Causal Order, Enforceable Order, and Races of MSCs with Null Events

Now we consider MSCs which can have designated null events, which do not occur

on the SUT instance. Informally, a null event models a delay sufficient for the SUT to

become quiescent (stable) and all messages in transit to arrive. As we show later,

assuming that all the SUT messages arrive before the null event occurs allows us to

build simpler test implementations than before with weaker assumptions. Our

assumption implies that while the null event is technically treated as a local event, it

affects ordering of events on all the other instances. Consider the example in Fig. 1.

The MSC on the right-hand side of Fig. 1 is not race-free since events ?o2 and ?c are

causally ordered and this ordering is not enforceable. This means that if the null event

is just a usual local event, which does not satisfy the above assumption, the message

o2 may in fact arrive after c. It may happen when the latency of message o2 exceeds a

delay imposed by the null event, and the latency of the coordinating message is

negligible. However, if the delay modeled by the null event at T1 allows for all SUT

messages, including o2 to arrive, c cannot be sent before the arrival of o2. As one can

see from the diagram on the left-hand side of Fig. 1, the time interval between !i1 and

?c is not smaller than the delay represented by the null event, unless time passes with

different speed on different components, which is excluded by our assumptions.

Therefore, message o2 must arrive prior to c. Thus a null event on one instance does

affect orderings of the events on other instances. This effect is formally defined as

follows.

Let <δ be the coarsest partial order over the events of an MSC M, called the null-

enforcing order, such that

• for each send event of a message i to the SUT and each null event enull, such that !i

<M enull, it holds for the matching receive event ?i that ?i <δ enull;

• for each send event !o of the SUT and each null event enull, if for each !i, !i <M !o

implies !i <M enull then ?o <δ enull;

where <M is the causal order of the MSC M.

Based on this notion, we formally introduce the causal and enforceable orders, as

well as the notions of race and consistency for MSCs with null events.

The causal order of an MSC with null events is defined as for an MSC without

them taking additionally into account the ordering imposed by null events. An MSC

with null events is called δ-consistent if there exists a partial order which is finer than

both the causal order <M and the null-enforcing order <δ. The coarsest partial order,

which satisfies these condition is called the δ-causal order and denoted <M
δ
. Along

with the set of all the events of the MSC (including null events) it forms the δ-causal

poset.

For a δ-consistent MSC, the δ-enforceable order is the coarsest partial order which

is finer than both the enforceable order and null-enforcing order. An MSC with null

events has a δ-race if its δ-enforceable order differs from the δ-causal order,

otherwise the MSC is δ-race-free. Note that a race-free MSC is also δ-race-free.

Indeed, δ-enforceable and δ-causal orders are both transitive closures of the union of

the null-enforcing order with the enforceable and causal orders, respectively. Thus in

a race-free MSC, not only enforceable and causal, but also δ-enforceable and δ-causal

orders coincide.

3.5 Test Scenario, Specification, and Implementation

We consider that the process of test implementation begins when the test designer

defines a test scenario, which describes the expected order of message receives and

sends by the SUT and test components of a test system. We define a test scenario

testscen as a complete and consistent MSC, where only one non-empty instance, called

the SUT (system under test), communicates with all the other instances, constituting a

test specification testspec which specifies the behavior of the test components. In other

words, the test scenario MSC has neither local events nor communications between

test components. In a given test scenario, (ESUT
spec, <

SUT
spec) denotes the SUT

instance, and testspec = {(E
1

spec, <
1

spec), (E
2

spec, <
2

spec), …} is a test specification, where

(E
i
spec, <

i
spec) is the specification of the i-th test component. Similarly to the preceding

work, we require that each test component specification coincides with the restriction

of the casual order of the test scenario onto the event set of this component.

It has to be noted that numerous testing techniques use the notion of test purpose

rather than test scenario, e.g., in [1], [8]. We define a test purpose tp of a test scenario

as a poset of events of test components E
1

spec ∪ E
2

spec ∪ … and the partial order <tp

such that one event e1 immediately precedes another event e2 in <tp whenever the

matching event of e1 precedes the matching event of e2 in <
SUT

spec and either both

events belong to the same test component or at least one of them is a send event. Save

for consecutive receive events of different test components, the order of which is

relaxed in tp, the test purpose mirrors <
SUT

spec: two events are ordered in <tp if and

only if their matching events are similarly ordered in <
SUT

spec. The order of the

receives of different test components is relaxed to reflect the fact that in an

asynchronous distributed system, messages consecutively sent by the SUT via

different channels could arrive in any order due to variable communication delays.

