AUTOMATED CONVERSION OF SYSTEMC FIXED-
POINT DATA TYPES

Axel G. Braun, Djones V. Lettnin, Joachim Gerlach, Wolfgang Rosenstiel

University of Tuebingen,
Wilhelm-Schickard-Institute for Computer Science,
Department of Computer Engineering,

Sand 13

72076 Tuebingen, Germany

{abraun|lettnin|gerlach|rosenstiel} @informatik.uni-tuebingen.de

Abstract This article describes a methodology for the automated conversion of SystemC
fixed-point data types and arithmetics to an integer-based format for simulation
acceleration and hardware synthesis. In most design flows the direct synthesis
of fixed-point data types and their related arithmetics is not supported. Thus all
fixed-point arithmetics have to be converted manually in a very time-consuming
and error-prone procedure. Therefore a conversion methodology has been devel-
oped and a tool enabling an automated conversion of SystemC fixed-point data
types as well as fixed-point arithmetics has been implemented. The article de-
scribes the theory and transformation rules of the conversion methodology, their
implementation into a tool solution, and its application in terms of an experi-
mental case study.

Keywords: Fixed-Point; Data Type Conversion; SystemC; System Design;
Hardware Synthesis.

1. Introduction

The increasing complexity of today’s and future electronic systems is one
of the central problems that must be solved by modern design methodologies.
A broad range of functionality which should be adaptable to market require-
ments in a very fast and flexible way, and thereby a decreasing time-to-market
phase are only some of the most important issues. There are several promising
approaches like system-level modelling, platform-based design, and IP re-use,
to face these problems. The economic success of a product highly depends on
the power and flexibility of the design flow and the design methodology.

A very popular approach for system-level modelling is SystemC [14, 15].
SystemC is a C++-based system-level specification language that covers a

Please use the following format when citing this chapter:

Braun, Axel, G, Lettnin, Djones, V., Gerlach, Joachim, Rosensticl, Wolfgang, 2006, in
IFIP International Federation for Information Processing, Volume 200, VLSI-SOC:
From Systems to Chips, eds. Glesner, M., Reis, R., Indrusiak, L., Mooney, V., Eveking,
H., (Boston: Springer), pp. 55-72.

56 Axel G. Braun, Djones V. Lettnin, Joachim Gerlach, Wolfgang Rosenstiel

broad range of abstraction levels. The language is already a de-facto standard
for system-level design. Several commercial design and synthesis products
from Synopsys, Forte, Coware, Summit and others will be a foundation for
system-level design flows. An important property of a design flow is that it
must be free of gaps for all paths in a design cycle.

Algorithm design is usually based on floating-point data types. In a follow-
ing step word lengths and accuracies are evaluated and fixed-point data types
are introduced (e.g. for signal processing applications, etc.). The introduc-
tion and the evaluation process of fixed-point data types are well-supported by
tools like FRIDGE (Fixed-Point Programming and Design Environment) [3, 6]
or Synopsys CoCentric Fixed-Point Designer [11]. SystemC itself offers a very
powerful concept of fixed-point data types [8]. In nearly all cases these types
are not directly synthesizable to hardware. In common hardware design flows
an additional manual conversion has to be applied before the synthesis process.
Fixed-point data types are transformed to an integer-based data format con-
taining virtual decimal points (which correspond to binary points in the digital
world). The manual translation is very time-consuming and error-prone. To
close this gap, it is necessary to develop an appropriate methodology for the
conversion of those data types and arithmetics to a synthesizable integer for-
mat. In the following sections we present a solution for this step, which is
based on SystemC fixed-point data types.

2. Fixed-Point to Integer Conversion

The basis of our methodology is a set of conversion rules. These conversion
rules have been developed by analyzing traditional transformations of fixed-
point arithmetics and operations, manually done by a designer. We considered
variable declarations, assignments, basic arithmetic operations like summa-
tion, subtraction, multiplication, and division, as well as comparisons. In the
description of the conversion rules of our methodology below, we will use the
following definitions. A fixed-point number in binary representation can be
described as follows:

fim(n, m) = dn_ldn_g e do . d._1 e d—(m—l)d—m
N—f p—
Integer Part Fractional Part

n—1
fiz(n,m) := Z di - 2¢
1=-m
The corresponding data type in SystemC notation is
sc_fixed<n+m,n>. A fixed-point number can be described using an integer
data type without loss of information, if the decimal point will be shifted m
positions to the right. All fractional bit positions are now located in the integer

Automated Conversion of SystemC Fixed-Point Data Types 57

part. The resulting integer number has the same word length as the fixed-point
representation before. In the following we will also use the definitions below:

= Least Common Data Type (LCDT): The LCDT of two fixed-point vari-
ables a and b is a fixed-point data type, which has minimal width that
can contain all possible values of a and b without a loss of accuracy.

