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Abstract. Power grid analysis has recently risen to prominence due to
the widespread use of lower supply voltages by power-conscious designs.
Low supply voltages imply smaller noise margins and make the voltage
drop across the power grid very critical since it can lead to overall slower
circuits, signal integrity issues and ultimately to circuit malfunction.
Verifying proper behavior of a power grid is a difficult task due to the
sheer size of such networks. The usual solution to this problem is to
apply reduced-order modeling techniques to generate a smaller macro-
model. These techniques are typically based on projections to subspaces
whose dimension is determined by the input space. Unfortunately power
grids are characterized by a massive number of network ports, which
limits the amount of compression achievable. Recently, new algorithms
have been proposed for solving this problem which may provide efficient
alternatives. In this paper we discuss the main issues related to model
reduction of power grid networks and compare several methods for such
reduction, providing some insight into the problem and how it can be
tackled.

1 Introduction

Power dissipation is widely recognized as the greatest challenge to the con-
tinuing trend for higher performance fueled by technology scaling, increased
functionality, and competitive designs. Increased chip functionality results in
the need for huge power distribution networks, also referred to as power grids.
A common technique to lower power consumption in such designs is to scale
down the supply voltages, since chip power is roughly proportional to the square
of the supply voltage. However, lower supply voltages imply smaller noise mar-
gins and make the voltage drop across the power grids very critical since it can
lead to reduced noise margins and overall slower circuits. Once voltage drops
exceed designer-specified thresholds, signal integrity violation occurs and circuit
functionality is compromised with obvious yield consequences. Reduced noise
margins may induce false switching and higher logic gate delays. This may di-
rectly cause chip failures or simply slow down the circuit enough so that timing
requirements cannot be met.

Verifying proper behavior under realistic operating conditions requires ac-
curate power grid analysis. However, analyzing power grids is a monumental
task due to their sheer size which all but precludes direct usage in standard
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simulation environments. A possible solution to this problem is to compress the
model using a model reduction technique. Model order reduction (MOR) algo-
rithms are the backbone of contemporary parasitic and interconnect modeling
technologies. These algorithms take as input a linear interconnect model and
produce as output a smaller model that is suitable for simulation in conjunc-
tion with nonlinear circuit elements. The effectiveness of the model reduction
algorithm is judged by the decrease in the reduced circuit simulation time, com-
pared to simulation with the full model, assuming acceptable error is incurred
in the modeling process. MOR algorithms rely on the fact that on a variety
of contexts only an accurate approximation to the input-output behavior of a
dynamic linear system is necessary [1, 2, 3]. This is true for instance for de-
lay analysis since only the waveforms at the gate inputs and outputs matter.
Therefore even if one has to account for interconnect effects, the precise time-
variation at any interconnection point is not relevant unless such point is a gate
input or output. It is quite typical for MOR techniques to be able to reduce
large RC(L) interconnect networks with just a few ports to models with very
few states and still produce very accurate approximations of frequency- and
time-domain behavior. In other words, even if the number of internal states, n,
is very high, the description of the multi-port network is an q×p matrix valued
transfer function where p, q � n and typically only a few states are necessary for
the required accuracy. The compression ratio is therefore quite high. Of course,
it is reasonable to expect that when the number of ports increases, then the
number of states to be retained must also increase since, in a simplified sense,
that means we now care for an increasing number of internal points/states (i.e.
p or q above increase). Ultimately, however, as the number of ports increases,
the model must be able to accurately characterize the interaction between all
input and output ports. If the number of retained states keeps increasing, this
appears to leave little room for compression as the size of the matrix transfer
function that characterizes all port interactions, O(q × p), also increases and
may approach the complexity of working with the original network equations.
In Section 4 we will verify this relation in a precise manner and discuss its impli-
cations. Nevertheless, it is important to understand the reasons behind this loss
of efficiency since knowledge of the specific scenarios where each method may
produce better results is an important asset when determining how to perform
the reduction.