However, other receive events of different test components still can be ordered in the

test purpose by transitivity.

Thus, in our framework, a test scenario refers to the behavior of a closed system,

while a test purpose refers to that of an open system, which excludes the SUT. Unlike

the test specification, the test purpose describes also the order of events that belong to

different test components.

It is known [1, 2, 3] that distributed tests may have races, thus in a distributed

environment special implementation efforts are needed to enforce a specified order of

events. Races are usually resolved by introducing additional coordinating messages.

However, here we also rely on null events to construct implementations of the test

specifications resolving races related to the SUT. Now we define a test

implementation formally.

Let testspec be a test specification. A test implementation testimp of testspec is an MSC

each instance (E
i
, <

i
) of which represents a test component Ti such that (E

i
, <

i
) ↓ E

i
spec

= (Ei
spec, <

i
spec). Thus, besides the events of the test specification, the test

implementation can have other events which are send and receive events of

coordinating messages or null events. We use <imp
δ
 to denote the δ-causal order of a

test implementation. Note that since a test scenario has no null events, the causal

order of a test scenario coincides with its δ-causal order.

In the rest of the paper, we suggest two algorithms for constructing test

implementations and discuss their fault detection power. While the first suggested

algorithm misses some faults, it has a lighter coordination mechanism and thus

employs fewer coordinating messages and null events. The second algorithm extends

the first one with additional coordination mechanisms in order to detect more faults

(up to the maximum possible in our framework).

4 Sound Test Implementations

4.1 Soundness

Soundness is an important property of a test implementation, which, informally,

means that the test implementation composes with a correct SUT without deadlocks.

Thus, we introduce the following definition of MSC composition.

A (horizontal) composition M1 ∪ M2 of two MSCs M1 and M2 with the disjoint sets

of events is an MSC M that contains all the local posets of M1 and M2 and only them.

A test implementation testimp of testspec is sound with respect to the test scenario

testscen if testimp ∪ {(ESUT
spec, <

SUT
spec)} is δ-race-free.

If a δ-race occurs on the SUT, i.e., when certain SUT events are ordered causally

but their order is not enforceable, then some messages can be consumed by the SUT

in an order inconsistent with testscen. If δ-race occurs on the test implementation, the

actual order of events on test components could diverge from the expected one even if

the SUT is correct.

When a test specification includes concurrent messages to the SUT, its

implementation may either obey or eliminate such concurrency. This motivates the

following definition. A test implementation testimp is concurrency preserving if

whenever two SUT receive events, or an SUT receive event and an SUT send event

are unordered in <
SUT

spec, the matching events of the test implementation are also

unordered in the δ-causal order of the test implementation.

Concurrency preserving test implementations do not order concurrent send events

and thus the matching SUT receive events. In other words, they do not exclude any

particular linearization of SUT receive events, on which faults may occur. Moreover,

such test implementations preserve their soundness during the refinement of test

scenarios. We say that a test scenario testscen′ is a refinement of another test scenario

testscen if their instances share the same set of events, <
SUT

spec′ is finer than <
SUT

spec,

and whenever an event immediately follows another event in <
SUT

spec′ but not in

<
SUT

spec, the former event is a send event. This means that a refinement of a test

scenario includes an added dependency of an SUT send event to previously

concurrent send or receive events.

Proposition 1. If testscen′ is a refinement of testscen then a concurrency preserving test

implementation sound with respect to testscen is also sound with respect to testscen′.

Hereafter, we consider test implementations which are both concurrency-

preserving and sound. Obviously, if in a given test scenario, every SUT receive is

ordered in <
SUT

spec with respect to each other SUT event then each sound test

implementation is trivially concurrency preserving. Hereafter, such a test scenario is

called input-sequential. Most of the previous work is restricted to input-sequential test

scenarios. Here, we construct sound test implementations for arbitrary test scenarios;

however we claim the highest fault detection power only for test implementations

derived from input-sequential test scenarios.

