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Abstract. Choreography models describe the communication protocols
between services. Testing of service choreographies is an important task for the
quality assurance of service-based systems as used e.g. in the context of
service-oriented architectures (SOA). The formal modeling of service
choreographies enables a model-based integration testing (MBIT) approach. We
present MBIT methods for our service choreography modeling approach called
Message Choreography Models (MCM). For the model-based testing of service
choreographies, MCMs are translated into Event-B models and used as input
for our test generator which uses the model checker ProB.
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1 Introduction

Service choreography models play an important role in SOA development and can
provide a basis for ensuring quality at several levels, e.g., through verification and
testing. In previous work [25], we defined precise requirements on choreography
modeling languages that would allow supporting three software quality related
development methods: design, verification, and testing. However, we observed that
state of the art choreography languages such as WS-CDL [15] or BPMN [1] do not
fulfill all these requirements simultaneously, mainly due to high abstraction level,
imprecise semantics, assumption of ideal channels, lack of termination symbols, etc.
Therefore SAP Research developed a language for modeling service choreographies
called Message Choreography Modeling (MCM) and an Eclipse-based editor for it. In
[26], we introduced MCM and provided an overview of the implemented editor and
of its verification and testing plugins. In this paper, we present the model based
testing (MBT) approach for service integration testing utilizing MCMs in detail.
As MCMs are based on communicating extended finite state machine (EFSM)
semantics, constraint solving techniques have to be applied for the automatic test
generation. Therefore, we translate the models to Event-B [4] which can be processed
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by the model checker ProB [17]. Using ProB, we are able to generate test suites for
service integration that are not only covering all transitions of the communication
protocols described in the MCMs, but also optimize the test generation towards
minimizing the effort of test concretization (e.g. test data provisioning) and execution.
We use CSP [12] process algebra expressions, synchronized with the Event-B models,
to encode concurrent aspects of the test case generation algorithm. In this paper we
aim to show that MBT and formal methods can be applied in an industrial context and
explain the practical considerations that have to be made (e.g. model coverage, test
suite optimization criteria).

The remainder of this paper is structured as follows. Section 2 briefly introduces
the running example for this paper and explains the necessary steps of our MBIT
approach. In Section 3, the formal MCM syntax is given as a basis for the translation
of MCM to Event-B in Section 4. Section 5 describes the implementation details of
the test generation algorithm and Section 6 discusses related test generation
approaches. Section 7 concludes the paper and gives future work directions.

2 Overview

Our approach to model-based integration testing (MBIT) comprises the modeling of
the conversation between SOA components, the translation of the obtained models
and the subsequent generation of test suites. In order to illustrate the approach, we
first introduce the following running example, which will be referred to throughout
the paper.

Two service components, a buyer and a seller, negotiate a sales order. The buyer
starts the communication by sending a Request message that will be answered with a
Confirm by the seller. The buyer afterwards has the choice either to send a Cancel
that rolls back the previous communication and allows to restart the negotiation or to
send an Order that successfully concludes the ordering process. Because we assume a
(reliable) communication channel that is not necessarily preserving the message order,
it might be observed that a Cancel is delivered after a new negotiation process already
started.

2.1. MCM Modeling

The service choreography modeling language MCM complements the structural
information of the communicating components (e.g. service interface descriptions and
message types) with information on the message exchange between them. A detailed
discussion of the underlying concepts of MCM and how they support service
development can be found in [26]. MCM consists of different model types each
defining different aspects of service choreographies.

Global Choreography Model. The global choreography model (GCM) is a
labeled transition system which specifies a high-level view of the conversation
between service components. Its purpose is to define every allowed sequence of
observed messages.



Local Partner Model. The local partner models (LPMs) specify the
communication-relevant behavior for exactly one participating service
component. Due to the design process of MCM, each LPM is a structural copy
of the GCM with extra constraints on some of the local transitions, usually
leading to the affected sending actions being deactivated.
Channel Model. The channel model (CM) describes the characteristics of the
communication channel on which messages are exchanged between the service
components. These characteristics determine for example whether messages sent
by one component preserve their order during transmission and are formalized
by the WS-RM standard [23].

