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Abstract White-box verification is a technique that reduces observability problems by lo-
cating a failure during design simulation without the need to propagate the fail-
ure to the I/O pins. White-box verification in chip level designs can be imple-
mented using assertion checkers to ensure the correct behavior of a design. With
chip gate counts growing exponentially, today’s verification techniques, such as
white-box, can not always ensure a bug free design. This paper proposes an
assertion processor to be used with synthesized assertion checkers in released
products to enable intelligent debugging of deployed designs. Extending white-
box verification techniques to deployed products helps locate errors that were
not found during simulation / emulation phases. We present results of the inser-
tion of assertion checkers and an assertion processor in an 8-Bit processor and a
communication core.
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1. Introduction

There has been a large number of reported design errors detected after the
chip has been released, such as in Beatty, 1993; Kantrowitz and Noack, 1996;
Taylor et al., 1998. As design complexity increases, it becomes clear that
no one can ensure a bug-free design using conventional validation tools using
simulation, emulation and formal verification techniques. Probably the most
famous bug reported in the literature is the Pentium Floating Point Bug Lowry
and Subramaniam, 1998 that was found just after chip deployment.

As design validation clearly becomes one of the most critical issues in chip
design today, we propose in this chapter a methodology that pushes design val-
idation beyond chip deployment by using the notion of an assertion processor.
An assertion processor is a circuit inserted into the design to monitor synthe-
sized assertions, taking appropriate action in the case of an assertion failure.

This paper is outlined as follows. Section 2 describes the basis for this
work, i.e. controllability and observability, and their relation to design vali-
dation. Section 3 presents assertion libraries based on PSL and OVL that can
be synthesized to facilitate on-chip debug. Section 4, describes the assertion
processor framework. Finally, we present conclusion and future work.

2. Controllability and observability

The ability to test a design correlates to the ability of controlling and ob-
serving the behavior of a design. The increase of design complexity over the
past years has weakened the ability to test a design. Even if a design error can
be controlled, it may be very difficult to observe the error using the design I/O
pins. This is a widely accepted problem in the integrated circuits industry and
academic community, with numerous paper published in this subject Devadas
and Keutzer, 1991; Fujiwara, 1990; Fujiwara, 1985; Chen and Breuer, 1985.

Recent improvements of synthesis techniques allowed RTL-based designs to
be adopted as the main design capture methodology used by designers. More-
over, the use of RTL-based designs enabled more aggressive validation tech-
niques based on White-box verification as opposed to Black-box verification
Foster et al., 2004.

Black-box verification relates to the approach of providing stimulus to the
input pins of a design and checking the results in its output pins. This approach
offers very poor observability and controllability since a failure inside the de-
sign has to propagate to the output pins to be observable. In addition to this
problem, the failure may only be noticed several thousands of cycles after it
has actually happened, making it difficult to detect and even to recognize the
failure.

Consider Figure 1 as an example. This Figure presents an excerpt from a
larger sequential design, with registers, represented by the two boxes and gates,
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represented by combinational logic cloud. In this design, one of the operation
modes of the design reduces a portion of the combinational logic to the circuit
outlined in the picture, with two AND logic gates, Y and Z and one OR logic
gate, X. In this figure, xz and yz represents the internal interconnection wires
of these logic gates.

) Combinational Logic

Figure 1. Sequential circuit and its combinational logic.

In this example, let us consider that we want to use the Black-box method-
ology to test a stuck-at-zero condition at pin b in this piece of logic. First,
we apply a set of test vectors to the inputs and compare the output d to the
expected value. Even though we can exercise all possible input vectors to this
piece of logic, it is not be observable because the logic is redundant on this
operation mode.

White-box verification is a technique used to validate a design by inspecting
internal wire connections of the design, thus improving the overall observabil-
ity. When used with monitors, it provides a very powerful tool to aid design
validation. An assertion monitor is a piece of HDL code that evaluates specific
conditions on the designs’ internal wires. Using White-box verification, a de-
signer can locate a failure internal to the design because assertions can trigger
immediately after an error occurs.

Assertions are inserted into a design based on the knowledge about legal
and illegal behaviors of internal design structures Bergeron, 2000; 0-In De-
sign Automation, Inc., 2002. Usually, the assertions are inferred by a designer
according to interface rules or unwanted corner cases of the design.