LCDT(fiz(n,m), fiz(o,p)) := fiz(maz(n,o0), maz(m,p))

= Result Data Type (RDT): The RDT is the fixed-point data type, which
can contain the result of an operation without loss of accuracy.

Basically, only conversions of those operations where both operands are fixed-
point data types will be made (basic arithmetic operations). Constants or other
operands must be signed by an explicit type cast to a fixed-point data type. The
first step is the calculation of the LCDT of a (binary) operation (see Figure 1).
The integer and the fractional part equal to the maximum width of the two
operand’s integer and fractional parts. Secondly, the word lengths and type
of the result (i.e. RDT) are determined. For the preservation of accuracy,
both operands are adapted to the word length of the result type before the
intrinsic operation takes place. The result will then be reduced to the LCDT.
This reduction is important to avoid a steady extension of the word length
throughout the further conversion procedure (e.g. for multiplications).

Declarations, Assignments, and Comparisons

Variables or attribute declarations of a fixed-point data type (sc_fixed and
sc_ufixed) are directly converted to their appropriate SystemC integer data
type (sc_int and sc_uint) of the same overall word lengths. A major pre-
requisite for assignments and comparisons is that both operands are exactly of
the same data type. To ensure this, both operands are converted to the LCDT
and then the comparison takes place. All C++ comparison operators can be
converted directly. In case of a simple assignment (not combined with other
operators like +=), the conversion has to adapt the data type on the right side
to the type of the left side. We assume that combined assignments (e.g. +=)
are split up in a basic three-address-format (e.g. a+=b is expanded to a=a+b).
Return values of functions or methods are treated in the same manner as as-
signments: the returned value will be adapted to the type of the function re-
spectively method.

Summation and Subtraction

Summation and subtraction operations are relatively easy to convert. Both
operators are treated identically. The integer type of the result’s data type

58 Axel G. Braun, Djones V. Lettnin, Joachim Gerlach, Wolfgang Rosenstiel

operand 1 operand 2
Calculate LCDT
Calculate RDT

(Adjust Data Types To RDT)

Perform

\ Operation

Adjust Data Types To LCDT

Figure 1. Conversion procedure

equals to the maximum of the integer parts of both operands. The part on
the right side of the decimal point is converted in the same manner. In case of
a summation or a subtraction an overflow is possible. Therefore the result type
word length is enlarged by one bit:

fiz(s,t) £ fiz(u,v) — fiz(maz(s,u) + 1, maz(t,v))

For the conversion of a summation or subtraction of two fixed-point variables
with different bit layouts, i.e. different widths of integer part and different
widths on the right side of the decimal point, an adaptation has to be performed.
The position of both variables has to be adjusted. If one of the operands has
less bits on the right side, a shift to the left is necessary.

Figure 2 (left side) gives a short example for the summation of 2 numbers.
Variable x has entirely 5 bits and contains 3 integer bits and 2 fractional bits,
variable y has 6 bits and contains 1 fractional bit. The width of 7 bits is deter-
mined by the LCDT. In case of summation and subtraction here, the adaptation
to the RDT is not needed and therefore kept. The conversion performs one left

Automated Conversion of SystemC Fixed-Point Data Types 59

//Fixed-point //Integer base

sc_fixed<5,3> x; sc_int<5> x;

sc_fixed<6,5> y; sc_int<6> y;

X +y; (sc_int<7>)x + ((sc_int<7>y) << 1);
X - y; (sc_int<7>)x - ((sc_int<7>y) << 1);

Figure 2. Summation and subtraction example

shift of variable y to adjust the (virtual) decimal points (right side of Figure 2).
Now the summation can be performed correctly.