Figure 1 shows how the example described above can be described using the MCM
artifacts. In the GCM at the top of Figure 1, the arrows labeled with an envelope
depict the interactions Request, Confirm, Cancel, Order, and Cancel(deprecated1)
which are ordered with the help of the states Start, Request, Reserved, and Ordered.
The states Ordered and Start are so-called target states (thus connected with the filled
circle). Only in these states, the communication between the partners is allowed to
terminate.

 Buyer  Seller  Send  Receive

Figure 1. GCM (top) of the choreography and LPMs of the buyer (left) and the
seller (right)

1 Deprecated here means that the message is out-dated and no-longer relevant as the negotiation
has been restarted



To keep the model deterministic, a set variable called ID_SET is declared and
initialized with Ø. It stores the transaction ids from the header of Request messages
that have not yet been addressed by Cancel, Cancel (deprecated) or Order messages
(the headers of these messages also store the ids). Whenever a Request interaction
takes place, an assignment ID_SET := ID_SET {msg.Header.ID} is executed
referring to the ID stored in the header of the Request message. This assignment is
needed to distinguish between a deprecated and an actual Cancel in state Reserved.
Thus for the interaction Cancel an additional necessary precondition ID_SET  \
{msg.Header.ID}) =  msg.Header.ID  ID_SET can be modeled in MCM while
for Cancel(deprecated) we add the precondition (ID_SET \ {msg.Header.ID}) 
msg.Header.ID  ID_SET.  In  Section  3  the  formal  syntax  and  the  complete  set  of
preconditions and assignments for our example is described.

The LPM of the buyer partner of our example is depicted in the lower left part of
Figure 1. It is a structural copy of the GCM, but the interaction symbols now
represent send or receive events of the buyer. Moreover some send-events are
“inhibited” by special local constraints.  It  is  for  example  inhibited  that  a
Cancel(deprecated) is ever sent (thus these send-events have been erased) and that a
Request is sent in the Reserved  state. However, due to possible message overtaking
on a channel that does not guarantee to enforce the message order during
transmission, receiving a deprecated Cancel is possible on the seller side (for details
see  Section  3  and  4).  The  LPM  of  the  seller  is  depicted  in  the  lower  right  part  of
Figure 1.

2.2. Transformation

Our goal is to generate test cases automatically from MCMs. FSM-based approaches
[5,6,11] would be applicable for the test generation if the annotated constraints of the
model have no impact on the communication behavior. In our example however this
is not the case (e.g. the message Cancel(deprecated) is active only if at least two IDs
have been stored in the variable ID_SET). As the example incorporates a quite
common pattern of the enterprise software domain, approaches that are able to
compute constraint-compliant paths have to be used for MCM based test generation.

An analysis showed that implementing a tool for the test generation that directly
runs on MCM models from scratch would be inefficient and hence infeasible.
Therefore, we decided to transform our models to the formal modeling language
Event-B. Event-B [4] is an evolution of the B-Method [1] that puts emphasis on a lean
design. In particular, the core language of Event-B is (with a few exceptions) a subset
of the language used in its predecessor.

Event-B fits quite naturally to MCM: interactions can be seamlessly expressed as
events and the relationship between GCM and LPMs can be formulated as Event-B
refinement (although we use this technique in our transformation, it is not substantial
to understand the test generation and therefore left out of scope for this paper). Also
other formalisms, such as UML [20] have also been successfully translated into
Event-B, so that we were able to utilize past experiences and practices.

Another distinguishing aspect is the tool support in form of the Eclipse-based
Rodin tool [3]. Due to the extensible architecture, various plugins for Rodin exist. The



tool can be integrated with other Eclipse-based tools such as the MCM editor. With
ProB, a flexible model checker for Event-B models exists that can be utilized for the
test generation and enables us to build on the previous experiences with B and model
checking in the area of MBT.

Apart from deriving tests, a transformation into Event-B opens a variety of
possibilities to analyze the model: e.g. checking the refinement relation ensures the
local enforceability of the service choreography. Though being an important part of
the  overall  MCM  approach,  also  formal  model  analysis  is  not  in  the  scope  of  this
paper.

2.3. Test Generation

After having obtained a formal representation of the MCM model, we can employ
a model checker to derive a test suite for integration testing. Similar to [24], we define
integration testing as testing of an assembly of individually already tested
components. Because of the confidence about the correctness of the participating
components (which results from quality ensuring techniques on the component level,
e.g. unit tests), our testing approach focuses on showing that each sent message is
interpreted in the correct way by the receiver. This can be determined by checking for
each interaction, that the intended message effect has been caused. Consequently, a
test suite should cover all receive events modeled in the LPMs.

