ASYNCHRONOUS INTEGRATION OF COARSE-
GRAINED RECONFIGURABLE XPP-ARRAYS
INTO PIPELINED RISC PROCESSOR
DATAPATH

Jirgen Becker, Alexander Thomas and Maik Scheer
Institut fiir Technik der Informationsverarbeitung (ITIV), Fakultdit fiir Elektrotechnik und
Informationstechnik, Universitit Karlsruhe (TH), Karlsruhe, Germany

Abstract:

Key words:

1.

Nowadays, the datapaths of modern microprocessors reach their limits by
using static instruction sets. A way out of these limitations is a dynamic
reconfigurable processor datapath extension achieved by integrating traditional
static datapaths with the coarse-grain dynamic reconfigurable XPP-
architecture (eXtreme Processing Platform). Therefore, a loosely asynchronous
coupling mechanism of the corresponding datapath units has been developed
and integrated onto a CMOS 0.13 pm standard cell technology from UMC.
Here the SPARC compatible LEON processor is used, whereas its static
pipelined instruction datapath has been extended to be configured and
personalized for specific applications. This allows a various and efficient use,
e.g. in streaming application domains like MPEG-4, digital filters, mobile
communication modulation, etc. The chosen coupling technique allows
asynchronous concurrency of the additionally configured compound
instructions, which are integrated into the programming and compilation
environment of the LEON processor.

Reconfigurable Datapath, XPP Architecture, LEON Processor

INTRODUCTION

The limitations of conventional processors are becoming more and more
evident. The growing importance of stream-based applications makes
coarse-grained dynamically reconfigurable architectures an attractive
alternative [3], [4], [6], [7]. They combine the performance of ASICs, which

Please use the following format when citing this chapter:
Becker, Jiirgen, Thomas, Alexander, Scheer, Maik, 2006, in IFIP International

Federation for Information Processing, Volume 200, VLSI-SOC: From Systems to
Chips, eds. Glesner, M., Reis, R., Indrusiak, L., Mooney, V., Eveking, H., (Boston:
Springer), pp. 263-279.

264 Jiirgen Becker, Alexander Thomas and Maik Scheer

are very risky and expensive (development and mask costs), with the
flexibility of traditional processors [5].

In spite of the possibilities we have today in VLSI development, the basic
concepts of microprocessor architectures are the same as 20 years ago. The
main processing unit of modern conventional microprocessors, the datapath,
in its actual structure follows the same style guidelines as its predecessors.
Although the development of pipelined architectures or superscalar concepts
in combination with data and instruction caches increases the performance of
a modern microprocessor and allows higher frequency rates, the main
concept of a static datapath remains. Therefore, each operation is a
composition of basic instructions that the used processor owns. The benefit
of the processor concept lays in the ability of executing strong control
dominant application. Data or stream oriented applications are not well
suited for this environment. The sequential instruction execution isn’t the
right target for that kind of applications and needs high bandwidth because
of permanent retransmitting of instruction/data from and to memory. This
handicap is often eased by using of caches in various stages. A sequential
interconnection of filters, which do the according data manipulating without
writing back the intermediate results would get the right optimization and
reduction of bandwidth. Practically, this kind of chain of filters should be
constructed in a logical way and configured during runtime. Existing
approach to extend instruction sets uses static modules, not modifiable
during runtime.

Customized microprocessors or ASICs are optimized for one special
application environment. It is nearly impossible to use the same
microprocessor core for other applications without loosing the performance
gain of this architecture.

A new approach of a flexible and high performance datapath concept is
needed, which allows to reconfigure the functionality and make this core
mainly application independent without losing the performance needed for
stream-based applications.

This contribution introduces a new concept of loosely coupled
implementation of the dynamic reconfigurable XPP architecture from PACT
Corp. into a static datapath of the SPARC compatible LEON processor.
Thus, this approach is different from those, where the XPP operates as a
completely separate component within one Configurable System-on-Chip
(CSoC), together with a processor core, global/local memory topologies and
efficient multi-layer AMBA-bus interfaces [11]. Here, from the
programmers’ point of view the extended and adapted datapath seems like a
dynamic configurable instruction set. It can be customized for a specific
application and accelerate the execution enormously. Therefore, the
programmer has to create a number of configurations, which can be

Asynchronous Integration of Coarse-grained Reconfigurable XPP-Arrays 265
Into Pipelined RISC Processor Datapath

uploaded to the XPP-Array at run time, e.g. this configuration can be used
like a filter to calculate stream-oriented data. It is also possible, to configure
more than one function at the same time and use them simultaneously. This
concept promises an enormously performance boost and the needed
flexibility and power reduction to perform a series of applications very
effectively.