Assertions can be built from hardware description languages Bergeron, 2000,
from some pragmas of a specific tool such as in 0-In Design Automation, Inc.,
2002, or from a testbench written using a testbench language, such as Open-
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Vera Synopsys, Inc., 2002. White-box verification has become a popular de-
sign validation technique, improving the confidence level in a design because
assertion monitors, acting like probes inserted into a chip, solve the observ-
ability problem of testing chip designs Gupta, 2002; Kazmierczak, 2001.

Consider applying the White-box verification approach in the example in
Figure 2. First, we add an assertion correlating the expected behavior of the
wires. For the sake of this example, let us assume that the error condition
occurs when f1 + f2 > 1. Although from the inspection of only this part
of the circuit, we could clearly state that f1 and f2 can be true at the same
time, making the assertion false, in general because of enviromental conditions
f1+ f2 > 1 may never occur in a correct design.

Apply Test Vector

Compare w/ Expected Data

Figure 2. White-box verification approach.

White-box verification has been widely applied during the simulation, for-
mal analysis and emulation Axis Systems, 2002; McMillan, 1993; Shimizu
et al., 2000; Switzer et al., 2000 phases of a design. The initial goals of White-
box verification are to capture the design intent, to document interface assump-
tions and to find bugs as the design progresses. However, the use of White-box
verification does not guarantee that a design is bug-free because of the overall
complexity of the design. In the context of chip-level designs implemented in
field-programmable gate arrays (FPGAs), assertion monitors enables reconfig-
urable designs to be monitored at run-time after deployment of the design. If
a bug is ever found in the design, an assertion engine stores the error informa-
tion that can be later notified to a designer. Because the error information is
directly linked to an RTL design, the designer will be able to locate the problem
faster, thus being able to provide a new version in a very short time. The previ-
ous work on synthesizing assertion checkers Oliveira and Hu, 2002; Drechsler,
2003 didn’t address issues like wrong design assumptions or proposed an ar-
chitecture that could inform which assertion had failed.
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3. On-chip verification

An architecture for on-chip verification can be found in Figure 3. This archi-
tecture is based on three components: a sea of synthesizable assertions based
on Open Verification Library (OVL) Foster and Coelho, 2001 or synthesized
from PSL Accellera, 2004; an assertion processor, which is a circuit designed
to process the results of the assertions and to take proper action, being as sim-
ple as a circuit that raises an error pin or as complex as an embedded processor
that dispatches an error correction routine; and a routing mechanism that routes
error information from the assertions to the assertion processor.

Assertion Processor

Figure 3. Diagram of assertion processor framework.

3.1 Synthesizable assertions with routing mechanisms
from OVL

In Nacif et al., 2003, it was proposed an architecture for an assertion engine
to be used in a reconfigurable design by extending the use of the White-box
verification beyond the simulation/emulation phases of a design. The main
idea was to modify the OVL to support on-chip run-time debug. This modi-
fied library was obtained by adding a Boundary-scan IEEE, 2001 chain to the
assertions. This library provided support to solve the assertion routing prob-
lems, although no assertion processor was used to provide the circuit with an
intelligent mechanism to process the error condition.

Figure 4 (a) presents a typical assertion module from OVL. The modified
version with scan-chain architecture is presented in 4 (b). Table 2 contains a
description of each signal. We refer the reader to a throughout description of
the modified library Nacif et al., 2003.
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reset_.n —
clk — assert_moduleA
test_expr

(a)

reset_n —
clk —
test_expr — —eo
ei — assert_moduleA
esci — —esco
esclk —
escen_n —

(b)

Figure4. (a) Typical OVL assertion; (b) OVL assertion modified for scan-chain architecture.

Table 1. Signal descriptions for Figure 4(b).

Signal Description /0
reset_n Reset Active Low Input
clk System Clock Input
test_expr Any HDL test expression Input
ei Error Input Input
esci Error Scan Input Input
€0 Error Output Output
€sco Error Scan Output Output
esclk Error Clock Input
escen.n Error Scan Enable Active Low Input

3.2 Synthesizable assertions from PSL

The Accellera Property Specification Language (PSL) Accellera, 2004 is
an ideal language for specifying complex design intent in either linear-time
temporal logic or in branching-time temporal logic.