Multiplication and Division

During the conversion of a multiplication the word lengths of the integer
parts of both operands are added. The same holds for the fractional part on
the right sides of the decimal points. If there are differences between the word
lengths of the fractional parts of the LCDT and RDT, the RDT must be adapted.
As described above, both operands will be adapted to the width of the RDT
before the multiplication will be performed.

fiz(s,t) - fiz(u,v) — fiz(s+u,t +v)

For the conversion of a division operation the RDT will be calculated sim-
ilarly to the multiplication, except of the word lengths of the fractional part.
These word lengths will be subtracted instead of added. The resulting lower
number of bits will be balanced with the integer parts. Instead of a data type
adaptation after the operation, the dividend will be scaled. Due to this scaling,
the dividend gets a new type, which must not under-run the word lengths of the
LCDT. Consequently, the data type (word lengths) of the result also changes
and must be adapted.

fiz(s,t)
fiz(u,v)

In principle the number of bits in the fractional part is inherently defined by the
layout of the fixed-point data type of the result. And this type is determined
by the algorithm respectively hardware designer or even by a fixed-point eval-
uation tool in the previous design stage. This accuracy is exactly preserved
during the conversions process.

The goal was to perform all these conversions automatically without any
manual assistance. Therefore a tool, which will be described more detailed in
the following section, has been developed.

— fiz(s +v,t —v)

60 Axel G. Braun, Djones V. Lettnin, Joachim Gerlach, Wolfgang Rosenstiel

3. Automated Fixed-Point to Integer Conversion Tool

The basic criteria for the development of the conversion tool, called Fix-
Tool [4], were an arithmetical correct application of the conversion rules de-
scribed above, the preservation of parts of the code, which contain no fixed-
point data types and arithmetics, including the code formatting, and finally the
automated generation of directly synthesizable SystemC code.

The conversion is structured into four different stages: 1) parsing of the
SystemC [7] code; 2) scope analysis and data type extraction; 3) analysis of
all expressions in the code; 4) generation of the converted and adapted integer-
based code. Figure 3 depicts the basic flow within the FixTool application.

At first the SystemC source code is analyzed syntactically and a complete
parse tree is generated. The analysis within this stage cannot be restricted to
SystemC keywords only or to keywords related to the fixed-point data types.
Besides SystemC-specific syntax, the analysis must cover also C++ syntax [1].
In the code generation stage, the tool inserts e.g. brackets into the SystemC
code. This procedure must preserve the evaluation order of expressions given
in the original code. Therefore it is a fundamental prerequisite to be able to
recognize SystemC (C++) expressions correctly. The parse unit can handle
context-free grammars. The grammar itself is combined of C++ and SystemC,
but is specified separately, so it can be modified and extended very easily. The
parse tree will be the major repository of all information collected in the fol-
lowing analysis steps.

The second stage of the tool analyzes variable declarations and attributes. A
very important issue is the scope of variables respectively classes. The FixTool
annotates these scopes in detail. Data types (numerical data types) and the
related scope information of variables or classes are the basis for the correct
conversion. Both, data types and scope information are integrated into the
nodes of the parse tree for the following processing stages.

The third phase analyzes all expressions found in the parse tree by evaluat-
ing the data types and the scopes of the partial expressions. The final type of a
certain expression is evaluated by applying the related grammar rules and the
data type information to the expression.

The fourth stage of the tool replaces the fixed-point arithmetics code parts
and inserts appropriate integer-based code. These insertions are mainly type
casts and shift operations as described in Section 2. Fixed-point variable dec-
larations will be mapped to the appropriate SystemC integer data types. As
mentioned above, one of the criteria for the development of the tool was that
the original structure and layout of the code will be preserved if possible. It
is very important for a designer to be as familiar with the converted code as
with the original fixed-point-based model. Therefore the fourth stage does not
generate independently new code, it rather uses a replacement strategy for pre-

Automated Conversion of SystemC Fixed-Point Data Types 61

3

Parsing & Analysis
Parse Tree Generation

™ Parse Tree

Scope Analysis l

Extraction of Data Type Information |_g.. Scope & Data Types

Analysis of Expressions 1
™ Partial Expressions,
‘b Expressions

|

Code Generation Integer-Based Code

L .

