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1 Introduction

The software analysis community has made a lot of progress in creating soft-
ware tools for detecting defects and performing proofs of shallow properties of
programs. We are witnessing the birth of a virtuous cycle between software
tools and their consumers and I, for one, am very excited about this. We un-
derstand much better how to engineer program analyses to scale to large code
bases and deal with the difficult problem of false errors and reducing their num-
ber. We understand better the tradeoffs in sound vs. unsound analyses. The
software tools developed and applied over the last eight years have had impact.
This list of tools includes Blast [HJMS02], CCured [NMW02], CQual [FTA02],
ESC/Java [FLL+02], ESP [DLS02], Feaver [Hol00], MAGIC [CCG+04], MC [HCXE02],
MOPS [CDW04], Prefast [LBD+04], Prefix [BPS00], SLAM [BR01], Splint [EL02]
and Verisoft [God97], to name a few.

This bottom-up approach to improving code quality will continue to be suc-
cessful because it deals with a concrete artifact (programs) that people produce,
has great economic impact and longevity. Furthermore, because many of the
tools listed above are specification-based, they are easy to extend to new classes
of bugs. Finally, a lot of the science to support the development of these tools
has been done; there is now before us a long road of engineering to make these
tools truly useful and useable by a wide audience.

To balance these great efforts, we should devote some attention to top-down
approaches to building reliable software and reconsider how we design software
systems so that they are reliable by construction. We want to construct software
in such a way that, as a result of its structure, it has certain good behaviors
and does not have other bad behaviors. Furthermore, these good behaviors (or
the absence of the bad ones) should be preserved as we refine the system to add
functionality or improve performance.

I am concerned that Verified Software focuses on the analysis of artifacts
(programs) rather than on their design and construction. Instead of just posi-
tioning ourselves as software critics (“thumbs-up” or “thumbs-down”), we also
must get up on stage and demonstrate methods for designing and building re-
liable software. A holistic approach to the problem of software reliability that
encompasses designing, building and analyzing software systems will offer the
greatest challenges and rewards.

2 Perspective: The SLAM and SDV projects

What is SLAM about? SLAM was motivated by the program of Windows device
drivers. What is a device driver? An idealized view of device drivers is that



they are programs that interface hardware to the operating system (the reality
in Windows is much more complex). The problem with programming device
drivers is that the driver API (essentially a subset of the Windows kernel) is
very complex and difficult to master and most device drivers are written by
third-party device manufacturers, who are not Windows kernel experts. The
device driver “monster” is alive and continues to wreak havoc: device driver
failures are the source of 85% of Windows XP crashes.

Why is programming a driver so complex? First and foremost, the Windows
kernel is a highly concurrent system and this concurrency is exposed to the
driver programmer. Asynchronous I/O is a core facet of the Windows kernel
underlying the driver API; it allows for high-performance implementations but
is hard to program correctly. The API provides many ways to synchronize access
to data and resources. Other major features that the driver API supports are
Plug-and-Play (the ability to remove devices and OS features while the computer
is on and have everything work correctly) and power management (the ability
to selectively power-down subsystems, hibernate and restore power as needed).
Like many APIs, the driver API evolved in a very demanding and constrained
environment where performance and backward compatibility were driving forces.
These forces resulted in a complex API. As a result, driver reliability suffered.

The key idea of the SLAM project is that while a device driver contains a
huge amount of state, we need only reason about a small amount of this state
when checking whether or not a driver properly uses the driver API. The SLAM
tool reverse engineers a Boolean program (pushdown automaton) from the C
code of a driver that represents how the C code uses the driver API. Bits in
the Boolean program represent important observations about the state of the
C program (with respect to its usage of the driver API). SLAM then applies
symbolic model checking on this Boolean program. The SLAM engine has been
packaged up in a tool called Static Driver Verifier (SDV) that has been released
in beta form this year to third party driver developers.