The PSL language definition is segmented into the following layers: Boolean,
temporal, modelling, and verification. The temporal layer supports either the
linear-time temporal logic or branching-time temporal logic operators. In this
section, we consider only a linear-time temporal logic component. For a more
complete definition, see Accellera, 2004.

At the Boolean layer, a PSL specification references signals and variables
within an HDL description (for example, Verilog or VHDL). Hence, the un-
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derlying HDL syntax and semantics for Boolean expressions ensure semantic
consistency between the property specification and the HDL model.

Sequences of Boolean conditions that occur at successive clock cycles can
be described succinctly using Sequential Extended Regular Expressions (SEREs).
Sequences and SEREs can be constructed as follows (where b is a Boolean ex-
pression):

® b: aBoolean expression is a SERE in its simplest form,

s {SERE} : a sequence constructed by a SERE,

s SERE ; SERE:a SERE constructed by concatenating two SEREs,

s {sequence | sequence}: asequence describing alternative sequences,

» {sequence & sequence} : a sequence describing parallel non-length
matching sequences (that is, two sequences, both hold at the current cy-
cle, regardless of whether they complete in the same cycle or in different
cycles),

s {sequence && sequencel}: asequence describing parallel length match-
ing sequences (that is, two sequences, both hold at the current cycle, and
both complete in the same cycle).

PSL provides various repetition operators ([]) that concisely describe re-
peated concatenation of the same SERE.
For example, given the SERE r and a Boolean b:

= r[*m:n] : asequence of m to n contiguous occurrences of r,
s b[=m:n] : any sequence containing from m to n occurrences of b,

s b[->m:n] : any sequence ending in the mth to nth occurrence of b.

The repeat range m:n can be replaced by a single constant n (for example,
[*2]). In addition, an unbounded range could be expressed as [*0:inf],
where the keyword inf represents infinity.

PSL supports all the standard LTL operations. In addition, more readable
operators are defined in terms of the base operators. For example, given the
PSL temporal formulas £, £1, £2:

s !f: f does not hold,

m f1 & f2: f1 and £2 both hold,
s f1 | £2: f1 or £2 or both hold,
s f1 -> £2: f1 implies £2,
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m f1 <-> £f2:f1 -> f2and £2 -> f1,
® always f: f holds in every cycle,
= never f:f doesnothold in any cycle,

s next f: £ holdsin the next cycle,

PSL also supports operators to build complex properties out of SEREs, such
as {r1} |-> {r2}, meaning that {r2} starts in the last cycle of {r1}, and
{r1} |=> {r2}, meaning that {r2} starts in the first cycle after {r1}, as
wells as a way to define named properties, which facilitates reuse.

A property ensuring that a and b are mutually exclusive can be specified as:

property mutex = always !(a <-> b) @(posedge clk);

When we synthesize assertions from PSL, we consider only a synthesizable
subset of the PSL language, i.e. without any behavior that leads to infinite
memory. The synthesis process generates an RTL description of the design
that instantiates an OVL assertion. For example, the PSL assertion described
below leads to the circuit of Figure 5.

assert always {el; e2; e3} |-> e4 @(posedge clk)

DO
P P

el e2 e3
e4

Figure 5. Synthesized circuit from PSL

This circuit corresponds to the following Verilog-HDL description:

reg al, a0;

always @(posedge clk) a0 <= el & 1;

always @(posedge clk) al <= e2 & a0;
assert_always (reset, clk, e4 | “(e3 & al));

3.3 Generating chained assertions actual design

One of the major problems in modifying assertion instantiation into chained
assertions stems from the fact that the circuit interface must be changed.
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Figure 6 depicts an example of an 8051 ALU (Arithmetic Logic Unit) Teran
and Simsic, 2002 hierarchical structure with chained assertions. White circles
represent the original design hierarchy and dark ones the inserted assertions.
Table 2 shows the assertion sequence that must be scanned from the pin esco
in case an error is signaled by the eo pin. A typical timing diagram presenting
the behavior of eo, escen_n, esco, and esclk pins is depicted in Figure 7.

eo_t1, eo_t1,
esco_t1 \ esco_t

esco_t1 esco_t2

Figure 6.  8051’s ALU hierarchy with assertion chaining.