Figure 3. Conversion stages

cisely located code fragments. To be able to handle these code fragments, the
parse tree also contains dedicated layout information of the source code file.
The conversion of entire projects consisting of several files requires the us-
age of a special project file. The project file specifies all source files and their
corresponding header files. Similarly to the make tool, FixTool only converts
files if they have changed since the last conversion run. Figure 4 shows a sam-
ple project description, which specifies the dependencies of different source
modules (sourcel . cpp) with their related header files (headeri_1...).

sourcel.cpp {headeri_1.h ...
headeri_n.h sourcel.cpp}

source2.cpp {header2_1.h ...
headerl_m.h source2.cpp}

Figure 4. Project file

4. Simple Example

In this section we demonstrate the conversion methodology by applying it
to a SystemC model that calculates square roots according to Newton’s algo-
rithm. The specification is using SystemC fixed-point data types and has been

62 Axel G. Braun, Djones V. Lettnin, Joachim Gerlach, Wolfgang Rosenstiel

converted using the FixTool. A cutout of the original SystemC code, the cal-
culation function, is shown in Figure 5.

void newton() {
const sc_ufixed<1,1> null = sc_ufixed<1,1>(0);
const sc_fixed<26,6> delta = sc_fixed<26,6>(0.00001);
sc_uint<5> param in;
sc_fixed<26,6> c sc_fixed<26,6>(param);
sc_fixed<26,6> diff = sc_fixed<26,6>(0);
sc_fixed<30,12> x0 c;
sc_fixed<30,12> x1 c;

do {
sc_fixed<26,6> div = (sc_ufixed<2,2>(2) * x0);
if (div == null) {

x0 = null;
break;
}
x0 = x1;
x1 = x0 - (x0 * x0 - ¢) / div;
diff = x0 - x1;

if (diff<null) diff = sc_fixed<2,2>(-1) * diff;
} while(diff>delta);
out = x0;

Figure 5. Fixed-point-based Newton example

The resulting converted code (see Figure 6) shows the mapping of the Sys-
temC fixed-point data types to SystemC integer data types. E.g. the constant
delta, which is of type sc_fixed<26,6>, a fixed-point type with 6 bits inte-
ger width and 20 bits fractional part will be inserted. This constant is converted
in a sc_int<26> type, the decimal point is only virtual. The underlying New-
ton’s algorithm is quite simple, but it uses subtraction operations as well as
multiplications and divisions and therefore gives a good example for demon-
strating the methodology.

A comparison of this very simple example shows the changes introduced
during the conversion process. The changes made in a manual translation are
similar. It is evidently clear that the manual conversion is time-consuming and
error-prone. The manual conversion of more complex algorithms is therefore
very difficult and often messing. Optimized fixed-point data type word lengths
are often softened during the debugging after a manual conversion process. Es-
pecially algorithms containing calculations with very different data type lay-
outs (very different integer and fractional part word lengths) are critical for
manual conversion. If certain variables are not local to some expressions, but
rather used in the entire module in different expressions, it is also very dif-
ficult to do a manual conversion step by step. This requires additional type
casting and data conversion effort during a stepwise conversion of the code.

Automated Conversion of SystemC Fixed-Point Data Types 63

void newton() {

const sc_uint<1> null = sc_uint<i>(0%1);
const sc_int<26> delta = sc_int<26>(0.00001%1048576) ;
sc_uint<5> param = in;

sc_int<26> ¢
sc_int<26> diff
sc_int<30> x0
sc_int<30> x1

sc_int<26>(param*1048576) ;
sc_int<26>(0*1048576) ;
(((sc_int<30>) (c))>>2);
(((sc_int<30>) (c))>>2);

while(true) {
do {
sc_int<26> div = ((sc_int<26>) (((((sc_int<30>)
(((((sc_uint<32>) (sc_uint<2>(2%1))))*
(((sc_int<32>)(x0))))))))<<2));
if (div == (((sc_int<26>) (null))<<20)) {
x0 = (((sc_int<30>) (null))<<18);

break;
}
x0 = x1;
x1 = ((sc_int<30>) (((((sc_int<32>) (x0))<<2) -

((sc_int<32>) (((((sc_int<52>)
(((((sc_int<32>) (((sc_int<30>)
(((((sc_int<60>) (x0))) *(((sc_int<60>)
(x0))))>>18))))<<2)-(((sc_int<32>)
(c))))))<<20) /(((sc_int<52>)
(div)))))))>>2));

diff = ((sc_int<26>) ((x0 - x1)<<2));

if (diff<(((sc_int<26>) (null))<<20))
diff = ((sc_int<26>) (((((sc_int<28>)
(sc_int<2>(-1%1)))) *
(((sc_int<28>) (diff))))));
} while(diff>delta);
out = ((sc_int<26>) ((x0)<<2));
}

Figure 6. Converted Newton example

These models can only be handled efficiently using an automated fixed-point
to integer conversion. The automated conversion process of the Newton’s al-
gorithm example shown in Figure 4 takes 0.96 seconds. In opposition to that,
the manual conversion of this code may take several hours of work, including
the correction of conversion errors. The simulation of both, the original fixed-
point-based model and the converted integer-based model, leads to the same
output values. Figure 7 shows the example output for the fixed-point-based
calculation of square roots starting from 0 up to 9.