Recently, the efficient reduction of systems with a large number of ports
has been addressed and several methods have been proposed [4, 5, 6, 7]. In
this paper we discuss the main issues related to order reduction of power grid
networks and compare several methods for solving this problem, providing some
insight into the problem and how it can be tackled. In Section 2 we present
the standard model-order reduction methods that are now in widespread use
in many applications in several fields, including electronic design automation.
In Section 3 we discuss the newly proposed methods for handling massively-
coupled linear dynamic systems as well as alternative approaches which are
not based on projection schemes [8]. Then in Section 4 we present the problem



Issues in Model Reduction of Power Grids 3

of power grid reduction and discuss some of its characteristics. We analyze
the conditions in which it can be successfully reduced and the impact of an
increasing number of ports. We also discuss scenarios in which the reduction
might lead to better or worse compression ratios. In Section 5 we show results
from applying the various methods, in a variety of settings to the power grid
problem. Finally conclusions are drawn in Section 6.

2 Background

Model reduction algorithms are the backbone of contemporary parasitic and
interconnect modeling technologies. Projection-based Krylov subspace algo-
rithms, in particular, provide a general-purpose, rigorous framework for deriving
interconnect modeling algorithms. Another class of methods that is sometimes
used for model reduction and which finds its roots in systems and control the-
ory are related to balancing transformations of the system state description.
All of these algorithms take as input a linear interconnect model, and produce
as output a smaller model that is suitable for simulation in conjunction with
nonlinear circuit elements. The effectiveness of the model reduction algorithm
is judged by the decrease in final circuit simulation time, compared to simula-
tion with the full model, assuming acceptable error is incurred in the modeling
process.

Considering an RC network, the nodal analysis formulation leads to

Cv̇ + Gv = Mu
y = NT v

(1)

where C,G ∈ R
n×n are the capacitance and conductance matrices, respectively,

M ∈ R
n×p is a matrix that relates the inputs, u ∈ R

p to the states, v ∈ R
n,

that describe the node voltages, N ∈ R
n×q its counterpart with respect to the

outputs, y ∈ R
q, n is the number of states, p the number of inputs and q the

number of outputs. The matrix transfer function of the network is then given
by

H(s) = NT (G + sC)−1M (2)

The goal of model-order reduction is, generically, to determine a new model,

Hr(s) = N̂T (Ĝ + sĈ)−1M̂ (3)

that closely matches the input-output behavior of the original model, and where
the state description is given by z = VT v ∈ R

r, r � n. Note however, even if
r � n, the reduced-order model may still fail to provide relevant compression.
This may happen because, for large networks, the matrices C,G are very sparse,
having a number of non-zeros entries of order O(n). So, if the number of non-
zero entries in the reduced-order model increases for instance with the number
of ports, the benefits of reduction may vanish with increasingly large p and q.

In the following we review the standard model-order reduction techniques
in order to understand their basic modes of operation.
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2.1 Projection-Based Framework

Projection-based algorithms such as PRIMA [3], or PVL [9], have been shown
to produce excellent compression in many scenarios involving on- and off-chip
interconnect and packaging structures. The PRIMA algorithm [3] reduces a
state-space model in the form of (1) by use of a projection matrix V, through
the operations

Ĝ = VT GV M̂ = VT M Ĉ = VT CV N̂ = VT N (4)