The SDV tool is much more than the SLAM engine. The challenge of mak-
ing an effective “push button” tool was much more than the creation of SLAM’s
software model checking engine: the real challenge was the creation and refine-
ment of a set of API usage rules that encode the proper usage of the driver
API, as well as an environment model to represent the Windows kernel. Because
the driver API is so complex, the development of these rules and environment
took a very long time. At first, the rules and environment were too simple and
resulted in many false errors. Only after much iteration with driver experts, did
we end up with a set of rules and an environment that was effective. During
this time, the SLAM engine changed very little. Most of the false errors were
due to problems with the rules and environment. This effort was deemed to be
worthwhile because we have captured a huge amount of domain expertise about
device drivers that now can be leveraged in an automated tool that many driver
developers will use. In this sense, SDV is a tireless and expert device driver code
inspector that will help driver developers to make proper use of the driver API.
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3 Will SLAM and SDV Solve the Driver Problem?

The answer is “probably not”. Let’s try and understand why.
The SLAM project often is held up as a model of success for software analysis.

It is nice to receive such kudos but let’s not get carried away here! Once, I
was invited to give a talk about SLAM at a workshop and saw that in the
preliminary publicity materials for the event, the organizer said something to the
effect that “SLAM made a significant contribution to improving the reliability
of the Windows operating system.” I nearly fell out of my chair when I read
that, knowing that all the efforts that people in the Windows organization had
made over many years to improve Window’s reliability and knowing that SLAM’s
contribution, even if “significant”, would pale in comparison to these efforts. (I
very quickly got the message removed from the publicity materials, by the way).
In reality, it will be years before we can tell what the effect of SLAM on the
reliability of Windows will be and it is even questionable, given all the other
methods in play for increasing the reliability of Windows, whether we will be
able to separate out SLAM’s effect.

There are many reasons device drivers fail and SLAM is capable of finding
only a certain class of errors. For example, SLAM does not check that a device
driver does not write outside the bounds of the data structures it manipulates. A
device driver that corrupts the state of the kernel will not be detected by SLAM.
SLAM checks the code of a device driver without considering the interleaving of
other threads of execution, so it cannot find deep concurrency errors. It does not
do performance testing of the driver under heavy volumes or check for reactivity
or real-time constraints.

While SLAM is an important tool in the driver reliability toolbox, it is not
sufficient to guarantee the reliability of device drivers. There are many other ap-
proaches to dealing with misbehaving drivers. For example, some have proposed
running the driver in a sandbox where it cannot damage kernel data structures.
Now, some may look at this situation and say “so we need more tools”. But oth-
ers may say “we need to design a better APIs for programming drivers”. Others
may say “we need to redesign the operating system”.

My main point is that tools like SLAM and SDV come in very late in the
software production process and, as a result, can only have a limited affect on
reliability. The tools only are applied after many important decisions have been
made (driver API designed, drivers written in C, drivers run in the same address
space as the kernel, etc.) that affect driver reliability in ways that are hard for
static analysis tools to address.

4 Provocation

A program is a very detailed solution to a much more abstract problem. Leading
from a problem to a program is a complex process. By focusing too much atten-
tion on the program, we risk ignoring the complicated process that starts with
a problem and ends in a program. It is this process that, in the end, is primarily
responsible for the quality of the program. The process of design matters greatly,
with particular attention to the fact that programs are deeply integrated into
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our physical world. As is well-known, a critical design mistake made early in this
process, once deeply woven into the intricate software tapestry of a program, is
not easily corrected.

Viewed from this perspective, program analyzers, model checkers, verifying
compilers and tools like SLAM come into play long after a lot of the important
work has been done. These tools find errors and suggest minor modifications to
the product. Of course, because of the nature of software, these minor modifi-
cations can rid the software of crippling behavioral problems. But, in the end,
the analysis tools are working at such a low-level of abstraction (the code) that
they cannot see the forest for the trees.

An analogy to automatic parallelization was suggested to me by Jim Larus.
For twenty years, researchers worked on techniques for automatically paralleliz-
ing sequential FORTRAN programs. While this research produced some inter-
esting ideas, it never succeeded in creating efficient parallel programs from se-
quential ones, mainly because there wasn’t a lot of parallelism to be found in
these programs in the first place! Today, the parallel program community recog-
nizes that to get efficient parallel programs you need to carefully design parallel
algorithms rather than hoping that a tool will be able to extract parallelism from
a program that has little of it to offer.