4.2 Generating Sound Test Implementations

To construct a test implementation of a given test specification, it is possible to use

the approach proposed in [1] for input-sequential test scenarios. According to this

approach, coordinating messages and co-regions are added to the test specification

MSC to obtain a test implementation. Concurrency is introduced in the MSC test

implementation as a co-region which contains receive events of coordinating and SUT

messages. The approach effectively resolves races among these messages. The

synchronization ensures that the next message to the SUT is not sent until all the

expected messages are received.

The resulting test implementation is not concurrency preserving, since it always

sends messages to the SUT sequentially. There are in fact some enhancements of this

approach in [2, 3]. They allow concurrent events in the test scenario, but order in fact

concurrent SUT receive events prior to the construction of a test implementation.

Moreover, races between coordinating messages are resolved due to an additional

assumption on negligible latency of coordinating messages and the use of the

inconclusive verdict.

The work in [1] does not claim that the resulting test implementations are always

sound. The reported tool relies more on the test engineer to define synchronization

than on a systematic procedure. A more recent technique [2] yields sound test

implementations only for a restricted class of test specifications without consecutive

SUT receive events. In this case, races, called irresolvable blocking conditions in

[14], cannot be resolved. Here, we use the SUT quiescence observation to solve this

problem.

Consider the test scenario example with consecutive receive events in Fig. 2. The

coordinating message enforces the desired order of send events in the test

implementation, however, the race between the two SUT receive events remains, and

thus, the test implementation is unsound. Since the test scenario only describes the

behavior of the SUT when i1 arrives before i2, in the case when i2 wins the race the

SUT behavior is not specified. Assume that there is another scenario where the SUT

in response to ?i2 followed by ?i1 produces !o2 and then !o1. Then the test execution

with a correct SUT may proceed as shown in the right part of Fig. 2. This behavior

leads to the fail verdict since the messages sent by the SUT arrive in the order

different from what is expected by T2. This contradicts the intuition behind soundness.

Formally speaking, the composition of (ESUT
spec, <

SUT
spec) and the test implementation

on the left-hand part of Fig. 2 is not race-free, since, according to the definition of the

causal and enforceable orders, the receive events ?i1 and ?i2 are causally ordered, but

this order is not enforceable. To resolve the race it suffices to add a null event (delay)

between ?c and !i2 in T1. This delay allows message i1 to arrive prior to sending

message i2, or, formally, the null event follows ?i1 in the null-enforcing order, which

contributes both to the enforceable and causal orders, thus resolving the race.

Fig. 2. Unsound test implementation and its possible execution

To construct concurrency preserving sound test implementations we extend the

approach in [1] using null events as follows. Unlike [2, 3], to obtain concurrency

preserving test implementations, concurrent SUT receive events are kept unordered.

The idea is that when several messages need to be sent to the SUT concurrently by

several test components, all of them have to be notified by a coordinating message by

each test component as soon as it receives all the expected concurrent messages from

the SUT. The notified test components send messages to the SUT only upon receiving

all coordinating messages, which are treated as concurrent events. Thus ordering of

coordinating messages is avoided. Whenever one send event !i immediately follows a

send event of another test component in the test purpose tp, one test component

notifies the other with a coordinating message, so the second send event occurs only

after the first one. Having received the coordinating message the last test component

executes the null event. This delay allows the SUT to receive all the messages just

sent. If the send event !i immediately follows several send events and not only one,

the null event is executed only after the receive events of all the coordinating

messages, preceding !i in the constructed test implementation. The above discussion

leads to the following algorithm.

Algorithm 1.
Input: An MSC test scenario testscen with the SUT specification (ESUT

spec, <
SUT

spec)

and test components specifications (E
1

spec, <
1

spec), (E
2

spec, <
2

spec), ….

Output: A test implementation testimp.

1. The initial relations R1, R2, … defining the test components T1, T2, … are the cover

relations of <1
spec, <

2
spec, ….

2. k := 1.