to obtain a reduced model in the form of (3). In the standard approach, the V
matrix is chosen as an orthogonal basis of a block Krylov subspace, Km(A,p) =
span{p,Ap, · · · ,Am−1p}. A typical choice is A = G−1C,p = G−1M. The
construction of the projection matrix V is done in an iterative block fashion,
with each block i being the result of back-orthogonalizing Ai−1p with respect
to all previously computed blocks. When the projection matrix is constructed in
this way, the moments of the reduced model match the moments of the original
model at least to order m (in PVL, 2m+1 moments are matched). The difficulty
with these algorithms is that the model size is proportional to the number of
moments matched multiplied by the number of ports. For example, consider
the application of such an algorithm to a network with a large set of input
ports. If only two (block) moments are to be matched at each port, and the
network has 1000 ports, the resulting model will have at least 2000 states, and
the reduced system matrices will be dense. Therefore such methods are almost
impractical for networks with large numbers of input/output ports, that is, for
networks with many columns in the matrices defining the inputs. This is often
the case for such “massively coupled” parasitics networks as occur in substrate
and package modeling, as well as power grids.

2.2 Multi-Point Rational Approximation

An evolution of Krylov-subspace schemes are methods that construct the pro-
jection matrix V from a rational, or multi-point, Krylov subspace [10, 11, 12].
Compared to the single-point Krylov-subspace projectors, for a given model
order, the multi-point approximants tend to be more accurate, but are usually
more expensive to construct. Given N complex frequency points, si, a projection
matrix may be constructed whose i-th column is

zi = (G + siC)−1M (5)

This leads to multi-point rational approximation. Multi-point projection is
known to be an efficient reduction algorithm in that the number of columns,
which determines the final model size, is usually small for a given allowable
approximation error, at least compared to pure moment matching approaches.
Of course there are many practical questions to ponder in an actual implemen-
tation, namely how many points si should be used, and how should the si be
chosen. Lack of an automatic procedure to solve these problems has limited the
applicability of the methods.
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2.3 Truncated Balanced Realization (TBR)

An alternative class of reduction algorithms are based on Truncated Balanced
Realization (TBR) [13, 14]. The TBR algorithm first computes the observability
and controllability Gramians, X,Y, from the Lyapunov equations

GXCT + CXGT = MMT , (6)

GT YC + CT YG = NT N (7)

and then reduces the model by projection onto the space associated with the
dominant eigenvalues of the product XY [13]. Model size selection and error
control in TBR is based on the eigenvalues of XY, also known as the the
Hankel singular values, σr . In the proper case, there is a theoretical bound on
the frequency-domain error in the order r TBR model, given by [14]

‖H−Hr‖ ≤ 2
n∑

i=r+1

σi (8)

The existence of such an error bound is an important advantage of the TBR-
like class of algorithms. Unfortunately there is no counterpart in the projection-
based class of algorithms. Note that the model selection criteria does not depend
directly on the number of inputs. However, as we shall see, there is an indirect
dependence in most problems. In principle, it is possible to have a 1000-port
starting model, and obtain a good reduced model of only, say, 10 states, if
the G,C,M,N matrices are such that all but the the first few (10) Hankel
singular values are small. In practice, solution of the Lyapunov equations is
too computationally intensive for large systems as encountered in interconnect
analysis. Therefore, a variety of approximate methods [12, 15, 16] have been
proposed.

3 Massively-Coupled Problems

In the previous section we briefly summarized the main techniques for model or-
der reduction of linear interconnect networks currently in use. As discussed, the
projection-based techniques, like PVL or PRIMA present two problems when
dealing with networks with a large number of ports. First, the cost associated
with model computation is directly proportional to the number of inputs, p, i.e.
to the number of columns in the matrices defining the inputs. This is easy to
see by noting that the number of columns in the projection matrix V in (4) is
directly proportional to p (a direct result of the block construction procedure).
This implies that model construction for systems with large number of ports is
costly. Furthermore, the size of the reduced model is also proportional to p, as
was discussed earlier and can directly be seen from (4). While the cost of model
construction can perhaps be amortized in later simulations, the large size of the
model is more problematic since it implies a direct penalty for such simulations.
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This is often the case for such “massively coupled” parasitic networks as oc-
cur in substrate, package, power grids or clock distribution networks. Massively-
coupled problem are problems for which the system description contains a very
large number of ports. In this section, we summarize two recent methods aimed
at solving some of the issues related to reduction of such systems.

