Model-Checking Software Using Precise Abstractions

Marsha Chechik and Arie Gurfinkel

Department of Computer Science, University of Toronto,
Toronto, ON M5S 3G4, Canada.
Email: {chechi k, ari e}@s. t oront 0. edu

1 Introduction

Formal verification techniques are not yet widely used insibiéware industry, perhaps
because software tends to be more complex than hardwar¢heupenalty for bugs is
often lower (software can be patched after the releasdeadsa large amount of time
and money is being spent on software testing, which missey subtle errors, espe-
cially in concurrent programs. Increased use of concugreng., due to the popularity
of web services, and the surge of complex viruses which ég@aurity vulnerabilities
of software, make the problem of creating a verifying compfbr production-quality
code essential and urgent.

Many formal techniques can effectively analyredelsof software. However, ob-
taining these models directly from the program text is ndwigtl. Not only are there lan-
guage issues (pointers, dynamic memory allocation, ofggentation, dynamic thread
creation) to deal with, but the most important problem ioadtically determining the
level of abstraction for creating such a model: it should ipgpte enough to analyze
and yet detailed enough to be conclusive on the propertiegerest. Thus, we believe
that part of the challenge of creating a verifying compigecieation of fully automated
light-weight verification and validation techniques whiutip detect bugs and yet scale
to handle large complex software. Furthermore, the teakescshould be supported
by a methodology that enables developers to pose questimng eorrectness of their
programs and effectively understand the results of theyaisal

Software model-checkifPR01,VHB"03] checks the program by either forcing
it to “run” all of its behaviours up to a certain number of stepr by static analysis. Pi-
oneered by Microsoft's SLAM project, software model-chegkhas been successfully
applied to checking Windows device drivers [BCLZ04], dersioating that effective
verification of single-threaded C programs is possible.

We believe that the existing techniques based on the CEGamRework (see Fig-
ure 1) that use a theorem-prover for constructing modelssammbdel-checker for ex-
ploration is a reasonable way to go for analyzing realistimgpams. However, such
methods should be enhanced in a number of directions if oarigdo create a truly
effective program verifier. In Section 2, we describe oustrg work on creating better
abstractions. In Section 3, we discuss two approaches thaklieve are essential for
scaling automated analysis: reuse (via compositionalaisaand regression verifica-
tion) and combining static and dynamic reasoning. We cateln Section 4.

Prograrm

Abstract Rl

Predicates
(computed)

Analyze answer

Mo

Answer
definite?

Qutput answer
and terminate

Finite (OB
model — Model-check | (yes/ T/
maybe)
Property
Fig. 1. Abstraction-refinement cycle.
int x;
x = 0;
if (x >0) if ()
@ {x++} 0 {3
el se el se
{x--} {:}
P1: P1:

Fig. 2. (a): a C program where link1 is not reachable; (b): an abstraction of (a) without predi-
cates.

2 Creating Precise Abstractions

Paraphrasing Reps and Sagiv [RSWO04], we need abstractiahaltow lack of preci-
sion and still enable reasoning. Thus, an abstraction ied§i it can identify whether
the analysis of a property of interest is conclusive (i.dhewthe property is true/false
in abstract model, it is true/false in the concrete one)hWitch an abstraction, we can
trust all of the answers except those that explicitly inthcano information”. Experi-
ence in static analysis [RSWO04] showed that a logic witheslother than just True and
False can be used effectively to create abstractions teaepre both truth and falsity:
when a property is inconclusive in the abstraction, theysiskimply returns a special
value Maybe.

Traditional model-checking approaches already build saigstractions. For ex-
ample, suppose we are interested in checking whethds reachable in a program
in Figure 2(a). The initial abstraction for this program issf its control-flow graph,
shown in Figure 2(b), and it is clear that is reachable by every path, i.e., regard-
less of the evaluation of the condition of thé statement. However, since the con-
ditions is “unknown”, i.e., it isneither True nor False, it is not possible to convert
it into a boolean model, expected by classical model-cmeckigorithms. Here, two
choices are available. The standard approach, employedidly model-checkers as
SLAM and BLAST, is to treat “unknown” as “non-deterministic.e., aseither True
or False, which looses some of the information availablé@abstraction, but allows
the use of classical model-checking algorithms. An altiéveaapproach is to extend

() ()
(o)) (o))
° e}
3| oT 3| T
g \/ g <>
o o
c c
=~ M =~ M
(a) truth (b) truth

Fig. 3. Truth order vs. knowledge order of (a): Kleene and (b): Bellugics.

the analysis to partial models that can represent “unknoexpglicitly. In fact, sev-
eral such alternatives, based on Kleene and Belnap logées Kiggure 3, where the
additional values stand for “maybe” and “disagreement)ehlaeen proposed over the
years (e.g. [LT88,BG99,CDEG03,DGG97,GWCO06]), but havdaund their way into
software model-checking practice because it is generalligted that they cannot be
implemented efficiently. Thus, the additional power of atig available rich abstrac-
tions remains untapped. Instead, the classical analysidsn® know exactly which
execution of thei f statement in the example in Figure 2(b) is feasible, whiell$eto
generating an additional predicate and a refined abstraciearly, this can and should
be avoided.