2. LEON RISC MICROPROCESSOR

For implementation of this concept we chose the 32-bit SPARC V8
compatible microprocessor [1][2], LEON. This microprocessor is a
synthesizable, free available VHDL model which has a load/store
architecture and has a five stages pipeline implementation with separated
instruction and data caches.

T T e
_yp;:oggﬂn? “ ‘,‘lnteéer’pﬂ?? S

f@a@ﬁ? iy Q'?aﬁ*}‘?
| AHB Intorface

AMBA AHB

Debu
P Serial Ny .
Link | [mimers [iractrt
[UARTS v0 port
. Memory == AHBIAPB
Controlier. . 'Bridge
fe I - AMBAAPB)
*8/16/32-&71(memory bus

Figure 1. LEON Architecture Overview

As shown in Figure 1 the LEON is provided with a full implementation
of AMBA 2.0 AHB and APB on-chip busses, a hardware multiplier and
divider, programmable 8/16/32-bit memory controller for external PROM,
static RAM and SDRAM and several on-chip peripherals such as timers,
UARTS, interrupt controllers and a 16-bit I/O port. A simple power down
mode is implemented as well.

LEON is developed by the European Space Agency (ESA) for future
space missions. The performance of LEON is close to an ARM9 series but

266 Jiirgen Becker, Alexander Thomas and Maik Scheer

don’t have a memory management unit'(MMU) implementation, which
limits the use to single memory space applications. In Figure 2 the datapath
of the LEON integer unit is shown.

Figure 2. LEON Pipelined Datapath Structure

3. EXTREME PROCESSING PLATFORM - XPP

The XPP architecture [6], [7], [8] is based on a hierarchical array of
coarse-grain, adaptive computing elements called Processing Array
Elements (PAEs) and a packet-oriented communication network. The
strength of the XPP technology originates from the combination of array
processing with unique, powerful run-time reconfiguration mechanisms.
Since configuration control is distributed over a Configuration Manager
(CM) embedded in the array, PAEs can be configured rapidly in parallel
while neighboring PAEs are processing data. Entire applications can be
configured and run independently on different parts of the array.
Reconfiguration is triggered externally or even by special event signals
originating within the array, enabling self-reconfiguring designs. By utilizing
protocols implemented in hardware, data and event packets are used to
process, generate, decompose and merge streams of data.

The XPP has some similarities with other coarse-grain reconfigurable
architectures like the Kress-Array [3] or Raw Machines [4], which are

Asynchronous Integration of Coarse-grained Reconfigurable XPP-Arrays 267
Into Pipelined RISC Processor Datapath

specifically designed for stream-based applications. XPP's main
distinguishing features are its automatic packet-handling mechanisms and its
sophisticated hierarchical configuration protocols for runtime- and self-
reconfiguration.

3.1 Array Structure

A CM consists of a state machine and internal RAM for configuration
caching. The PAC itself (see top right-hand side of Figure 3) contains a
configuration bus which connects the CM with PAEs and other configurable
objects. Horizontal busses carry data and events. They can be segmented by
configurable switch-objects, and connected to PAEs and special I/O objects
at the periphery of the device.

A PAE is a collection of PAE objects. The typical PAE shown in Figure
3 (bottom) contains a BREG object (back registers) and an FREG object
(forward registers) which are used for vertical routing, as well as an ALU
object which performs the actual computations. The ALU performs common
fixed-point arithmetical and logical operations as well as several special
three input opcodes like multiply-add, sort, and counters. Events generated
by ALU objects depend on ALU results or exceptions, very similar to the
state flags of a classical microprocessor. A counter, e.g., generates a special
event only after it has terminated. The next section explains how these
events are used. Another PAE object implemented in the XPP is a memory
object which can be used in FIFO mode or as RAM for lookup tables,
intermediate results etc. However, any PAE object functionality can be
included in the XPP architecture.