3. Add coordinating messages ck as follows:

For each j and each event e of E
j
spec, and each l, j ≠ l, such that some send !i, !i ∈

E
l
spec, immediately follows e in the test purpose tp do

• Rl := {(?ck, !i)} ∪ Rl for each send !i of E
l
spec, which immediately follows e in

tp;

• Rj := {(e, !ck)} ∪ Rj;

• k := k + 1.

4. m := 1.

i2

i1

T2

o2

o1

i2

i1

T2

o1

o2

c

c

SUT

T1 SUT

T1

5. Add null events as follows:

For each test component j and for each send !i of E
j
spec which immediately follows

a send of another test component in tp do

• Rj := Rj ∪ (enull
m
, !i);

• for each non-null event e such that (e, !i) ∈ Rj, Rj := Rj ∪ (e, enull
m
);

• m := m + 1.

6. Determine a transitive closure of each Rj, the resulting partial orders define the test

components of the test implementation testimp.

Proposition 2. The test implementation obtained by Algorithm 1 is sound and

concurrency preserving.

Fig. 3. A sound test implementation composed with the SUT

The corrected, sound version of the test implementation in Fig. 2 constructed by

Algorithm 1 is {T1 = ({?c, enull, !i2}, {(?c, !i2), (?c, enull), (enull, !i2)}), T2 = ({!i1, !c, ?o1,
?o2}, {(!i1, !c), (!i1, ?o1), (!i1, ?o2), (!c, ?o1), (!c, ?o2), (?o1, ?o2)})}. The composition

of this test implementation with the SUT specification is shown in Fig. 3. Note that

the event !c precedes the event ?o1 in the causal relation of the composition of the test

implementation with a correct SUT.

Concluding this section, we stress that the proposed algorithm for building test

implementations ensures soundness, which is different from the related work in [1],

and is applicable to a wider class of test specifications allowing consecutive SUT

receive events compared to [2].

5 Fault Detection

5.1 Detectable and Undetectable Faults

While soundness is an important characteristic of a test implementation, another

essential feature is its ability to detect faults. The behavior of an SUT on a sound test

implementation becomes erroneous once it produces a trace of events that cannot be

produced by the SUT specification (E
SUT

spec, <
SUT

spec) of a test scenario. Such

observed errors are typically caused by faults within the SUT. Aiming at test

implementations that detect as many faults as possible we formally define and classify

faults as follows.

i2

i1

T2

o2

o1

c

null

T1 SUT

An erroneous trace contains an output fault if the set of events in the trace does not

coincide with the set E
SUT

spec due to missing or superfluous SUT send events, which

are not in ESUT
spec. Output faults are detected by any sound test implementation since

they always lead to a deadlock. To detect output faults a Master Test Component

(MTC) uses a timer to identify deadlock of a test component which has not received

an expected message and thus has not informed the MTC about its successful

termination. Faults which occur when the SUT executes the expected send events, but

in a wrong order, are more difficult to detect, since communication delays may mask

such faults. Consider the example in Fig. 4, where message o2 occurs out-of-order

(left-hand: the test scenario, right-hand: the erroneous test execution). The premature

SUT send event of message o2 goes undetected with a sufficiently long delay in the

channel from the SUT to the second test component.

Fig. 4. Premature send event masked by a communication delay

An SUT trace t = a1…an over the set E
SUT

spec, where n = |E
SUT

spec|, has an order

fault a1…ak, k ≤ n, with respect to the test scenario testscen, if

• a1…ak-1 is a prefix of a linearization of (E
SUT

spec, <
SUT

spec), but a1…ak is not; and

• a1…ak ↓ I is a prefix of a linearization of (E
SUT

spec, <
SUT

spec) ↓ I, where I is the set

of receive events in E
SUT

spec.

The event ak of the trace is the first premature SUT event, after which a correct

ordering of SUT receive events can no longer be guaranteed by a test implementation.

The behavior of the SUT may become unspecified afterwards. Considering the type of

the premature event in an order fault, we have the following possible violations of the

order <
SUT

spec. An SUT send event can permute with another SUT send event or an

SUT receive event, while an SUT receive event can only permute with an SUT send

event, but not with an SUT receive event. The reasoning behind this is that a sound

test implementation enforces the ordering of SUT receive events in <
SUT

spec by

ordering the matching send events accordingly. This observation leads to the

following definition of three types of the order faults.