For automatic test generation, a local model that incorporates information from
both LPMs and the CM (to connect the send and receive events) can be used. Because
various cases studies (e.g. [10]) show that state space explosion is the major
stumbling point when applying automatic test generation to industrial settings, we
decided  to  use  the  GCM  to  drive  the  test  generation  instead  of  the  much  more
complex local model. While transition coverage of the GCM is equivalent to receive
event coverage of the LPMs in most cases, the state space that needs to be explored is
significantly lower.

In [27], we discussed possible coverage criteria that can be used to drive service
integration testing and how to choose them accordingly depending on effort and fault
assumptions.  For  this  approach,  we  decided  to  use  transition  coverage,  i.e.  that  all
interactions are contained in the test suite, because it already uncovers a significant
amount of integration faults with relatively small efforts [22]. For example in the
MBIT approach of [6], transition coverage of a global communication model was able
to detect about 90% of integration related faults.

Important from an industrial perspective is, that our approach further aims to be
optimal regarding the minimization of the effort in the subsequent test concretization
(e.g. provisioning of test data), test execution and test analysis phases. Based on
practical experience of the testing process at SAP [28], we concluded that optimal
corresponds to the following list of objectives which is sorted from highest to lowest
priority:



1. Each path should start in the initial state and end in a target state: As described
in [28] setting system states in test preambles is complicated and time
consuming. Stopping a test while the system is not in a target state leads to
problems with inconsistent data that might hamper consequent test executions.

2. The length of the longest generated path should be minimal: The longer a test
case gets, the harder it is to maintain. Therefore especially for generated tests a
top priority is to carefully control path lengths.

3. Message racing should be minimal: Testing the effects that message racing has
on the interaction is an important part of each test suite. Tests are mostly carried
out in rather idealistic environments where messages are received in the same
order they have been sent. Therefore, during test execution, message racing has
to be emulated on the channel in a controlled way, usually leading to much
higher effort.

4. The number of test steps should be minimal: As the effort increases with the
overall length of all test cases, the sum of test steps should be minimized.

Section 5 describes the resulting steps of the test generation and their implementation,
namely the generation of global test cases, the mapping to local test cases and the test
suite optimization.

3 MCM Syntax

In  this  section,  we  present  the  abstract  syntax  of  MCM,  which  is  the  basis  for  the
translation into Event-B and the subsequent test generation.
For a simplified presentation, we assume that all choreographies consist of exactly
two participating components. Then, a message choreography model MCM=(GCM,
LPM1, LPM2, CM) consists of a global choreography model (GCM), two local partner
models (LPM1 and LPM2) and a channel model CM.

Global Choreography Model. The GCM is based on a finite state machine L=(S,
I, ), where S is a finite set of states, I is a finite set of interactions and

(S)×I×S. The system has an initial state init S and target states {e1,…,en}, where
ei S.

Below we define the language used for additional guards and actions of the GCM.
Since the additional guards and actions refer to entries in the exchanged (XML)
messages, we define record types representing the schemas the messages comply
with. A finite set ET of elementary types (e.g. including the natural numbers) and a
finite set of labels F are given. For these, the set T of record types is inductively
defined to be the smallest superset of the elementary types ET, the set CT of complex
types {(f, t) | t  T, f  F} CT, and the set of set types Set(t) with t  T. Further each t

 T has a unique assigned name name(t) from a set of data type names.
Each interaction i I is then assigned to a type itype(i)  T. Further we assume a set

Vt of variables of type t T.  For each interaction i I there is a special variable msgi
Vitype(i) referring to the message exchanged during an interaction. Furthermore we
define a set Ct of constants (including e.g. 0,1,2,…, or ) of type t T.



The set Termt of terms for t T is defined as the smallest set with
Vt  Ct  Termt and
s.f  Termt with (f, t) ct for some complex data type ct CT and s  Termct

s1 +  s2  Termt  with t ,  s1,s2  Term (analogous for other arithmetic
operations)
s1  s2  Termt with t=Set(T), s1,s2  TermSet(T) (analogous for other set
operations)

The set Term consists of the union of Termt over all t  T. The set Form of
formulae is the set of first order formulae over Term, the predicates {=,<,>, , \, }
and the variables V (respecting typing in an obvious manner).