To show that the additional reasoning power can be obtairndut sacrificing per-
formance, we have recently built a prototype software matheicker YASM [GCO06]
which implements the CEGAR framework using Belnap logice Tisagreement”
value is used to improve precision of our models. The renaxiod this section com-
ments on how our approach differs from the classical ones@bg phase.

The abstraction phase builds an abstract model, using egtitmeprover (YASM uses
CVClLite [BB04]) to approximate the effect of each statemieyta propositional for-
mula over the available predicates. Abstracting each Ifrite@program can take up to
2™ calls to the theorem prover, whetas the current number of predicates [GS97,BR0O1].
This number can be minimized by the application of constraatisfaction algorithms
[Dec03], and we are currently experimenting with severaPG&chniques to improve
the performance of our tool. Overall, our abstraction phaspiite standard and is in-
dependent of our use of Belnap logic for the analysis.

For the model-checking phase, our current implementatsss @ modification of
our existing model-checketChek [CDGO02] which can naturally analyze models ex-
pressed in Belnap and Kleene logic. Just as other impleti@msaof the CEGAR
framework, we extendetiChek’s algorithms to exploit the control-flow graph of the
program. We also discovered that it is relatively straightfard to incorporate and ex-
tend existing advances in software model-checking tedgylsuch as interpolant-
based predicate discovery [HIMMO4] and lazy abstractiodMB02], into our frame-
work.

Multi-valued witnesses and counterexamples produced®kiek correspond to
partial proofs of correctness [GCO03]. Thus, in the refinetpdiase, it is not necessary to
check whether the execution produced by model-checkinggisilble. Instead, we sim-
ply refine abstractions that produce the Maybe answer, brpetktg new predicates for
refinement from such partial proofs. Existing SLAM-like teiques can handle safety

properties only (e.gx is always positive, null pointer is never dereferenced, sseg
tion is always satisfied), partly because the traditionaGBR framework depends on
the linearity and the finiteness of generated counterexasn@lur approach can work
regardless of the structure of the property, and thus capplésa to a larger set of prop-
erties, such as non-termination (to complement the tecienid Cook et. al. [CPRO05])
and liveness, as well as to programs with explicitly-defifeedcomputations.

The current version of the tool can check properties of C o with complex
language features such as structures, pointers, and i@tu/¢e have also implemented
lazy and eager abstraction and a limited form of non-deteismi, which will lead
to the analysis of concurrent programs. Our experience stidiat the introduction
of additional logic values does not reduce the feasibilitgyh® analysis. In fact, the
analysis remains as feasible as the classical one whilengékpossible to effectively
reason about a larger class of properties.

3 Other Approaches to Effective Software Model-Checking

A verifying compiler should be able to effectively compildararily large and complex
programs, from device drivers which can be effectively gpatl by state-of-the-art
tools, to multi-user multi-threaded distributed systeifisus, the problem of “scaling
up” of software model-checking will remain pressing, andhis section we discuss
two directions which we believe are essential for tacklimig problem.

3.1 Reuse: Compositional and Regression Verification

Complexity of software is often addressed by decomposingtesm into components.
Thus, one way to improve scalability of a verification tecjue is by making icom-
positional Over the years, various “assume-guarantee” techniquesheen proposed
to partition the verification effort across system compdagand these can be adopted
to reasoning about software. For example, to analyze a divead, we can generate
a most general environment that is sufficient to ensure treatiesired property holds,
and then check that the combination of other threads satifie environment. We also
propose to apply symmetry reduction to build abstractidnsoacurrent systems with
several similar components [WGCO05]. We believe that a singipproach can be taken
to facilitate the analysis of component-based and parainetesystems.

A major reason for SLAM’s ability to analyzescursiveprograms is its composi-
tional approach to processing functions. Instead of hagdlinction calls by inlining,
SLAM treats each function as a component, analyzes it omakuaes the computed
function summarin the rest of the analysis.

However, the traditional notion of a component (i.e., a tiorg a module, a library,
athread), is not sufficient to effectively capture the coewjiy of software. This is espe-
cially highlighted by the recent popularity of non-traditial decomposition techniques
such as aspect-based programming [EFBO1].

An approach complementary to compositional verificatiamigession verification
As software gets changed frequently and needs to be “reded’ijand thus reverified),
the goal of this approach is to determine how much of the medlifirogram needs to

be reverified and reusing results of previous analyses wiegmssible. In particular,
it is necessary to determine when previous abstractiondearused in checking the
modified program. Further, changes in software often atidatge number of compo-
nents, and we believe that the re-verification effort musptogortional to the amount
of change, not to the number of affected components.