An order fault a1…ak is

• a swapped send fault if ak is a send event that follows another send event in

<
SUT

spec;

• a premature send fault if ak is a send event that follows a receive event in <
SUT

spec;

• a delayed send fault if ak is a receive event that follows a send event in <
SUT

spec.

To simplify our discussion, we further assume that a trace contains just a single

order fault which involves two events, a send and a receive or two send events.

Depending on the number of test components executing the matching send and

i2

i1

T2

o2

o1
 c

i2

i1

T2

o2

o1
 c

T1 SUTspec SUTerr

T1

receive events, the order faults can occur either locally or in a distributed way. A fault

is local if the SUT exchanges the two messages related to the events in the order fault

with the same test component or distributed if it does so with two test components.

An order fault cannot always be detected within a trace t by a test implementation

testimp if testimp ∪ {t} has a race, since the race may be resolved in such a way that

masks the fault. Recall that the soundness of testimp implies that testimp ∪ {(ESUT
spec,

<
SUT

spec)} is δ-race-free. Therefore, to guarantee that an order fault is discovered

irrespectively of communication delays, we say that a test implementation testimp

detects an order fault in the trace t if the composition testimp ∪ {t} is not δ-consistent.

Such inconsistency leads to a deadlock in one of the test components, yielding a fail

verdict (via a timeout in the MTC).

Detection of a swapped send fault depends on its type. A local swapped send fault

can directly be detected by the involved test component as an output fault since it

receives the SUT messages via a FIFO channel. However, as already discussed above,

messages consecutively sent by the SUT via different channels could arrive in any

order due to variable communication delays. This implies that distributed swapped

send faults cannot be detected at all.

A local delayed send fault involving the events ?i and !o such that !o <
SUT

spec ?i

could be detected simply by the test component that restrains sending i until it

receives o. To detect a distributed delayed send fault, a coordinating message whose

send event follows the SUT receive event ?o and whose receive event precedes the

SUT receive event !i is additionally required.

A premature send fault is the only fault, whose detection requires null events. The

example in Fig. 4 illustrates that an SUT with such a fault composed with a sound test

implementation but without null events is a consistent MSC, and thus the fault is not

detected. In an input-sequential test scenario, a local premature send fault involving

the SUT events ?i and !o such that ?i <
SUT

spec !o can be detected if the test component

waits for any potential SUT output before actually sending event i. In other words, the

test component should observe SUT quiescence by executing a null event

immediately prior to the send of message i. Thus, the test component makes sure that

message o is sent only in response to message i.

When a premature send fault is distributed, the matching events !i and ?o occur in

two test components, the test component which receives message o uses a null event

and, additionally, coordinating messages to synchronize with other test components

including one that sends message i. The coordinating messages ensure that the null

event immediately precedes the send of message i. We elaborate an algorithm for

implementing tests ensuring the detection of these faults in the next section.

 In the case when a test scenario is not input-sequential different concurrent SUT

receive events can be involved in a premature send fault. Therefore to determine

which particular SUT input triggers the premature SUT send event, one needs to order

all the concurrent messages to be sent by the test components. In other words, a

premature send fault is not detectable by a single concurrency-preserving test

implementation. Construction of several test implementations from a given test

scenario is not discussed in this paper, having the goal to build a single test

implementation for a given test scenario. Note that considering all potential

interleavings of concurrent SUT receive events may lead to the combinatorial

explosion.

5.2 Increasing Fault Detection Power of Test Implementations

Test implementations produced by Algorithm 1 clearly detect local swapped send

faults. Moreover, they detect delayed send faults. Indeed, if a delayed send fault is

local, it is directly observed; if distributed, Step 3 of Algorithm 1 inserts a

coordinating message to detect it. We summarize these observations in the following

statement.

Proposition 3. A test implementation, generated by Algorithm 1 detects local

swapped send and delayed send faults.