3.1 Singular Value Decomposition MOR (SVDMOR)

The SVDMOR [4] algorithm was developed to address the reduction of systems
with a large number of ports, like power-grids . While the size of a reduced
model produced via PRIMA is directly proportional to the number of ports in
the circuit, SVDMOR theoretically overcomes this problem using singular value
decomposition (SVD) analysis in order to truncate the system to any desired
order.

The main idea behind SVDMOR is to assume that there is a large degree of
correlation between the various inputs and outputs. SVDMOR further assumes
that such input-output correlation can be captured quite easily from observa-
tion of some system property, involving matrices M and N. The method can,
for instance, use an input-output correlation matrix, like the one given by the
zero-th order moment matrix SDC = NT G−1M, which contains only DC in-
formation. Alternatively more complicated response correlations can be used

such as a zero-th order, sj-shifted moment, S
(sj)
DC = NT (G + sjC)−1M, a more

generic k-order moment, Sr = NT (G−1C)kG−1M, or even combinations of
these. If we let B be the appropriate correlation matrix, and if the basic corre-
lation hypothesis holds true, then B can be approximated by a low-rank matrix.
This low rank property can be revealed by computing the SVD of B,

B = UΣWT (9)

where U,W are orthogonal matrices and Σ is the diagonal matrix containing
the ordered singular values. Assuming correlation, there will be only a small
number, r � p + q, of dominant singular values. Therefore

B ≈ UrΣrVT
r (10)

where truncation is performed leaving the r most significant singular values.
The method then approximates:

M ≈ bmVT
r = MVr(V

T
r Vr)

−1VT
r

N ≈ bnUT
r = NUr(U

T
r Ur)

−1UT
r

(11)

where bm and bn are obtained using the Moore-Penrose pseudo-inverse, result-
ing in:

H(s) ≈ Ur bT
n (G + sC)−1bm

︸ ︷︷ ︸

Hr(s)

VT
r (12)
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Standard MOR methods, like SyMPVL [17] or PRIMA, can now be applied to
Hr(s), resulting in the final reduced model:

H(s) ≈ Hr(s) = UrH̃r(s)V
T
r (13)

In our implementation we used PRIMA to obtain Hr(s). The final reduced
system is p × q with a number of nonzero elements of order O(r2).

3.2 Poor Man’s TBR (PMTBR)

The PMTBR algorithm [7, 6] was motivated by a connection between frequency-
domain projection methods and approximation to truncated balanced realiza-
tion. The method is less expensive in terms of computation, but tends to TBR
when the order of the approximation increases. The actual mechanics of the
algorithm are akin to multi-point projection, summarized in Section 2.2. In
a multi-point rational approximation, the projection matrix columns are com-
puted by sampling in several frequency points along a desired frequency interval

zi = (G + siC)−1M (14)

where si, i = 1, 2, . . . , N , are N frequency sample points. The frequency-
sampled matrix thus obtained can then be used to project the original system
in order to obtain a reduced model.

In the PMTBR algorithm, a similar procedure is used. The connection to
TBR methods is made by noting that and approximation X̂ to the Gramian X
can be can be computed as

X̂ =
∑

i

wiziz
H
i (15)

where si = jωi and the ωi and wi can be interpreted as nodes and weights
of a quadrature scheme applied to a frequency-domain interpretation of the
Gramian matrix (see [7] for details). If we let Z be a matrix whose columns are
the zi, and W is now the diagonal matrix of the square root of the weights,
Eqn. (15) can be written more compactly as

X̂ = ZW2ZH (16)

If the quadrature rule applied is accurate, X̂ will converge to X, which implies
the dominant eigenspace of X̂ converges to the dominant eigenspace of X . If
we compute the singular value decomposition of ZW.