3.2 Packet Handling and Synchronization

PAE objects as defined above communicate via a packet-oriented
network. Two types of packets are sent through the array: data packets and
event packets. Data packets have a uniform bit width specific to the device
type. In normal operation mode, PAE objects are self synchronizing. An
operation is performed as soon as all necessary data input packets are
available. The results are forwarded as soon as they are available, provided
the previous results have been consumed. Thus it is possible to map a signal-
flow graph directly to ALU objects. Event packets are one bit wide. They
transmit state information which controls ALU execution and packet
generation.

268 Jiirgen Becker, Alexander Thomas and Maik Scheer

33 Configuration

Every PAE stores locally its current configuration state, i.e. if it is part of
a configuration or not (states ,,configured” or ,free”). Once a PAE is
configured, it changes its state to ,,configured”. This prevents the CM from
reconfiguring a PAE which is still used by another application. The CM
caches the configuration data in its internal RAM until the required PAEs
become available.

While loading a configuration, all PAEs start to compute their part of the
application as soon as they are in state ,,configured”. Partially configured
applications are able to process data without loss of packets. This
concurrency of configuration and computation hides configuration latency.

Figure 3. Structure of an XPP device

34 XPP Application Mapping

The Native Mapping Language (NML), a PACT proprietary structural
language with reconfiguration primitives, was developed by PACT to map
applications to the XPP array. It gives the programmer direct access to all
hardware features.

In NML, configurations consist of modules which are specified as in a
structural hardware description language, similar to, for instance, structural
VHDL, PAE objects are explicitly allocated, optionally placed, and their
connections specified. Hierarchical modules allow component reuse,
especially for repetitive layouts. Additionally, NML includes statements to
support configuration handling. A complete NML application program
consists of one or more modules, a sequence of initially configured modules,

Asynchronous Integration of Coarse-grained Reconfigurable XPP-Arrays 269
Into Pipelined RISC Processor Datapath

differential changes, and statements which map event signals to
configuration and prefetch requests. Thus configuration handling is an
explicit part of the application program.

A complete XPP Development Suite (XDS) is available from PACT. For
more details on XPP-based architectures and development tools see [6].

4. LEON INSTRUCTION DATAPATH EXTENSION

The system is designed to offer a maximum of performance. LEON and
XPP should be able to communicate with each other in a simple and high
performance manner. While the XPP is a dataflow orientated device, the
LEON is a general purpose processor, suitable for handling control flow [1],
[2]. Therefore, LEON is used for system control. To do this, the XPP is
integrated into the datapath of the LEON integer unit, which is able to
control the XPP.

1o
L
=
-
b
.
.
fee
R
L.
.
m
m
Sl
. »
B
-
i
e
Lm
SEm
om
~
.
n
»
-
=
"
o
e)

Figure 4. Extended Datapath Overview

Due to unpredictable operation time of the XPP algorithm, integration of
XPP into LEON datapath is done in a loosely-coupled way (see Figure 4).
Thus the XPP array can operate independent from the LEON processor,
which is able to control and reconfigure the XPP during runtime. Since the
configuration of XPP is handled by LEON, the CM of the XPP is not
necessary and can be left out of the XPP array. The configuration codes are

270 Jiirgen Becker, Alexander Thomas and Maik Scheer

stored in the LEON RAM. LEON transfers the needed configuration from its
system RAM into the XPP and creates the needed algorithm on the array.

To enable a maximum of independence of XPP from LEON, all ports of
the XPP — input ports as well as output ports — are buffered using dual clock
FIFOs. Dual-clocked FIFOs are implemented into the I0-Ports between
LEON and XPP. To transmit data to the extended XPP-based datapath the
data are passed through an IO-Port as shown in Figure 5. In addition to the
FIFO the IO-Ports contain logic to generate handshake signals and an
interrupt request signal. The IO-Port for receiving data from XPP is similar
to Figure S except that the reversed direction of the data signals. This
enables that XPP can work completely independent from LEON as long as
there are input data available in the input port FIFOs and free space for result
data in the output port FIFOs. There are a number of additionally features
implemented in the LEON pipeline to control the data transfer between
LEON and XPP.