Table 2.  Assertion sequence list for Fig. 6.

Sequence Number Assertion name
1 assert_uflow

2 assert_frame

3 assert-always2
4 assert_always1
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O I

escen_n

- UL

Figure 7. Behavior of the eo, escen_n, esco, and esclk pins.

4. Assertion processor architecture

Figure 8 presents the proposed assertion processor with chained assertions.
As it can be seen in the Figure, an assertion processor minimally needs to
perform three tasks:

= Scan the assertion chain to detect which assertion has caused the failure;

= Encode the possible tasks that must be performed for each assertion in
the circuit;

s Perform specific tasks to overcome the error condition.

Figure 8.  Assertion processor with chained structure.

Figure 9 presents a skeleton for a minimal assertion processor. This asser-
tion processor contains three error processing tasks: halting the processor for
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more serious errors, resetting the entire chip, or performing a software inter-
rupt to enable a processor core to perform a specific action. The reader should
note that the priority for each assertion determining which action must be taken
can be obtained directly from the OVL severity level.

module AssertionProcessor (...);
reg [‘LOGNOFASSERTIONS:0] count;
// SCAN DETECTION

always Q(posedge clk) begin

if (error detection)
begin
count = count + 1;
if (esci == 1)

ErrorNo = count;

end
end
// PRIORITY ENCODING OF ERROR CONDITION
assign ErrorNo = ErrorEncoding(ErrorNo);
// ERROR CORRECTION
always Q(posedge clk) begin
if (error detected)
begin
casex (ErrorPriority)
3’bxx1: // HALT INTEGRATED CIRCUIT
3’bxix: // HW RESET
3’bixx: // SW INTERRUPT
endcase
end
end
endmodule

Figure 9. Assertion processor verilog HDL skeleton.

Although this Figure presents the minimum circuit for an assertion proces-
sor, more complex assertion processors can be implemented in the tasks exe-
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cution part of the assertion processor. For example, if an assertion processor
may interact with a network coprocessor if the error must be reported over an
ethernet port.

In order to automatize the assertion chaining process XRoach tool has been
developed Oliveira et al., 2003. XRoach processes verilog hierarchical designs
with OVL and PSL assertions. It compiles the design and links it to the modi-
fied synthesis version of OVL. XRoach output files are the verilog design with
chained assertions and a list of the assertions in the chained order, that is used
by the assertion processor to identify which assertion had failed. Figure 10
presents XRoach user interface. The basic assertion synthesis flow is shown
below:

1 Design with PSL and OVL assertions

2 Convertion of PSL properties into RTL code + OVL assertions
3 Selection of assertions to be synthesized

4 Selection of severity level for each synthesized assertion

5 Synthesis of scanning structure for instantiated assertions

6 Synthesis of assertion processor skeleton

7 Generation of new design hierarchy with assertion scan-in/out + asser-
tion processor

 KRoach nmpiler”‘ e

Figure 10.  XRoach user interface.
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s. Results

This section presents the results of synthesizing assertion processors for an
8051 core Teran and Simsic, 2002 and for an I?C (Inter Integrated Circuit)
bus Herveille, 2002. Although the proposed methodology focus in early de-
sign stages, the assertions were instantiated based on public domain specifica-
tions and the cores’ documentation. The synthesis was performed using Xilinx
Free Web Pack 5.2i environment. Xilinx Free Web Pack uses Xilinx Synthesis
Technology (XST). Better results could be achieved using third party synthesis
tools. The designs were synthesized and routed for a Virtex XCV300 FPGA
using high area optimization effort.

Figure 11 shows the area in equivalent gate count for an assertion proces-
sor monitoring a number of assertions, supposing a priority encoding of five
possible actions.

4000

3500

3000

2500

2000

1500

Equivalent gate count

1000

500

0
8 32 64 128 256 512

Number of assertions

Figure 11.  Assertion processor area increase supposing 5 priorities.

S.1 I2C

I?C is a two-wire, bi-directional serial bus that provides a simple and effi-
cient method of data exchange between devices. I?C standard was developed
by Philips semiconductors Philips Semiconductors, 2000. Its applications in-
clude LCD drivers, remote I/O ports, RAM, EEPROM, data converters, digital
tuning and signal processing circuits for radio and video systems, and DTMF
generators.