ZW = VZSZUZ (17)

with SZ real diagonal, VZ and UZ unitary matrices, it is easy to see that VZ

converges to the eigenspaces of X, and the Hankel singular values are obtained
directly from the entries of SZ . VZ can then be used as the projection matrix
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in a model order reduction scheme. The method was shown to perform quite
well in a wide variety of settings [16].

An interesting additional interpretation, and quite relevant for our purposes,
was recently presented [6]. It has been shown that if further information reveal-
ing time-domain correlation between the ports is available, a variant of PMTBR
can be used that can lead to significant efficiency improvement. This idea is akin
to the basic assumptions in SVDMOR and relate to exploiting correlation be-
tween the inputs. Unlike SVDMOR, however, it is assumed that the correlation
information is not contained in the circuit information directly, but rather in
its inputs. In this variant of PMTBR, a correlation matrix K is formed by
columns which are samples of port values along the time-steps of some interval.
Those samples, should characterize as well as possible the values expected at
the inputs of the system, i.e. K should be a suitably representative model of
the possible inputs. An SVD is then performed over K in order to retain only
the most significant components of the input correlation information:

K ≈ UKΣKVT
K (18)

With this additional correlation information, the samples relative to multi-point
approximation become:

zi = (G + siC)−1MUKΣK (19)

Using the zi above as columns of the Z matrix in (16) leads to the input-
correlated TBR algorithm (ICTBR). See [16] for more details and a more thor-
ough description of the probabilistic interpretation of both PMTBR as well as
ICTBR.

3.3 Time Constant Equilibration Reduction (TICER)

TICER [8] is an RC model reduction method that behaves in a very efficient
way. Model extraction tools usually obtain lumped element parasitics based
on local changes in geometry. The resulting models have a huge variety of
dynamics which can be reduced by TICER. This method analyzes the time
constant associated with each extracted net and eliminates the ones with a
time constant outside a given interval. This way, a realizable RC circuit which
maintains the original network topology is obtained.

The time constant associated with a node N of a circuit is given by:

τN =
χN

γN

=

∑

k ckN
∑

k gkN

(20)

where χN and γN are, respectively, the equivalent capacitance and conductance
seen by node N . χN is obtained by adding the capacitances between node N

and its neighbors, ckN , and γN is obtained by adding the conductances between
node N and its neighbors, gkN .
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From the point of view of the capacitors connected to a node N , if sχN �
γN , it is as if that node is floating and thus is considered a slow node. On the
other hand, if sχN � γN , the voltages of that node are at all times determined
to be in DC equilibrium with its neighbors, i.e., that node is always fully relaxed,
and is said to be a quick node.

With this is mind, TICER node elimination operates in two parts:

– If a node N is a slow node, it is eliminated and any pair of nodes (i, j)
previously connected to N are now connected by a conductance gij =

giNgjN

γN
.

Moreover, if nodes i and j had capacitances connected to N , connect these
nodes with a capacitance cij =

ciNcjN

γN
.

– If a node N is a quick node, it is eliminated and any pair of nodes (i, j)
previously connected to N are now connected by a conductance gij =

giNgjN

γN
.

Moreover, if node i had a conductance to N and node j had a capacitance
to N connect these nodes by a capacitance cij =

giN cjN

γN
.

In the elimination process, ground node is treated like the remaining neighbors
of the node to be eliminated.

The reduced model is an RC circuit and the output is passive, so stability
and DC characteristics are exactly preserved. Notwithstanding, the drawback
of this method is that when a node with n connections is eliminated those
connections disappear but n(n−1)

2 new connections appear. So, with TICER
node elimination, the number of elements grows quadratically while the number
of nodes decreases linearly. The method itself has linear complexity on the
number of nodes.