status

reset

LEON clock XPP clock

data in data out _
h re xpp ack

push req pp

fifo full xpp rd

B pp Y=l

Figure 5. LEON-to-XPP dual-clock FIFO

When LEON tries to write to an 10-Port containing a full FIFO or read
from an I0-Port containing an empty FIFO a trap is generated. This trap can
be handled through a trap handler. There is a further mechanism - pipeline-
holding - implemented, to allow LEON holding the pipeline and wait for free
FIFO space during XPP write access respectively wait for a valid FIFO
value during XPP read access. When using pipeline-holding the software
developer has to avoid reading from an 10-Port with empty FIFO while the
XPP, respectively the XPP input 10-Ports, contains no data to produce
outputs. In this case a deadlock will occur and the complete system has to be
reseted.

Asynchronous Integration of Coarse-grained Reconfigurable XPP-Arrays 271
Into Pipelined RISC Processor Datapath

XPP can generate interrupts for the LEON when trying to read a value
from an empty FIFO port or to write a value to a full FIFO port. The
occurrence of interrupts indicates that the XPP array cannot process the next
step because it has either no input values or it cannot output the result value.
The interrupts generated by the XPP are maskable.

The interface provides information about the FIFOs. LEON can read the
number of valid values the FIFO contains. The interface to the XPP appears
to the LEON as a set of special registers (see Figure 6). These XPP registers
can be categorized in communication registers and status registers.

I-cache

dato - address . :
Fetch L :
PR T N SR . ISR L 3 g 9.CLI AARQ,

X
Mo, Yrap, Ssws
Decode | PRSEINEERE L DY

oney
XPP datu

——

o o
Execute

XPP
4x4 Array

|-24gox po
s Jipl address

Memory 2
[3

P Eﬁg AR %E;’g—. SRR T
Write K
=7 tor A, par

H
reglle — i
XPPCLE, RO, |

] 182] ol Teitp, -Satus

Figure 6. Extended LEON Instruction Pipeline

For data exchange the XPP communication registers are used. Since XPP
provides three different types of communication ports, there are also three
types of communication registers, whereas every type is splitted into an
input part and an output part:

The data for the process are accessed through XPP data registers. The
number of data input and data output ports as well as the data bit width
depends on the implemented XPP array.

XPP can generate and consume events. Events are one bit signals. The
number of input events and output events depends on the implemented XPP
array again.

272 Jiirgen Becker, Alexander Thomas and Maik Scheer

Configuration of the XPP is done through the XPP configuration register.
LEON reads the required configuration value from a file — stored in his
system RAM - and writes it to the XPP configuration register.

There are a number of XPP status register implemented to control the
behavior and get status information of the interface. Switching between the
usage of trap handling and pipeline holding can be done in the hold register.
A XPP clock register contains a clock frequency ratio between LEON and
XPP. By writing this register LEON software can set the XPP clock relative
to LEON clock. This allows to adapt the XPP clock frequency to the
required XPP performance and consequently to influence the power
consumption of the system. Writing zero to the XPP clock register turns off
the XPP. At last there is a status register for every FIFO containing the
number of valid values actually available in the FIFO.

This status registers provides a maximum of flexibility in communication
between LEON and XPP and enables different communication modes:

If there is only one application running on the system at the time,
software may be developed in pipeline-hold mode. Here LEON initiates data
read or write from respectively to XPP. If there is no value to read
respectively no value to write, LEON pipeline will be stopped until read or
write is possible. This can be used to reduce power consumption of the
LEON part.

In interrupt mode, XPP can influence the LEON program flow. Thus, the
10-Ports generate an interrupt depending on the actual number of values
available in the FIFO. The communication between LEON and XPP as done
in interrupt service routines.

Polling mode is the classical way to access the XPP. Initiated by a timer-
event LEON reads all XPP ports containing data and writes all XPP ports
containing free FIFO space. Between those phases LEON can perform other
calculations.

It is anytime possible to switch between those strategies within one
application.

The XPP is delivered containing a configuration manager to handle
configuration and reconfiguration of the array. In this concept the
configuration manager is dispensable because the configuration as well as
any reconfiguration is controlled by the LEON through the XPP
configuration register. All XPP configurations used for an application are
stored in the LEON’s system RAM.