The corresponding output of the converted model using integer arithmetics
is shown in Figure 8. The integer numbers in the output protocol are represent-
ing bit patterns containing a virtual decimal point with 6 bits on the left and 20
bits on the right, e.g. 3145728, = 1100000000000000000000p. The virtual

64 Axel G. Braun, Djones V. Lettnin, Joachim Gerlach, Wolfgang Rosenstiel

SystemC 2.0 --- Dec 11 2001 15:28:26
Copyright (c) 1996-2001 by all Contributors
ALL RIGHTS RESERVED

sqrt(0) =0

sqre(l) =1

sqrt(2) = 1.414211273193369375
sqrt(3) = 1.732051849365234375
sqrt(4) = 2

sqrt(5) = 2.2360687255859375
sqrt(6) = 2.449493408203125
sqrt(7) = 2.645748138427734375
sqrt(8) = 2.828426361083984375
sqrt(9) = 3

Figure 7. Fixed-Point model output

SystemC 2.0 --- Dec 11 2001 15:28:26
Copyright (c) 1996-2001 by all Contributors
ALL RIGHTS RESERVED

sqrt(0) = 0

sqrt(1) = 1048576
sqrt(2) = 1482912
sqrt(3) = 1816192
sqrt(4) = 2097152
sqrt(5) = 2344688
sqrt(6) = 2568484
sqrt(7) = 2774272
sqrt(8) = 2965820
sqrt(9) = 3145728

Figure 8. Integer-based model output

Table 1. Results

[| Fixed Point | Integer |
Simulation Speed 0.53 sec. 0.03 sec.
Synthesizable no yes
Conversion Effort (Manual.) > 2 hours
Conversion Effort (FixTool) 0.96 sec.

decimal point is located at position 20 (seen from the least significant bit) and
therefore the represented number is 11.00000000000000000000;, = 3.04. A
simulation run for the fixed-point-based version takes 0.53 seconds, whereas
the integer version takes 0.03 seconds for 100 square root computations®. The
conversion results for the Newton’s example are summarized in Table 1.

Automated Conversion of SystemC Fixed-Point Data Types 65

Table 2. Synthesis results.

Combinational area: 17677.474609
Noncombinational area: 1644.525757
Net Interconnect area: 61395.625000
Total cell area: 19321.390625
Total area: 80717.625000

This automatically generated integer-based code has been taken directly into
the CoCentric SystemC Compiler flow without any additional modification for
hardware synthesis. Parts of the result are shown in Table 2.

In addition to the simple Newton’s algorithm example above, we also ap-
plied the tool to a more complex design of a hand prosthesis control unit [S].
The control unit is based on artificial neural networks, which contain sub-
units for the signal-processing of nerve signals and classification algorithms
based on Kohonen’s self-organizing maps (SOM) [9]. All computations in the
nerve signal recognition stage and the signal classification module are orig-
inally based on floating-point arithmetics. In the refinement process of our
SystemC design flow, the appropriate accuracies have been determined and
fixed-point data types have been introduced. Finally, this fixed-point-based
model was automatically converted. A comparison with the fixed-point ver-
sion of the control unit shows that all output values of both simulations are
exactly identical.

For comparison purposes an integer-based version of the prosthesis control
unit has also been implemented manually. This implementation took several
days, whereas the automated conversion was done in minutes for the entire
design. This shows that the automated conversion will drastically save time.
Especially against the background of the refinement philosophy of SystemC
and the practical work in a design flow, this becomes important: All changes
and modifications concerning the algorithm or the word lengths in a fixed-
point-based model have to be propagated to the integer-based modelling level.

The FixTool ensures that the (synthesizable) integer version of a design is
basically up-to-date at any time of the refinement process. It allows to evaluate
and modify the fixed-point version of a model instead of the integer version
(see Figure 9). In the fixed-point version of a model, the designer can eas-
ily exercise full control over the bit-layout and parameters of fixed-point data
types.