4 Power-Grid Reduction

Both the standard model order reduction as well as the methods described in
the previous section can be applied to massively coupled systems. Methods like
SVDMOR are reported to provide significant advantages over the standard al-
gorithms if certain conditions are met, namely that significant port correlation
exists and can be ascertained in a practical way. PMTBR is a more general
algorithm for model reduction, which can nonetheless be applied to large sys-
tems, given its reduced computational complexity. TICER, on the other hand,
acts in a way that is similar to node elimination in a direct solver procedure. It
can be used irrespective of the number of ports, but the resulting model tends
to become denser as more nodes are eliminated.

As stated previously, the difficulty with standard projection algorithms like
PRIMA or multi-point projection schemes, is that the models produced have
size proportional to the number of ports. This limits their applicability to prob-
lems such as power grids, where the number of network ports is likely to be very
large. An interesting question that might be raised is whether this restriction is
inherent to the system, given the number of ports, or an artifact of the compu-
tation scheme chosen. In order words, one might ask whether accurate modeling
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Fig. 1. TBR error bounds for a 20×20 RC grid as a function of the number of inputs,
q.

and analysis of a power grid, modeled as a large RC grid, does indeed require
so much dynamic information. This questions is all the more relevant as there
is a common popular belief that only a few poles are required to accurately
model an RC circuit. The roots of this problem are ancient and can be traced
back to other domains like timing simulation. Here one asked the question of
whether localized approximations of a node’s behavior could be used for speed-
ing up circuit simulation. It is now widely accepted that in certain settings that
is indeed the case, but this conclusion is not general (see [18] for a discussion
regarding simple RC models). Here a similar question is asked but now with
respect to the number of ports.

To get some insight into the problem, it is interesting to consider a simpli-
fied scenario of a power grid and examine its behavior as the number of ports
increases. Consider then a 20× 20 elements RC grid, representing a power net-
work, and consider that the grid’s inputs are positioned along the left side of the
grid. Furthermore consider increasing the number of inputs by attaching more
sources the the various grid nodes (i.e. adding more columns to M), again all
located at the left and assume that the same nodes are observed (i.e. NT = M).
As a proxy for system complexity, Figure 1 shows the TBR error bound from (8)
obtained from the Hankel singular values as a function of the number of inputs.
From the figure, we can see that indeed the order of the model required for ac-
ceptable accuracy grows with the number of inputs. Even in this simple setup,
for the 64-input case, low-accuracy (say 20%) still requires at least a model
with 120 states. A similar conclusion had been reached in [16] for the simpler
case of an RC line. This result, seems to put into doubt the possibility of being
able to perform model compression in such networks. Indeed, if 120 states (out
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Fig. 2. TBR error bounds for a 10 × 5 and a 10 × 50 RC grid with separated inputs
and output.

of a possible 400) are required for accuracy, then the chances of being able to
perform significant reduction are small.

Consider now Figure 2 where the TBR error bound is again plotted, but
now for two cases corresponding to a “thin” 10×5 and a “fat” 10×50 RC grids
where a fixed number of inputs was used. Obviously neither grid is realistic in
any way, but they serve the purpose of illustrating an important issue. Clearly
the “fatter” grid, where the inputs are further away from the outputs, is much
more compressible than the “thinner” grid. Indeed, for the “fatter” grid, only a
handful of states are required even for high accuracy. The “thiner” grid shows
the same behavior as before and seems fairly incompressible.

Figure 2 indicates that there is indeed hope for some reasonable reduction
to be achieved. It also indicates that whenever inputs and outputs are widely
separated, significant compression is possible. This is akin to the ideas of the
multi-pole algorithm developed for electromagnetic modeling and used for in-
stance in capacitance and inductance extraction. The effect on any point of a
cluster of faraway input sources is individually indistinguishable. The system
is therefore functionally similar to another one with just a few inputs. There-
fore, only a few states are necessary to capture the various dynamics and the
compression achievable is much greater. Unfortunately that situation is too re-
strictive for power grids in general, where ports are usually located all over the
grid. Furthermore, the more likely scenario is that one will at least want to
observe the potential at all grid nodes where inputs are connected (and thus
where current spikes may appear). In this case, it is expected that the com-
pression ratio will be small. Nevertheless, it is possible that high accuracy is
only really needed to model the effect of nearby sources, while far away sources
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Fig. 3. Setup for grid B.

can be modeled in a coarser way. In this case smaller or at least sparser models
should suffice.