A global choreography model for a set of data types T is a tuple GCM=(L, V, C,
itype, pre, act) with preconditions pre: I  Form and actions act: I  (V Term),
where V Term is a partial function with act(i)(v)  Termt and v  Vt . The formulae of
a precondition and the terms of actions of an interaction i must not contain variables
msgi’ with i’. If clear from the context we thus just write msg instead of msgi.

Example. As explained in Section 2, the GCM of our example has the following
variables, preconditions, and actions:
V = {ID_SET}
pre(Request) = msg.Header.ID  ID_SET act(Request) (ID_SET)=ID_SET {msg.Header.ID}
pre(Order) = msg.Header.ID  ID_SET act(Order) (ID_SET)=ID_SET \ {msg.Header.ID};
pre(Cancel) = ID_SET \ {msg.Header.ID}) =

 msg.Header.ID  ID_SET
act(Cancel) (ID_SET) = ;

pre(Cancel(deprecated))
    = (ID_SET \ {msg.Header.ID}) 

msg.Header.ID  ID_SET

act(Cancel(deprecated)) (ID_SET)
 = (ID_SET \ {msg.Header.ID})

Local Partner Model. LPM1 and LPM2 are obtained from the GCM by
duplicating, for each of them, the states and the global variables. Moreover each
interaction i I is transformed into the corresponding element from PI={send_i,
receive_i | for all i I}. The elements from PI inherit types, states, preconditions and
actions from elements from I. LPMs can be further extended with an additional
inhibitor function inhib: I (S) which describes that the partner must not send a
message associated with I if it is in one of the states inhib(i).

Example. From the interaction Request in GCM, we obtain send_Request in LPM1
and receive_Request in LPM2. LPM1 contains a set V1 ={ID_SET1} and pre and act of
the LPMs are adapted accordingly (w.r.t. GCM), e.g.:

pre(send_Request) = msg_1.Header.ID  ID_SET1
act(send_Request) (ID_SET1) = ID_SET1  {msg.Header.ID}

In order to disallow for send_Request in the state Reserved, we set
inhib(send_Request)={Reserved}.

Channel Model. Let us consider a set of message types MT ET,  which are  root
elements of itype(I). The channel model CM is a total function from a sequence of
messages (of types MT) to a sequence of messages (of types MT). With MT’ MT and
a message sequence s, IT’(s) denotes the projection of s to sequences of messages of
types MT’. Let IT’ be canonically extended on the channel model. The channel model
CM is then based on assignments of disjoint subsets MT’ of MT to channel reliability



guarantees2 which enforce that IT’(CM) satisfies certain properties. Reliability
guarantees such as those from WS-RM standard [16] can be modeled:

exactly once in order (EOIO) where IT’(CM) is the identity function on
interaction sequences and
exactly once (EO) where IT’(CM) is a permutation on an interaction sequence.

4 Translating MCM to Event-B

We chose Event-B for the purpose of obtaining a formally analyzable representation
of MCM, which serves as basis for test derivation. In the following, we give a brief
overview on Event-B, and sketch our translation from MCM.

Event-B is, as mentioned in Section 2.2, an evolution of the B-Method. It
distinguishes between static and dynamic properties of a system; while static
properties are specified in a context, the dynamic properties are specified in a so-
called machine. A context contains definitions of carrier sets, constants as well as a
number of axioms. A machine basically consists of a finite set of variables and events.
The variables form the state of the machine and can be restricted by invariants. The
events describe transitions from one state into another state. An event has the form
EVENT ANY t WHERE G(t,x) THEN S(x,t) END. It consists of a set of local
variables t, a predicate G, called the guard and a substitution S(x,t). The guard
restricts possible values for t and x. If the guard of an event is false, the event cannot
occur and is called disabled. The substitution S modifies the variables x. It can use
the old values of x and the local variables t. E.g., an event that takes two natural
number a, b  and adds the product ab to the state variable x could be written as EVENT

ANY a,b WHERE a  b THEN x:=x+a*b END. For events that do not
require local variables, the abbreviated form EVENT WHEN G(x) THEN S(x)
END can be used. The primary way to structure a development in Event-B is through
incremental refinement preserving the system's safety and termination properties.