Asynchronous Integration of Coarse-grained Reconfigurable XPP-Arrays 273
Into Pipelined RISC Processor Datapath

5. TOOL AND COMPILER INTEGRATION

The LEON’s SPARC V8 instruction set [1] was extended by a new
subset of instructions to make the new XPP registers accessible through
software. These instructions based on the SPARC instruction format are not
SPARC V8 standard conform. Corresponding to the SPARC V8 conventions
of RISC (load/store) architectures the instruction subset can be split in two
general types. Load/store instructions can exchange data between the LEON
memory and the XPP communication registers. The number of cycles per
instruction is similar to the standard load/store instructions of the LEON.
Read/write instructions are used for transfers between LEON registers. Since
the LEON register-set is extended by the XPP registers the read/write
instructions are extended also to access XPP registers. Status registers can
only be accessed with read/write instructions. Execution of arithmetic
instructions or compare operations on XPP registers is not possible. Values
have to be written to standard LEON registers before they can be used. The
complete system is still SPARC V8 compatible. By doing this, the XPP part
is completely unused.

The LEON is provided with the LECCS cross compiler system [9]
standing under the terms of LGPL. This system consists of modified
versions of the binary utilities 2.11 (binutils) and GNU cross compile 2.95.2
(GCC). To make the new instruction subset available to software developers,
the assembler of the binutils has been extended by a number of instructions
according to the implemented instruction subset. The new instructions have
the same mnemonic as the regular SPARC V8 load, store, read and write
instructions. Only the new XPP registers have to be used as source
respectively target operands. Since the modifications of LECCS are
straightforward extensions, the cross compiler system is backward
compatible to the original version. The availability of the source code of
LECCS has offered the option to extend the tools by the new XPP operations
in the described manner.

The development of the XPP algorithms has to be done with separate
tools, provided by PACT XPP Technologies.

5.1 Current Compiler Integration

Well, the actual status of the compiler integration allows the using of
assembler macro calls within the C-code. Figure 7 shows the development
flow in detail. The first step has to be done is the partitioning of your
software tasks: Which part should be executed within the LEON datapath
and which part should be executed by the XPP architecture. The resulted

274 Jiirgen Becker, Alexander Thomas and Maik Scheer

partition has a big influence on the communication strategy, which strongly
affects the reachable performance. The next step is to select the
communication strategy. Which transfer mode is the best, depends on
several facts of your environment. The most important reason is the time
point of the availability. Are my data words already in memory and can be
accessed every time I want or there is no way to predict when my data is
available. Those things decide which mode is the best for my situation. Like
described above you can choose between three modes: Trap Mode, Hold
Mode and Polling Mode. The best way to implement the communication is
by using two or three modes in parallel. Therefore it is possible to use each
register in its own mode. This feature is not implemented yet, but will be
available shortly.

Application /

i g Work

sy
A

Integrated LEON ASIP Architecture

Figure 7. Application Development Flow

Now, the programmer has to take into account the exactly interface
structure of his software which depends on his software specification
demands. It is important to implement all needed synchronization
mechanisms to guarantee full data consistency. The resulted communication
structure has to be implemented in assembler and covered with macros. Of

Asynchronous Integration of Coarse-grained Reconfigurable XPP-Arrays 275
Into Pipelined RISC Processor Datapath

course, the assembler parts can be used directly within C-code by enclosing
with assembler statement blocks.

The development of the XPP configuration has to be done with in the
XDS, like already described above. The parameters of the resulted
configuration, like the used I0-ports, duration of a calculation cycle, the size
of the configuration stream, and so on must be taken into account within the
communication interface realization. The size of a configuration stream e.g.
affects the time which is needed to configure the XPP. If you have strong
real-time demands, this size can lead to a violation of your real-time
behavior and to prevent this mistake has to be taken into account. The other
parameter like to IO port number implicates which XPP register should be
used for the 10. Those parameters bind both sides of our application tightly
where the assembler communication routines describe the way this binding
is realized.