5 Results

In this section we present results for reduction of power grids. Two types of
topologies were tested: a mesh with voltage inputs on the left side and current
outputs on the right one, which we term grid A, and a mesh with voltage ports
along the left side and current ports randomly distributed over the remaining
nodes, such as shown in Figure 3. We call this second setup grid B. There are two
main differences between these two setups. The first one concerns formulation.
While in grid A matrices M and N in Eqn. (1) are distinct (M yields input
information and N yields output information) in grid B we have M = N , thus
all ports are controllable and observable. The second main difference consists in
the separation between ports. Relating back to the discussion in Section 4, in
grid A the separation between inputs and outputs is maximal, while in grid B
not only every port is both input and output, but also the geometric proximity
between ports is reduced. We thus expect grid A to be fairly compressible, but
smaller reductions to be seen for grid B. Grid A is similar to the one used in [4],
while grid B was created in order to illustrate a more realistic setup.

The electric model of all grids is the following: every connection between
nodes is purely resistive and in every node there is a capacitance to ground.
Resistance and capacitance values were randomly generated in the interval
(0.9, 1.1).

In the following set of experiments the size of the reduced model is the same
for all methods and was pre-determined. The correlation matrix of SVDMOR
is a DC shifted moment with a shift of s = 0.1 rad/s in normalized frequency,
e.g., Ms = NT (G + 0.1 ×C)−1M. For this method, after computing the SVD
and choosing how many singular values to keep, a number of PRIMA iterations
is performed in order to generate a model of the required size. The number
of frequency samples of PMTBR was set such that we can draw a model of
the same size from matrix Z. Samples were chosen uniformly in the frequency
range shown in the plots, and an additional sample added at DC. Concerning
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TICER, we computed the mean of the time constants of all nodes and began
elimination of the nodes which are farther from the mean, until we reached the
required model size.

5.1 Grid A

Grid A was originally used in [4] to illustrate the SVDMOR algorithm. We ap-
plied all previously discussed methods to reduce this grid. The Bode plot of an
arbitrarily selected transfer function is presented in Figure 4. The number of
retained states was forced at r = 40. In the case of SVDMOR, 4 singular values
were kept and 10 PRIMA iterations were run, yielding the reduced model of
4 × 10 = 40 states. We can observe that SVDMOR and TBR show good re-
sults, better than PMTBR, while PRIMA and TICER show a large error (using
larger orders it is possible to produce an accurate approximation). In order to
understand the reason for these results the plot of the singular values of all
relevant methods is presented in Figure 5. We see that the singular values (s.v.)
of Ms, used by SVDMOR to guide the reduction, decay quite fast. Therefore
keeping just the first 4 yields a good approximation. On the other hand the
TBR Hankel s.v. and the PMTBR s.v. decay very slowly.

Notwithstanding, a Bode plot shows only one transfer function from the
transfer matrix. Table 1 shows the infinity norm of the transfer matrix error,
‖H(s) − Hr(s)‖∞. Analysis of the table indicates that in the overall model,
TBR behaves better than SVDMOR for this grid setup.

With respect to TICER, its main advantage over the remaining methods is
that it directly generates a realizable reduced model. Consequently, this method



14 João M. S. Silva and L. Miguel Silveira

2 4 6 8 10 12 14 16 18 20

10−12

10−10

10−8

10−6

10−4

10−2

100
Singular value plot of 20 x 20 RC mesh with 40 ports

SVDMOR
TBR
PMTBR

Fig. 5. Normalized plot of singular values for grid A: SVDMOR matrix, TBR-Hankel
singular values and PMTBR samples matrix.