Design Considerations of Translation. We are interested in a formal
representation of both, the GCM for a global test generation and the two local LPMs
with a connecting channel model. The latter is necessary to map the generated global
test cases to local test cases that can be executed on the implemented components.
Therefore the subsequently described translation generates two Event-B machines
which use a common context: the Global Model describing the GCM and the Local
Model, describing the composition (defined as in [8]) of the two LPMs and the CM.
Both machines describe the exchange of messages – the first in terms of observing a
message, and the latter in terms of sending and receiving messages.

As messages with the same type and content may occur more than once, to each
message a unique natural number is assigned, which is incremented when a new
message is sent. Further to each message a type is assigned while it is possible to
specify the content of the message as functions on the message.

2 In the context of SAP applications, it is common to assign reliability guarantees per message
type for the communication between two components.



Because we aim at the use of a model checking technique the translation result is
designed to be as deterministic as possible. We experimented with an assignment of
types to messages which is non-deterministically initialized upfront; however this
resulted in an indigestible state space for the model checker.

Translation Description. By defining a translation from the global and from the
local MCM models into the two Event-B machines we obtain a precise semantics of
MCM, which we present in the following. The translation is implemented and can
thus be applied completely automatically.

Global Model. For each transition in the GCM we generate exactly one event. For
representing the states we define a global variable status with elements from a set
type {s1,…,sk}, with constants s1,…,sk. It is initialized with init S. The basic
translation of an Interaction i I with ({s1,…,sk}, I, sm)  is as follows:

i
WHEN
guard1: status=s1  …  status=sk
THEN
act1: status  sm
END

This basic translation must be augmented with preconditions and actions associated
with that interaction. Therefore we have to represent data types, constants, variables,
terms and formulae used in MCM in terms of Event-B. This is done as follows. For
each data type t T we define a set in the Event-B context without explicit
characterization of elements. These sets are named in Event-B according to their type
name name(t). For each complex data type t={(f, t’)} we define a partial function f:
name(t) name(t’). f is initialized with f .

The constants and global variables are defined in a standard way. For each constant
c Ct an element is added to the set name(t). For the interactions I={i1,…in} we
additionally define a set MESSAGES={name(itype(i1,)),…, name(itype(in))}.

Example. Consider the interaction Request with pre(Request) = msg.Header.ID
ID_SET and act(Request) (ID_SET) = ID_SET  {msg.Header.ID} of our running
example. For it, we define the functions Header: MessageHeader and ID:
MessageHeader InstanceID (MessageHeader and InstanceID here are the
corresponding names from name(T)), and the  local variables t1 and t2 in order to
choose appropriate values to be assigned in the functions. Because
ID_SET TSet(InstanceId) we define an Event-B variable ID_SET of type
(InstanceID).
Request
ANY t1 t2
WHERE
grd1: status=Reserved status=Start
grd2: t1  MessageHeader
grd3: t2  InstanceID
grd4: t3  ID_SET
grd5: t1 dom(ID) ID(t1)=t2

THEN
act1: status  Requested
act2: Header (msg) t1
act3: ID(t1) t2
act4: type(msg)  Request
act5: ID_SET ID_SET  {t3}
act6: msg  msg + 1
END



The guard grd5 describes a consistency property: if the function is already defined
on an element, then the value must be the corresponding term.

For the target state ei S we define a special event terminate with a guard
status=c1 ...  status=c1 (for  all  ci ei) and an action targetstate:=true,
where targetstate is a global variable. In each event from the translation of GCM
we additionally add an action targetstate:=false. As a result, targetstate
equals true iff the system state is a target state.

Local Model. In the local model we generate events representing sending and
receiving of messages. Depending on the viewpoint either the send or the receive
event can be defined to be a refinement of the corresponding interaction in GCM.

By definition of LPMs, the variables from V and the status variable are duplicated
(one for each partner). The variable msg is translated as for the GCM in order to keep
the unique message enumeration. It is only used by send events, where it is set in the
same way as in the GCM. In receive events, local variables (parameters) are used in
order to obtain some message from a channel.