Fig. 5. A straightforward way of observing global quiescence

The detection of premature send faults cannot be guaranteed using coordinating

messages only, but Algorithm 1 can be enhanced by using null events as outlined

above. The idea is to check quiescence of the SUT at all test components after all

expected SUT messages have been received just before sending a next message to the

SUT. Such a quiescence checking ensures that the SUT is in a stable state where no

further message can be produced and no message to test components remains in

transit. This approach eliminates the possibility of masking an expedited send fault by

communication delays. A “global” SUT quiescence should be established using null

events accompanied by a proper coordination among test components. A

straightforward solution consists in placing null events in all test components prior to

sending a message to the SUT. The test component that sends the next message to the

SUT, in this case, notifies all partner test components and collects the confirmations

that the null events have occurred prior to sending the message, as shown in Fig. 5.

i2

i1

T2

o2

o1
 c1

T3

 par null

 par null

null

null

null

null

SUT

T1

quiescence

observation

blocks

This synchronization mechanism allows detection of all the premature send faults

when the test scenario is input-sequential.

Such a straightforward approach may result in a high number of coordinating

messages and null events, which can slow down test execution. The number of

coordinating messages can be reduced if, prior to sending a message to the SUT, only

the test components expecting to receive messages from the SUT are notified.

Moreover, to reduce the number of null events, we suggest using a null event prior to

this notification. In this case, there is no need to use the null events in all the test

components. The suggested procedure is summarized as follows.

Algorithm 2.
Input: An MSC test scenario testscen with the SUT specification (E

SUT
spec, <

SUT
spec)

and the test components specifications (E
1

spec, <
1

spec), (E
2

spec, <
2

spec), ….

Output: A test implementation testimp.

1. Apply Algorithm 1.

2. For each send event !i of each test component T,

� Add a null event prior to !i, unless it was already added in Step 3 of

Algorithm 1.

� For each test component T′, T′ ≠ T with receive event(s) of SUT message(s)

triggered by the message i, insert two coordinating messages, one sent from T to

T′ after the null event in T and another one from T′ to T before the

abovementioned receive event(s) of SUT message(s).

�
� Fig. 6. A test implementation according to Algorithm 2

Compared to the test implementation obtained by Algorithm 1, the test

implementation obtained by Algorithm 2 in Fig. 6 has an additional null event,

followed by two coordinating messages c2 and c3. This allows the detection of the

premature send fault due to the reordering of the events !i2 and ?o2. The sole purpose

of the coordinating message c3 is to avoid the race between c2 and o2. The suggested

approach is usually more economical than the straightforward one in the number of

null events and coordinating messages (compare the number of null events and

coordinating messages in Fig. 5 and 6). However, there is a price to pay. First, in the

straightforward approach, a message sent to one test component can arrive

concurrently together with the causally independent null event of another test

component. In other words, null events can be viewed as a local quiescence

observation. Second, the straightforward approach allows for a better diagnosis of

faults. Indeed, if a test component of the test specification has no events at all, and an

i2

i1

T2

o2

o1
 c1

null c2
 c3

null

quiescence

observation

SUT

T1 T3

unexpected SUT message is detected, it is impossible to diagnose, which SUT receive

event has triggered the unexpected message.

Proposition 4. Given an arbitrary test scenario, the test implementation obtained by

Algorithm 2 is sound, concurrency preserving, and detects delayed send and local

swapped send faults. Moreover, for an input-sequential test scenario, it also detects

premature send faults.

Proposition 5. For an input-sequential test scenario the test implementation returned

by Algorithm 2 has the highest fault detection power.

The last proposition holds because the only undetectable type of order faults in

Algorithm 2 is a distributed swapped send fault. Table 1 summarizes the fault

detection capabilities of both algorithms.

Table 1. Fault detection power of Algorithms 1 and 2.

Fault classes Algorithm 1 Algorithm 2

Output fault � �

local � � Swapped send fault

distributed �
*
 �

*

local � �
**
 Premature send fault

distributed � �
**

local � � Delayed send fault

distributed � �
 *) theoretically undetectable in an asynchronous environment

 **) for input-sequential test scenarios

6 Conclusions

Based on the analysis of faults in distributed systems, a novel method for distributed

testing that involves the use of observable quiescence to implement MSC test

specifications is proposed. Unlike the existing methods it does not eliminate

concurrency in a test specification and delivers the highest possible fault detection

power (according to the suggested classification). The proposed notions of soundness

and faults can be also applied to evaluate other test implementations.

A prototype tool implementing the algorithms 1 and 2 is currently in preparation.