Similarly, we cannot expect verification tools to inject high reliability into a
program that was not designed with reliability in mind from the beginning. We
must think about reliability at every point in the software production process.
If the starting point for verification is that we are given a program and must
attempt to verify it, we are in a losing position because we have so little lever-
age to affect the design of that program. Starting at the “bottom” means our
potential energy and potential for success is very low.

5 A Call to Action: Software Design Methodologies

I believe that by designing, building and analyzing software in new ways that
substantially increases its reliability, we will face many more challenges and op-
portunities than if we limit ourselves to analyzing software. This is what I mean
by taking a “holistic” approach to issues of software reliability. As an example,
at Microsoft Research there is a new operating system research project called
Singularity led by Galen Hunt and Jim Larus. Here is part of the “Motivation”
section from the Singularity Design Motivation [HL04]:

Singularity is a cross-discipline research project focused on the construction
of dependable systems through innovation in the areas of systems, languages,
and tools. We are building a new research operating system, called Singular-
ity, as a laboratory for designing systems, extending programming languages,
and developing new techniques and tools for specifying and verifying program
behavior.

Singularity is the first OS to enable anticipatory statements about system
configuration and behavior. A specific Singularity system is a self-describing
artifact, not just a collection of bits accumulated with at best an anecdotal
history. Singularity’s self description includes specifications of the components
of the system, their behavior, and their interactions. One can, for example,
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examine an offline Singularity system image and make strong statements about
its features, components, composition, and compatibility.

The Singularity research team defines operating system research as research
into the base abstractions for computing and research into implementations of
those abstractions as exposed by the OS. By returning to this basic definition of
OS research, Singularity embraces the opportunity to re-think OS abstractions
and their implementations.

OS research is ready for a revolution. Modern systems are bound by abstrac-
tions largely defined in the early 1970s. OS research has not kept pace with
changes in application composition or security needs of everyday usage scenar-
ios.

Now, you can go read the rest of the note to get some more detail about
this project. But just reading this motivation gets me excited. This sounds like
a challenge problem! Why? This project has several important attributes that
catch my attention:

– it focuses on an important domain (operating systems) with high commercial
and societal impact;

– it recognizes that reliability depends on many puzzle pieces, such as operating
systems design, new languages and software tools (it is cross-disciplinary);

– it recognizes that the search for appropriate abstractions is a key problem
in operating systems design.
There is something to learn from Singularity, even if operating systems is

not one’s cup of tea. First, let’s start with a problem domain (or two or three,
to keep everyone interested) for which high reliability is a necessity and work
our way towards a solution. (To reiterate, software is a solution to a problem. If
we start with the solution then we have no control over how the solution came
into being.) We may sacrifice claims to generality but we will gain a lot more
(especially, credibility). Second, by necessity, we need to form cross-discipline
teams. We cannot expect to acquire all the domain knowledge ourselves. By
bringing our expertise in what is possible to specify and verify together with the
knowledge of domain experts, we can make much more progress than if we work
in isolation. Third, let’s look into a variety of approaches to ensuring reliability.
We have some specification languages and modeling languages, but are they
really sufficient for the domains we wish to tackle? We have model checkers,
theorem provers and program analysis but are they up to the task? We should
let the problem domain guide our search to the abstractions, methods, languages
and tools that will be the most appropriate to that domain, rather than letting
the technologies we know and love blind us to other possibilities.

6 Conclusion

Based on my experience with the SLAM project, I would like to spend more
time thinking about how to design and build reliable software rather than an-
alyzing it after the fact. I don’t have a recipe for success or prescriptive advice
at this point. However, I am intrigued by the continued success of design pat-
terns and reusable components in helping to construct larger and more complex
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systems. For example, Microsoft’s www.gotdotnet.org site has a community of
over 5,000 developers who contribute to the Enterprise Library, “a collection of
reusable components that help you quickly build better applications with more
features and higher quality” (my emphasis). As with the Singularity project,
these developers are engaged in the search for better abstractions. We should
think about partnering with such people—they are involved in designing and
building real applications and have substantial domain expertise. What they are
missing is the knowledge we have about verification technology.
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