A channel is defined as a global variable of type ( ) denoting the set of messages
on the being exchanged. It is initialized with . Typically, we have two partners P1
and P2 and two sequencing contexts (EO and EOIO). In that case we obtain four
possible channels in the model (two in each direction).

Example. Below we show a translation of the interaction Request from the LPMs
for the partners buyer (B) and seller (S) of the example. The duplicated variables can
be distinguished by the corresponding prefixes. The channel from buyer to seller
having the sequencing EO is denoted by channel_BS_EO.

send_Request
ANY t1 t2
WHERE
grd1: B_status=Reserved
      B_status=Start
grd2: t1  MessageHeader
grd3: t2  InstanceID
grd4: t3  B_ID_SET
grd5: t1 dom(ID) ID(t1)=t2
THEN
act1: B_status Requested
act2: Header(msg) t1
act3: ID(t1) t2
act4: type(msg) Request
act5: B_ID_SET B_ID_SET  {t3}
act6: channel_BS_EO channel_BS_EO {msg}
act7: msg  msg + 1
END

receive_Request
ANY m
WHERE
grd1: S_status=Reserved
      S_status=Start
grd2: m  channel_BS_EO
grd3: type(m) = Request
grd4: m  dom(Header)
grd5: Header(m) dom(ID)
grd6: ID(Header(m)) S_ID_SET
THEN
act1: S_status  Requested
act2: S_ID_SET  S_ID_SET

    {ID(Header(m))}
act3: channel_BS_EO

    channel_BS_EO \ {m}
END

The translation of a send event is very similar to the translation of the
corresponding event in GCM. In receive events all function values are already set so
the purpose is to find a suiting message m in the channel and “receive” it (delete from
the channel). If a sequencing context is EOIO then we need an additional guard that
checks, that the message m has a smallest number in the channel.



For inhibitor conditions inhib(i)=C (with  i I) we add a guard status C to the
event send_i. In our example, we add the guard grd6: B_status {Reserved}
to send_Request. It remains future work to optimize the translation by simplifying
this and grd1 to B_status=Initial.

Target states are treated similar to the translation of GCM except that we
additionally demand channel= for all of them. Only if all channels are empty the
system can enter into a target state. For all other events of the translation from the
LPM we add an action targetstate:=false.

5 Test Generation

In this section we describe how we utilize ProB to obtain an optimized test suite
(regarding the objectives explained in Section 2.3) from the translated MCM models.

ProB [15] is a validation toolset originally written for the B method. Its automated
animation facilities allow users to animate and model-check their speci cations which
are valuable capabilities in the development of formal specifications. While
consistency can be proven within tools such as Rodin or AtelierB, they are not
capable of validating whether the model matches the specification that the modeler
intended. Using the ProB animator, confidence in the models can be gained while
using the model checker allows (at least for a part of the model's state space) to verify
that a certain property holds. ProB has been adapted to support a number of
formalisms such as  Z,  CSP,  and CSP||B [9].  Recently  a  ProB plug-in  for  the  Rodin
Platform has been developed, that can be used to animate and model check an Event-
B specification within Rodin and to export Event-B models for using it in the ProB
application. In the MCM editor the animation of the generated models is used but a
detailed description in this paper is out of scope.

The test generation algorithm we developed for the MBIT approach based on
MCM is separated into three steps. In the following we describe each step, give
details about the implementation and show the computed results when applying it to
the example from Section 2.

Step 1: Generation of the Initial Global Test Suite. As explained, our aim is to
cover each transition of the global communication model, i.e. each interaction of the
GCM. As each interaction is translated into a separate Event-B event, we have to
ensure that every event is covered by at least one concrete transition in the state space
of the global Event-B model, from which a valid end state can be reached. Note that
the same event is typically covered by many different transitions, as its parameters
can be valued in many different ways. In our particular example, the full state space is
actually infinite, due to the use of integers as message identifiers. In order to reduce
the state space, we have to configure ProB to compute only a few possible ways to
enable any event.3

3 This approach has proven to be sufficient so far, but in future, we will consider using ProB's
symmetry reduction instead.