In Table 3 some examples of assertions inserted in the 12C core are shown.
The total number of inserted assertions in the original design is 5. These as-
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sertions where inserted based on carefully reading and understanding of core’s
documentation.

Table 3. Assertions inserted in I2C core.

Assertion type Functionality

assert_always Ensures the correct interrupt request operation

assert_never Ensures that concurrent read and write signals will not occur
assert-one_hot Ensures the correct operation of control state machines

Table 4 presents the synthesis results for I2C original design and using the
proposed assertion processor architecture. Using total equivalence gate count
as an example, we have an overhead of 37.27%. Considering that IC core
complexity is relatively low, this results are acceptable. Although the circuit
speed has dropped 100% from the original design speed, the normal opera-
tion of the design could still be maintained, as the chained structure is only
active when escen_n = 0. As a result, we could run the time analyzer with the
constrain escen_n = 0.

The reader should note also that the synthesizable OVL has been specified
in RTL code. A handcrafted library, or a library with flip-flops with scan chain
structures embedded could improve results considerably.

Table 4. Synthesis results for [C communication core.

Parameter Original Structure Chained Structure + AP Overhead
Slice Flip Flops 122 129 5.74%

4 Input LUTSs 221 357 61.54%
Slices 125 203 62.40%
Equivalent gate count 2,557 3,510 37.27%
Maximum Frequency 89.17 MHz 45.17 MHz 97.41%

S5.2 8051 processor core

8051 is an 8-bit processor widely used in many embedded applications.
There are several 8051 chip manufactories with different peripherals and mem-
ories configurations. The synthesized core has two 16-bit timer/counters, four
8-bit I/O ports, 4K bytes of on-chip program memory, and 128 bytes of on-
chip data program (registers). Program memory and registers are inferred by
synthesis tool using Virtex Flip-Flops. This memory structure consumes a sig-
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nificative part of design area. Table 5 shows some assertions added to 8051
core. The total number of inserted assertions is 11.

Table 5. Assertions inserted in 8051 processor core.

Assertion type Functionality

assert_-window Verifies the division operation completion before a new enable signal
assert_time A four-clock-cycle ACK signal must be produced after an interrupt trigger
assert_overflow Ensures no stack overflow

assert_always Ensures that ALU always receives a valid opcode

Table 6 shows synthesis results for original 8051 processor core and us-
ing the proposed assertion processor architecture. Because of considerable
complexity increase compared with I2C the assertion overhead is significantly
lower. Taking as a parameter the equivalent gate count, we have a 3.19% in-
crease.

Table 6. Synthesis results for 8051 processor core.

Parameter Original Structure Chained Structure + AP Overhead
Slice Flip Flops 838 943 12.53%
4 Input LUTs 4,487 4,698 4.70%
Slices 2,515 2,647 5.25%
Equivalent gate count 68,141 70,131 3.19%
Maximum Frequency 12.99 MHz 12.86 MHz 1.01%
6. Conclusions and future work

We presented a technique that enhances currently validation capability of
assertion and property based techniques beyond deployment of chip-level de-
signs. This technique can be applied to inumerous situations, including emu-
lation phase of designs, in which validation testcases execute at full speed and
for fault-tolerant chip design, in which an assertion failure can yield to mission
failure.

We showed that a decision circuit that monitors assertions in a design can
be used to validade the design. This circuit, which was called an assertion pro-
cessor, upon the detection of an assertion failure can dispatch a set of recovery
procedures, ranging from hardware reset, software reset or event put the chip
into halt mode.
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Along with the assertion processor, we generated a version of the Open
Verification Library (OVL) fully synthesizable, and a procedure to generate
digital circuits from PSL descriptions by converting them into RTL code along
with an OVL assertion.

Since the total number of assertions can be very high, we presented a tool
called XRoach which enabled designers to select which assertions he/she wanted
to synthesize into the final circuit. These assertions were concatenated to the
assertion processor, and a skeleton of the assertion processor was automatically
generated.

An example of the tool usage was shown using an 8051 processor, show-
ing that minimum overhead in circuit size was obtained by carefully selecting
proper assertions. As future works, we intend to investigate different concate-
nation procedures between assertions and the assertion processors, and to work
in the interaction between software and hardware failures.
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