Application /
Algorithms

Decess j

[aorie

Extended LEON C-Compiler

}

Integrated LEON ASIP Architecture x

)

Figure 8. Future Application Development Flow

After the compilation of the resulted code we get an executable program
with a data block which contains the implemented configuration for the
XPP. The current way to develop an application for our architecture is surely
not easy to use. Therefore we are working on the next generation compiler
support which offers more transparency to users.

276 Jiirgen Becker, Alexander Thomas and Maik Scheer
5.2 Future Compiler Integration

The future implementation of the software tools and compilers are shown
in figure 8. The main advantage of this concept is the using of the XPP
function library which contains a set of function templates with prepared
interface descriptions. The programmer can decide at the development time
which part of his application should be executed by LEON and which one by
the XPP by using the XPP function library. This procedure is comparable to
the partition in the current development flow with one difference: the user
has just to decide the way how the XPP and LEON have to communicate but
don’t have to implement the communication routines. Within the C-Code he
just inserts selected functions like he always do with standard C functions
and the new compiler inserts the appropriate routines for the communication.
Therefore the XPP function library contains beside the XPP function
templates communication routine templates. The compiler uses those
functional drafts for exactly environment parameterization and supports in
this way the automatic implementation. The main gain of this concept is that
the XPP unit seems nearly transparent to the programmer. He just has to take
into account the exactly execution distribution and make for the XPP part
appropriate function calls.

Table 1. Performance on IDCT (8x8)

LEON alone LEON with XPP LEON with XPP LEON with XPP
in IRQ Mode in Polling Mode _in Hold Mode

Configuration 71.308 ns 84.364 ns 77.976 ns

of XPP 17.827 cycles 21.091 cycles 19.494 cycles

2D IDCT (8x8) 14.672 ns 3.272ns 3.872ns 3.568 ns
3.668 cycles 818 cycles 968 cycles 892 cycles

There is no guarantee for optimal application implementation by using
the new development flow. This concept has no mechanisms for
performance estimation so its programmers job to make an optimal
application partitioning to get the best results.

6. APPLICATION RESULTS

As a first analysis application a inverse DCT applied to 8x8 pixel block
was implemented. For all simulations we used 250 MHz clock frequency for
LEON processor and 50 MHZ clock frequency for XPP. The usage of XPP
accelerates the computation of the IDCT about factor four, depending on the
communication mode. However XPP has to be configured before computing
the IDCT on it. Table 1 also shows the configuration time for this algorithm.

Asynchronous Integration of Coarse-grained Reconfigurable XPP-Arrays 277
Into Pipelined RISC Processor Datapath

As shown in figure 9, the benefit brought by XPP rises with the number of
IDCT blocks computed by it before reconfiguration, so the number of
reconfigurations during complex algorithms should be minimized.

| LEON standalong =

LEON with XPP Irt IRQ Mode
LEON with XPP In Hold Mode ™
LEON with'XPP In Poll Made

3

o

Computation Time fms]
~
o

28

Y0 100 200 300 400 50 600 700 800 00 4000
IDCT(8x8)-Blocks

Figure 9. Computation Time of IDCT 8x8-Blocks

A first complex application implemented on the system is MPEG-4
decoding. The optimization of the algorithm partitioning on LEON and XPP
is still under construction. In Figure 8 the block diagram of the MPEG-4
decoding algorithm is shown. Frames with 320 x 240 pixel was decoded.
LEON by using SPARC V8 standard instructions decodes one frame in
23,46 seconds. In a first implementation of MPEG-4 using the XPP, only the
IDCT is computed by XPP, the rest of the MPEG-4 decoding is still done
with LEON. Now, with the help of XPP, one frame is decoded in 17,98 s.
This is a performance boost of more then twenty percent. Since the XPP
performance gain by accelerating the iDCT algorithm only is very low in the
moment, we work on XPP implementations of Huffmann-decoding,
dequantization and prediction-decoding. So the performance boost of this
concept against the standalone LEON will be increased.

278 Jiirgen Becker, Alexander Thomas and Maik Scheer

Hutfmy .