To satisfy the first and second objective given in Section 2.3, we have extended
ProB to detect when full transition coverage is obtained4. This is gained by exploring
the state space of the model breadth first, stopping when full coverage is achieved.
Note that we also need to secure that for every operation we can reach a valid end
state. This has been ensured by refining the Event-B translation described in Section
4,  by  adding  a history variable, storing the set of executed events, and adding a
corresponding end-event for every original event e which can be triggered if we are
in a valid end state and if e history. Afterwards all traces that end in a target state
are extracted from the explored state space to form the initial test suite. From the
example in this paper, we obtain the following initial test suite:
[Request, Confirm, Order], [Request, Confirm, Cancel],
[Request, Confirm, Cancel, Request, Confirm, Order],
[Request, Confirm, Cancel, Request, Confirm, Cancel],
[Request, Confirm, Request, Confirm, Order],
[Request, Confirm, Request, Confirm, Order, Cancel(depr.)],
[Request, Confirm, Request, Confirm, Cancel],
[Request, Confirm, Request, Confirm, Cancel(depr.), Order],
[Request, Confirm, Request, Confirm, Cancel(depr.), Cancel],
[Request, Confirm, Request, Cancel(depr.), Confirm, Order],
[Request, Confirm, Request, Cancel(depr.), Confirm, Cancel]

The computation takes 0.32 seconds on a 2.33 GHz Core2 Duo laptop and should
scale up to much larger examples.

Step 2: Mapping of Global to Local Paths. In order to obtain executable test
cases the global sequence of message observations for each path has to be mapped to
the corresponding send and receive events of partners. As the GCM uses receive
semantics, the global observe sequences can be directly translated to sequences of
receive events. In the case of the path
[Request, Confirm, Request, Confirm, Cancel(depr.), Cancel]

the resulting sequence is (? reads “receives”):
[ Seller?Request, Buyer?Confirm, Seller?Request, Buyer?Confirm,
Seller?Cancel(depr.), Seller?Cancel]

Afterwards for each receive event a corresponding send event is generated and
added to the path in such a way that the local behavior descriptions are not violated.
In the mentioned sequence the send event for Cancel(deprecated) has to be added
before the second Request  as the Buyer is not able to send these messages in the same
order as they have to be received for the test. The resulting local sequence from our
example therefore is (! reads “sends”):
[ Buyer!Request, Seller?Request, Seller!Confirm, Buyer?Confirm,
Buyer!Cancel, Buyer!Request, Seller?Request, Seller!Confirm,
Buyer?Confirm, Seller?Cancel(depr.), Buyer!Cancel, Seller?Cancel]

The message racing in the illustrated local path is underlined. While the Cancel
message is sent by the buyer before the Request message, the seller receives the
Request message first.

4 Note that this is a property that cannot be expressed as an LTL formula, as it is not a property
of individual paths but of the entire state space explored so far.



Similar to Step 1, it is again infeasible to exhaustively explore the full state space
(as the state space of the local model is actually even considerably bigger) to find a
suitable mapping from global to local traces. One could encode the problem as an
LTL formula, but this formula will be very big with ensuing consequences for the
complexity of model checking. The solution we have come up with, is to encode the
desired LCM scenarios into a CSP [12] process. This process is synchronized with the
Event-B model, using the technology of [9], suitably guiding the model checker. The
CSP Process is divided into two components.

The first process encodes the desired trace of receive events, followed by an event
on the goal channel, indicating to the model checker that this is a goal state we are
looking for. For the trace given above it looks as follows:
   RECEIVER = Seller?Request -> Buyer?Confirm -> Seller?Request ->
              Buyer?Confirm -> Seller?Cancel(depr.) ->

Seller?Cancel -> goal -> STOP

The second process encodes the sender events. We know how many send events of
each type must occur, but the order of these is unknown.

  SENDER(n1,n2,n3,n4) =
n1>0 & Buyer!Request -> SENDER(n1-1,n2,n3,n4) []

           n2>0 & Seller!Confirm -> SENDER(n1,n2-1,n3,n4) []
n3>0 & Buyer!Cancel -> SENDER(n1,n2,n3-1,n4) []
n4>0 & Buyer!Order -> SENDER(n1,n2,n3,n4-1)

The sender process is now simply interleaved with the receiver process.5

  MAIN = SENDER(2,2,2,0) ||| RECEIVER

Now, ProB will ensure that every event of the Event-B model synchronizes with an
event  of  the  CSP process  (MAIN) guiding it and stopping when the CSP process can
perform an event on the goal channel. For the initial test suite from Step 1, we
compute a described mapping for each global trace in 0.064 seconds.