Table 1. Infinity norm of H(s) − Hr(s) for 20 × 20 mesh with 20 inputs on the left
side and 20 outputs on the right side. SVDMOR used 4 singular values.

r = 40 PRIMA SVDMOR TBR PMTBR TICER

||H − Hr||∞ 2.391e-01 3.552e-04 1.320e-07 5.901e-02 8.085e-01

should be used whenever such a model is strictly necessary or in conjunction
with other MOR method, since by itself it fails to obtain a reasonable approx-
imation for small model sizes.

5.2 Grid B

In grid B the objective was to emulate a more realistic situation whereby po-
tentially many devices, modeled as current sources, are attached to the power
grid and can draw or sink current from/to it when switching. The number of
current sources was chosen to be around 10% of the number of nodes. We have
32 current sources and 20 voltage sources. This is a harder problem to reduce,
due to port proximity, and thus interaction, and the results show it. Again the
Bode plot of an arbitrarily selected transfer function is presented in Figure 6.
The number of retained states was now forced at r = 104 (two times the num-
ber of ports) already showing smaller reduction than for grid A. In this case,
the approximation produced by SVDMOR is less accurate. TBR and PMTBR
produce the most accurate models. PRIMA shows a reasonable approximation
while TICER fails to model accurately the behavior of the cutoff frequency. This
was expected from inspection of Figure 7, where we see that the TBR Hankel
s.v and the PMTBR s.v decay very fast, while the s.v. of Ms, used by SVDMOR
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Fig. 6. Bode plot of arbitrarily selected entry of 20 × 20 transfer function matrix
corresponding to grid B (r = 104).
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Fig. 7. Normalized plot of singular values for grid B: SVDMOR matrix, TBR-Hankel
singular values and PMTBR samples matrix.

for reduction, decay very slowly. Clearly, the assumption of highly correlated
ports is not valid here. The results concerning the error of the transfer matrix
are in Table 2.

The matrices of the reduced models of both experiences are full with the ex-
ception of TICER. However, given the lack of accuracy of the TICER-generated
models for this model size, such an advantage is of no consequence.
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Table 2. Infinity norm of H −Hr for 20× 20 mesh with 20 ports on the left side and
32 randomly distributed ports over the mesh.

r = 104 PRIMA SVDMOR TBR PMTBR TICER

||H − Hr||∞ 9.8.0e-02 8.071e-02 1.828e-02 1.195e-02 7.297e+00

Fig. 8. Input waveforms used for ICTBR experiment on grid B.

5.3 Time analysis: Input-Correlated TBR (ICTBR)

In this experiment, the ICTBR method, presented in Section 3.2, was used to
generate a reduced model. We assumed that the grid inputs were correlated and
had waveforms similar to those shown in Figure 8, which emulate transistor
current signatures. The amplitude of the waveforms was randomly varied by
10%, while the phase shows a random 20% jitter.

Grid B was used for this experiment and the voltage resulting from the time
analysis of one of the 32 ports connected to current sources is shown in Figure 9.
The reduced models shown have size r = 40 states (compare with size 104 used
in Section 5.2). From the plot it is clear that only the 40-states ICTBR model
can accurately mimic the voltage behavior of the port. This example shows that
significant reduction can be obtained by exploiting input correlation.

6 Conclusions

In this paper we discuss several issues related to model order reduction of power
grid networks and compare several standard and other recently proposed meth-
ods for solving this problem. We show that power grids present a strong chal-
lenge for model order reduction techniques and discuss scenarios in which this
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Fig. 9. Time variation of randomly selected node voltage for the ICTBR experiment
on grid B.

reduction might yield different compression ratios. We demonstrate through
simple examples that achieving relevant compression requires a careful study
of the grid characteristics and that no method produces the best solution in all
scenarios. We also show that significant reductions can be achieved by exploiting
known correlation between the input ports.
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