H Huiman l‘,{ De I T—— ouput |21
Prediction DCcC l
Decoder Motion Reference
Compensation Memory

Motion Vectors

Header

o o
e

IN
—

Figure 10. MPEG-4 Decoder Block Diagram

7. CONCLUSION

Today, the instruction datapaths of modern microprocessors reach their
limits by using static instruction sets, driven by the traditional von Neumann
or Harvard architectural principles. A way out of these limitations is a
dynamic reconfigurable processor datapath extension achieved by
integrating traditional static datapaths with the coarse-grain dynamic
reconfigurable XPP-architecture (eXtreme Processing Platform). Therefore
an asynchronously loosely-coupled mechanism for the given microprocessor
data path has been developed and integrated onto the UMC CMOS 0.13 um
standard cell technology. The SPARC compatible LEON RISC processor
has been used, whereas its static pipelined instruction data path has been
extended to be configurable and personalize able for specific applications.
This compiler-compatible instruction set extension allows a various and
efficient use, e.g. in streaming application domains like MPEG-4, digital
filters, mobile communication modulation, etc. The introduced coupling
technique by flexible dual-clock FIFO interfaces allows asynchronous
concurrency and adapting the frequency of the configured XPP datapath
dependent on actual performance requirements, e.g. for avoiding unneeded
cycles and reducing power consumption.

As presented above, the introduced concept combines the flexibility of a
general purpose microprocessor with the performance and power
consumption of coarse-grained reconfigurable datapath structures. Here, two
programming and computing paradigms (control-driven von Neumann and
transport-triggered XPP) are unified within one hybrid architecture with the
advantages of two clock domains. The ability to reconfigure the transport-
triggered XPP makes the system independent from standards or specific
applications. This concept opens potential to develop multi-standard
communication devices like software radios by using extended processor
architectures with adapted programming and compilation tools. Thus, new
standards can be easily implemented through software updates. The system
is scalable during design time through the scalable array-structure of the

Asynchronous Integration of Coarse-grained Reconfigurable XPP-Arrays 279
Into Pipelined RISC Processor Datapath

used XPP extension. This extends the range of suitable applications from
products with less multimedia functions to complex high performance
systems.

In spite of all the introduced features of the resulted architecture the
processor core (LEON processor) is still SPARC compliant. This advantage
is necessary in the migration of the reconfigurable hardware extensions into
the processor domain. The important advantage is the compatibility of the
prior developed compilers and debugging tools which can still be used for
developing purposes and older software version are still executable on this
architecture. It is also important to keep the effort for compiler tool
extension small just by using the available compiler technologies.

REFERENCES

1. The SPARC Architecture Manual, Version 8, SPARC international INC.,
http://www.sparc.com

2. Jiri Gaisler: The LEON Processor User’s Manual, http.//www.gaisler.com

3. R. Hartenstein, R. Kress, and H. Reinig. A new FPGA architecture for word-
oriented datapaths. In Proc. FPL’94, Prague, Czech Republic, September 1994.
Springer LNCS 849

4. E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee, J. Kim, M.
Frank, and P. Finch. Baring it all to software: Raw machines. IEEE Computer,
pages 86-93, September 1997

5. J. Becker (Invited Tutorial): Configurable Systems-on-Chip (CSoC); in: Proc.
of 9" Proc. of XV Brazilian Symposium on Integrated Circuit Design (SBCCI
2002), Porto Alegre, Brazil, September 5-9, 2002

6. PACT Corporation: http://www.pactcorp.com

7. The XPP Communication System, PACT Corporation, Technical Report 15,
2000

8. V. Baumgarte, F. Mayr, A. Niickel, M. Vorbach, M. Weinhardt: PACT XPP - A
Self-Reconfigurable Data Processing Architecture; The 1st Int’l. Conference of
Engineering of Reconfigurable Systems and Algorithms (ERSA’01), Las
Vegas, NV, June 2001

9. LEON/ERC32 Cross Compilation System (LECCS),
http://www.gaisler.com/leccs.html

10. M. Vorbach, J. Becker: Reconfigurable Processor Architectures for Mobile
Phones; Reconfigurable Architectures Workshop (RAW 2003), Nice, France,
April, 200

11. J. Becker, M. Vorbach: Architecture, Memory and Interface Technology
Integration of an Industrial/Academic Configurable System-on-Chip (CSoC);
IEEE Computer Society Annual Workshop on VLSI (WVLSI 2003), Tampa,
Florida, USA, February, 2003