The tool development concerns representing test implementations in Promela to allow

for model checking and simulation as well as mapping the Promela test

implementation into various test execution languages. On the theoretical side, we

currently consider generalization of the framework to use pomsets in defining test

specifications and investigate other algorithms for distributed testing with a known

fault detection power. For example, it is known that races can be compensated by

input queues [4, 11]. The explicit use of such queues could result in simplified test

implementations with a similar fault detection power compared to the algorithms

presented here. This area however is subject of further research.

References

1. Grabowski, J., Koch, B., Schmitt, M., Hogrefe, D.: SDL and MSC Based Test Generation

for Distributed Test Architectures. In: SDL Forum'99, pp. 389-404 (1999)

2. Baker, P., Bristow, P., Jervis, C., King, D., Mitchell, W.: Automatic Generation of

Conformance Tests from Message Sequence Charts. In: SAM 2002: SDL and MSC Fourth

International Workshop. LNCS, vol. 2599, pp. 170-198 (2003)

3. Mitchell. W.: Characterizing Concurrent Tests Based on Message Sequence Chart

Requirements. In: Applied Telecommunication Workshop, pp. 135-140 (2001).

4. Holzmann, G., Peled, D., Redberg, M.: Design Tools for Requirement Engineering. Bell

Labs Technical J. 2(1): 86-95 (1997)

5. OMG UML Specification http://www.omg.org/spec/UML/2.1.2/

6. Haugen, O.: Comparing UML 2.0 Interactions and MSC-2000. In: SAM 2004: SDL and

MSC Fourth International Workshop. LNCS, vol. 3319, pp. 69-84 (2004)

7. Bochmann, G., Haar, S., Jard, C., Jourdan, G.-V.: Testing Systems Specified as Partial

Order Input/Output Automata. In: TestCom/FATES 2008. LNCS, vol. 5047, pp. 169-183

(2008)

8. Deussen, P. H., Tobies, S.: Formal Test Purposes and the Validity of Test Cases. In:

FORTE 2002, pp. 114-129 (2002)

9. Pickin, S., Jézéquel, J.-M.: Using UML Sequence Diagrams as the Basis for a Formal Test

Description Language. In: 4th Int. Conf. on Integrated Formal Methods (IFM 2004).

LNCS, vol. 2999, pp. 481-500 (2004)

10. Alur, R., Etessami, K., Yannakakis, M.: Inference of Message Sequence Charts. IEEE

Trans. on Soft. Eng. 29 (7): 623-633 (2003)

11. Mitchell, B.: Resolving Race Conditions in Asynchronous Partial Order Scenarios. IEEE

Trans. on Soft. Eng. 31(9): 767-784 (2005)

12. Pickin, S., Jard, C., Jeron, T., Jézéquel, J.-M., Le Traon, Y.: Test Synthesis from UML

Models of Distributed Software. IEEE Trans. on Soft. Eng. 33 (4): 252-268 (2007)

13. Uchitel, S., Brunet, G., Chechik, M.: Behaviour Model Synthesis from Properties and

Scenarios. In: 29th IEEE/ACM International Conf. on Soft. Eng., pp. 34-43 (2007)

14. Baker, P., Bristow P., P., King, D., Thomson, R., Burton, S., Bristow, P.: Detecting and

Resolving Semantic Pathologies in UML Sequence Diagrams. In: ESEC/SIGSOFT FSE,

pp. 50-59 (2005)

15. Tretmans, J.: Test Generation with Inputs, Outputs and Repetitive Quiescence. Software -

Concepts and Tools. 17(3): 103-120 (1996)

16. Cacciari, L., Rafiq, O.: Controllability and Observability in Distributed Testing.

Information and Soft. Technology. 41(11-12): 767-780 (1999)

17. Lund, M.S., Stolen, K.: Deriving Tests from UML. 2.0 Sequence Diagrams with neg and

assert. In: 1st International Workshop on Automation of Soft. Testing, pp. 22-28 (2006)

18. Boroday, S., Petrenko, A., Ulrich, A.: Test Suite Consistency Verification. In: 6th IEEE

East-West Design & Test Symposium (EWDTS 2008), pp. 235-238 (2008)