Similar to the Newton’s algorithm example described above, parts of the
prosthesis control unit have already successfully been taken through the same
hardware synthesis design flow to hardware.

66 Axel G. Braun, Djones V. Lettnin, Joachim Gerlach, Wolfgang Rosenstiel

y Modifications,
Fixed—Point-Based Adaptions
Model

I
Tool

Integer—Based
Model

< - = -

Synthesis Flow

Figure 9. FixTool design flow

5. FixTool Application in a Real Case Study:
Electrocardiogram Classification System

In addition to the last section, where a simple example of conversion of the
Newton’s algorithm was presented, we also have the objective to exemplify
the application of the FixTool with a more complex design corresponding to
the classification of electrocardiogram (ECG) signals. This system aims to
present a new proposal in order to integrate the signal acquisition and the auto-
matic ECG data classification in a single chip (e.g., SoC), close to the hospital
patient [2]. Therefore, an IP (Intellectual Property component) was designed
using the connectionist model (e.g., Artificial Neural Network - ANN) of the
Artificial Intelligence area, which is capable to solve complex non-linear prob-
lems in many different areas.

ANNES are usually non-linear adaptive systems that can learn how to map in-
put/output functions based on an input vector set. The adaptation process hap-
pens through well-defined rules that compose the training phase of the neural
network. These training rules adapt the free parameters (e.g., synaptic weights)
until the moment that the neural network achieves the pre-established stop cri-
teria (for instance, minimum error or maximum number of epochs). After the
training occurs, the free parameters should be fixed on the neural network in
order to verify it in test phase [9].

Automated Conversion of SystemC Fixed-Point Data Types 67

This electrocardiogram classification system consists of a multilayer percep-
tron (MLP) neural network, which is composed of parallel units (i.e., neurons)
responsible to process and to classify the electrocardiogram based on the well
known backpropagation algorithm [9]. The system is initially described on
floating point arithmetic to capture the requirements of the system. In Figure
10, we present the design flow to convert floating-point arithmetic to integer-
based arithmetic in the function AF-derivate(), which is responsible to derive
the error signal to each neuron of the network. The system is initially simu-
lated to achieve the specifications requirements. After that, the floating-point
to fixed-point translation is applied for the determination of the word length
and its precision. The FRIDGE and CoCentric Fixed-Point Designer are ex-
amples of tools for automating this process. Also, it can be done manually, in
which it is necessary to explore the system in several stages of simulation to
extract variable value ranges and their precision in number of bits.

Based on fixed-point system representation, the translation to integer base
can be started. This process using FixTool can be done in two modes: a) using a
GUI (Graphical User Interface), where some parts of the code can be copied to
the application and the translation will occur automatically; b) using a project
file, where all the source files and their corresponding headers are specified.
This project file is executed in the shell console and then all the system will be
translated from fixed-point to integer base.

In Figure 10 we can see also that not only the variables and the arithmetic
expressions can be translated, but also the function declarations with their ar-
guments. It is possible to figure out also how the result data types are deter-
mined. The explicit type cast is inserted to adapt the result of the expression to
the capacity range of the variables.

Having the integer base description of the system, it is necessary to perform
the simulation to verify if the system attends the same characteristics as be-
fore. Another fact that should be pointed out is the possibility to improve the
simulation speed with the integer-based representations. This process was ob-
served based on the number of epochs? that the neural network is trained. As
is presented in Table 3, the simulation speed based on integer arithmetic can
be around 2 times faster, compared to fixed-point representation. This slower
simulation speed occurs due to the higher complexity transformations used to
simulate the fixed-point representation.

The last phase of the design flow is the synthesis of the system. The hard-
ware neural network design specified in SystemC was validated on a Xilinx
SPYDER-VIRTEX-X2E board. This board contains one XCV2000E FPGA of
the VirtexE family (i.e., equivalent to 2.000.000 logics ports) and one CPLD
responsible for controlling the 32 address/date bits of the local bus. In addition,
it contains SRAM memory blocks that operate synchronously. The frequency
of the system can be selected up to 33MHz.