Step 3: Test Suite Reduction. The resulting test suite incorporating the local
traces is now ready to be optimized according to the third and fourth objective from
Section 2.3. The optimization of the test suite and the test suite reduction has been
implemented in Java. In the first prototypical version we use a brute force algorithm
that computes every possible combination of test cases and selects the optimal one
according to the given objectives. The computed optimal test suite incorporates the
local equivalents of the following global paths:
[Request, Confirm, Request, Cancel(depr.), Confirm, Order],
[Request, Confirm, Request, Confirm, Cancel(depr.), Cancel],
[Request, Confirm, Request, Confirm, Order, Cancel(depr.)]

For the given example the test suite is produced in less than a millisecond,
implying that it is applicable in practice. However as the algorithms computational
complexity is exponential in the number of test cases of the extended suite, we are
planning to apply the following more sophisticated approach that reduces the number
of computations: First it is analyzed which of the global interactions can only be

5 Note that we could have additionally encoded that every receive event must be preceded by a
corresponding send event in the CSP process, but this will be automatically checked by the
Event-B model anyway.



covered by paths incorporating message racing. In our example these are the three
interactions called Cancel (deprecated).  For these a minimal set of covering paths is
determined using a greedy algorithm. If more than one possibility exists, the one that
has the highest overall interaction coverage is chosen. The resulting test suite is filled
with the minimum set of paths (not incorporating message racing) that covers the
remaining interactions.

6 Related Work

The academic test generators TorX [21] and TGV [14] utilize model checkers to
generate test cases from labeled transition systems (e.g. EFSM). However, problems
with scalability have been identified as the major weakness of their approaches in
case studies of the AGEDIS project [10]. Our work is based on a different abstraction
level and formalism, which we hope will overcome those issues. For example,
symmetry can be detected and exploited very easily in B. Also, the use of a higher-
level formalism can significantly reduce the blowup of the associated state space [16].

There are various MBT approaches that generate test cases from classical B
models, upon which we build. One is the commercial LEIROS tool [13], based on the
former BZ-testing tool [7], which is rooted in constraint logic programming to find
boundary values. The other approach [18,19] uses ProB [17] – itself also rooted in
constraint logic programming – and is based on adding tautologies (e.g., x=  or x )
to guards and the invariant and then uses the disjunctive normal form (DNF) to
partition the executed operations according to the particular disjuncts covered. Traces
are generated which try to cover every operation in every reachable partition. An
expensive part of [18,19] is the generation of the DNF, which is effectively used to
compute boundary cases. In our approach we overcome the need for the DNF and the
need to find boundary cases by using Event-B, where events are more fine-grained
than in classical B (e.g., due to the absence of complicated substitutions such as
CASE or IF-THEN-ELSE). As such, events are already "partitioned" into individual
cases by construction. Also, the above approaches do not address the problem of
optimizing the test suite or test generation for decomposed systems, which are both a
major consideration in our article.

7 Conclusion

In this paper we presented an approach to generate test suites for service
choreographies, modeled in MCM, by using model checking. We described how
choreography models are translated to Event-B models, which are a suitable input
format for ProB, the model checker we used for the test generation. We have
extended ProB to detect transition coverage, and have made use of the possibility to
guide an Event-B model by a CSP process in order to translate high-level traces into
low-level ones. The flexibility of ProB was crucial in addressing the various aspects
of choreography models. We further explained the overall integration testing
approach including the test goals and introduced the according test generation



algorithm as well as its implementation. The test suite for the running example of this
paper, has been computed automatically by our implementation. As MCM explicitly
considers asynchronous communication, the generation of test suites incorporating
message racing is a direct contribution to the research community, as is the utilization
of a higher level of abstraction (the global model) to compute an integration test suite,
thus avoiding the well known problem of state explosion.

As explained our test generation approach was designed such that the resulting test
suite causes a minimal effort during later test concretization and execution. However
we see some potential optimizations that could be applied to the test generation steps
without sacrificing our goal of minimal test effort. We will also evaluate the fault
uncovering capabilities of transition coverage compared to other applicable criteria
and therefore will continue to work on suitable test generation algorithms. In order to
assess our approach we are currently conducting additional experiments using typical
case studies at SAP.
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