68 Axel G. Braun, Djones V. Lettnin, Joachim Gerlach, Wolfgang Rosenstiel

Lo

Floating-Point

float model_neuron_hid::AF_derivate(){
float deriv = 0.0;
float derivl = 0.0;

derivl = B/A;
deriv2 = A-net;
deriv3 = A+net;

deriv = derivl2*deriv3;

¥

* CoCentric Fixed-
Point Designer

* FRIDGE

* Manually

Fixed-Point Y
sc_fixed<32,7> model_neuron_hid::AF_derivate() {

sc_fixed<32,7> deriv = 0.0;
sc_fixed<32,7> derivl = 0.0;

derivl = B/A;
deriv2 = A-net;
deriv3 = A+net;

deriv = derivl2*deriv3;

¥

FIXtool /) (4 t3G_t0eeT>) (1))+ (620X ()<<
| Ut tac 30w ta))) = (UHde ane D) tyh1<ct)s

Project
File

Integer Base ‘

sc_int<32> model_neuron_hid::AF_derivate() {
sc_int<32> deriv = 0;
sc_int<32> derivl = 0;

derivl = (((sc_int<32>(((sc_uint<20>) (((((sc_uint<38>)
(B))<<18)/(((sc_uint<38>) (A))))))))<<7);

deriv2 = (((sc_int<32>) (A)))<<7)-net;

deriv3 = (((sc_int<32>) (A))<<7)+net;

deriv = ((sc_int<32>) (((((sc_int<64>) (derivl2)))*
(((sc_int<64>) (deriv3))))>>25));

:

Figure 10. From floating point to integer base

Figure 11 shows the tool chain to perform the synthesis process of the sys-
tem originally described in SystemC. Initially, the specified system could be
analyzed and verified by CoCentric System Studio [13, 10] and DAVIS vi-
sualization environments. After its functional verification, the floating-point
to fixed-point data type conversion was performed using SystemC fixed-point
types. The refinement of the fixed point date types to integer base was per-
formed by the FixTool.

Automated Conversion of SystemC Fixed-Point Data Types 69

Table 3. Simulation speed improvement®,

Epochs Floating(sec.) Fixed(sec.) Integer(sec.)

1 2.56 6.15 3.06
10 26.33 62.56 30.25
100 257.80 629.02 304.09

The CoCentric SystemC Compiler, is capable to synthesize integrated RTL
and behavioral modules in logic gates level (EDIF) or HDL RTL descriptions.
In this work, an EDIF description was obtained and applied to the synthesis
tools of the Xilinx platform. This process is composed by mapping to the
desired prototyping board. The automatic synthesis was completed after the
generation of FPGA configuration file.

Behavioral & RTL

] SystemC-to-Silicon
SystemC VSO ToT 0 >
Simulation +
iMPACT
Synopsys N Synopsys Bitstream
System Studio DAVIS ‘
BitGen
lFixed Point A
Tuebingen Xilinx PAR
FIXtool FPGA A
‘Integer Base MAP
Synopsys ‘
SystemC Compiler NGDBuild
| EDIF 7y

Figure 11. Synthesis process toolchain: from SystemC to Silicon.

Besides the synthesis of the electrocardiogram classification system, the
classic XOR problem? was also synthesized so as to compare synthesis of a
complex system (e.g., ECG) with a simpler one (e.g., XOR). These two exam-
ples are non-linear complex systems, which use neural network architecture

70 Axel G. Braun, Djones V. Lettnin, Joachim Gerlach, Wolfgang Rosenstiel

with at least two layers. Thus, two ANNs were synthesized having the follow-
ing architectures:

m ECG - 7 inputs / 5 neurons in hidden layer / 1 neuron in output layer;

= XOR - 3 inputs / 2 neurons in hidden layer / 1 neuron in output layer;

The synthesis results on the Xilinx platform are presented in Table 4. The
first two columns present the elements and the maximum amount of them avail-
able in this FPGA. The last four columns present the synthesis results of the
main system integrated with its testbench. The presented results also consider
the memory block synthesis of both systems (ECG and XOR). One can notice
that the ECG classification system occupied 90% of the present slices®. The
XOR system is simpler because it has a smaller number of: neurons, intercon-
nections and amount of local registers to store the synaptic weights. In both
systems three I/0 blocks (IOB) are used and also an input for reset signal and
two outputs to indicate neural network training process.

Table 4. Synthesis process summary.

XCV200E Max ECG K4 XOR %o
Slices 19200 17391 90% 5509 28%
Block RAMs 160 93 58 % 1 1%
Slice Flip-Flop ~ 38400 5441 14% 1858 4%
4 input LUT 38400 31911 83% 10064 26 %

10B 404 3 1% 3 1 %

GCLKs 4 1 25 % 1 25 %

GCLKIOBs 4 1 25 % 1 25 %
CLK Freq. MHz 33 7 - 16 -

6. Conclusion

We have described a methodology including all steps for the conversion of
SystemC fixed-point data types and the related arithmetics into SystemC inte-
ger data types and adapted integer-based arithmetics. An implementation of
the conversion tool FixTool allows the automated generation of integer-based
designs out of fixed-point-based models. The tool covers all basic arithmetics
like summation, subtraction, multiplication, and division. During the conver-
sion process the structure of the original model code is preserved as far as
possible in order to allow the designer to stay familiar with the design code at
any time. The conversion results can be passed directly to a hardware synthesis
tool, demonstrated by two examples.

The FixTool closes the gap in a system-level design flow e.g. between de-
sign tools, their floating-point-to-fixed-point features [12, 13], and hardware

Automated Conversion of SystemC Fixed-Point Data Types 71

synthesis tools. It can avoid labour-intensive and error-prone manual conver-
sion procedures within the SystemC refinement process.

Currently, further adaptations for a tight integration into the design flow are
made. This also includes optimizations of the generated code in order to get an
efficient adaptation to the synthesis tool, e.g. an optimized splitting of complex
arithmetical expressions containing several divisions. These optimizations are
mainly not related to the core conversion methodology, but to special require-
ments of the synthesis tools and the design flow beneath.

Notes

1. SystemC 2.0 on a SunBlade 100 at S00 MHz.

2. Epoch is the presentation of the whole N vectors of the training set to artificial neural network input
layer.

3. The simulations were executed in a Sun-Blade-100, with 1536 Mbytes of RAM memory and with
2201 Mbytes of Swap memory.

4. The XOR problem has four input vectors (0,0), (0,1), (1,0), (1,1). The first and the fourth belong to
the class 0 and consequently the second and the third belong to the class 1.

5. One CLB is composed by two slices.

References

[1] B.Stroustrup. The C++ Programming Language (Special Edition). 2000. Addison Wes-
ley. Reading Mass. USA., 2000.

[2] D.Lettnin/A.Braun/M.Bodgan/J.Gerlach/W.Rosenstiel. Synthesis of embedded systemc
design: A case study of digital neural networks. In Design, Automation and Test in Europe
Conference and Exhibition (DATE04), 2004.

[3] H.Keding/M.Coors/O.Luetje/H.Meyr. Fast bit-true simulation. In 38. DesignAutomation
Conference (DAC), 2001.

[4] J.Freuer. Entwurfsprozess einer Handprothesen-Steuerung in SystemC. Diplomarbeit,
Universitaet Tuebingen, 2002.

[5] M.Bogdan. Signalverarbeitung biologischer Nervensignale zur Steuerung einer Prothese
mit Hilfe kuenstlicher neuronaler Netzwerke. Dissertation, Universitaet Tuebingen, 1998.

[6] M.Coors/H.Keding/O.Luetje/H.Meyr. Integer code generation for the ti tms320c62x. In
International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2001.

[7] Open SystemC Initiative. Functional Specification for SystemC 2.0, version 2.0-q edition,
March 2002.

[8] Open SystemC Initiative. SystemC User’s Guide, version 2.0 edition, 2002.

[9] S.Haykin. Neural Networks: A Comprehensive Foundation. New Jersey:Prentice-Hall,
USA., 1999.

[10] Synopsys, Inc. CoCentric SystemC Compiler Behavioral User Guide, version 2000.11
edition, March 2001.

[11] Synopsys, Inc. CoCentric Fixed-Point Designer User Guide, version 2002.05 edition,
2002.

[12] Synopsys, Inc. CoCentric System Studio Reference Manual, version 2002.05 edition,
June 2002.

72 Axel G. Braun, Djones V. Lettnin, Joachim Gerlach, Wolfgang Rosenstiel

[13] Synopsys, Inc. CoCentric System Studio User Guide, version 2002.05 edition, June 2002.

[14] T.Groetker/S.Liao/G.Martin/S.Swan. System Design with SystemC. Kluwer Academic
Publishers, Boston/Dodrecht/London, 2002.

[15] W.Mueller/W.Rosenstiel/J.Ruf. SystemC Methodologies and Applications. Kluwer Aca-
demic Publishers, Boston/Dordrecht/London, 2003.