The lack of support for regression verification is particlyl@vident in the current
applications of the CEGAR framework. In this framework, tdestraction of the pro-
gram is constructed incrementally, with each new abswadbieing a “small change”
of the old. However, with the notable exception of [HIMSO02(B], this is not taken
into account during the verification phase. Early expemeanith regression verification
shows a lot of promise. For example, Henzinger et al. [HIM$@#&e demonstrated
an almost “on-line” verification of some properties, whee program is verified as
it is being written. Our own experience [GC06] shows thatgoemn analysis using
Belnap logic that precisely identifies which results of aifigation can be trusted, is
particularly well suited to localizing the effort of regsésn verification. Moreover, our
current work on merging [UC04] allows us to combine functand other component
summaries obtained during different analysis passes gifirthie program being modi-
fied.

3.2 Combining Static and Dynamic Approaches

The goal of static analysis is to establish a property ofxaicaitions of a program. In
theory, it promises to completely eliminate dynamic anialgach as testing and runtime
monitoring; moreover, this has been possible in practimeahalyzing relatively small
components such as device drivers. We believe that stafimigues alone may not
scale to reasoning about large distributed programs tleatoautinely being built today,
and may need to be supplemented by a careful applicationrardic analysis.

There are numerous ways in which static and dynamic anatgsidhe combined.
For example, program execution can supplement theorewifrdn construction of
abstract models [KGCO04]: if the program reaches the desiatd, then the value of the
transition should be True; otherwise. no information isilade.

Another approach is to combine results of testing to helggade static analysis
towards a possible error. We are currently exploring a Viaaof this approach by
building an abstract model from regression test suiteshSuites are available with
most large-scale software systems and can be thought ofaikedescenarios describing
the system. We can combine these into partial behaviourdeleUC04,WSO00] to use
in formal analysis.

4 Position

In this paper, we briefly discussed our position on usingveari® model-checking for
creating a verifying compiler. We are firm believers in autded symbolic verification
which combines static and dynamic analyses, theorem4pgoand model-checking,
and think such techniques can be effectively extended soréag about complex soft-
ware systems. We also believe that capturing the distindigtween “the abstraction

is not precise” and non-determinism is a key to pushing syimlapproaches towards
reasoning about concurrency.

Currently, the automated verification research communéy several competing
approaches to analyzing software. We hope that bringinggesher will facilitate tool
sharing, so we can evaluate improvement of our tools agtiesstate-of-the-art. We
also hope that we can create and share a set of agreed-uppiréraents” for a ver-
ifying compiler. These requirements can take a form of a herark suite combining
programs of varying complexity and size, with differentdaiage features and different
correctness criteria.

References

[BBO4]

[BCLZ04]

[BG99]

[BPRO1]

[BRO1]

C. Barrett and S. Berezin. “CVC Lite: A New Implemetitem of the Cooperating
Validity Checker”. InProceedings of 16th International Conference on Computer
Aided Verification (CAV'04)volume 3114 ofLNCS pages 515-518, Boston, MA,
July 2004. Springer.

T. Ball, B. Cook, S.K. Lahiri, and L. Zhang. “TheareProving for Predicate Ab-
straction Refinement”. IfProceedings of the 16th Conference on Computer-Aided
Verification (CAV’04) July 2004.

G. Bruns and P. Godefroid. “Model Checking Partiaht8tSpaces with 3-Valued
Temporal Logics”. InProceedings of Proceedings of 11th International Confegen
on Computer-Aided Verification (CAV’'99)olume 1633 ofLNCS pages 274-287.
Springer, 1999.

T. Ball, A. Podelski, and S. Rajamani. “Boolean amdt€sian Abstraction for Model
Checking C Programs”. IRroceedings of 7th International Conference on Tools and
Algorithms for the Construction and Analysis of SystemC@®B01) volume 2031

of LNCS pages 268—-283, April 2001.

T. Ball and S. Rajamani. “The SLAM Toolkit". IRroceedings of 13th International
Conference on Computer-Aided Verification (CAV,0Dlume 2102 oL NCS pages
260-264, July 2001.

[CDEGO03] M. Chechik, B. Devereux, S. Easterbrook, and A.fiakel. “Multi-Valued Sym-

[CDGO2]

[CPRO5]
[Dec03]
[DGGI7]
[EFBO1]

[GCO3]

bolic Model-Checking”. ACM Transactions on Software Engineering and Methodol-
ogy, 12(4):1-38, October 2003.

M. Chechik, B. Devereux, and A. Gurfinkel. XChek: A Multi-Valued Model-
Checker”. InProceedings of 14th International Conference on Comphided Ver-
ification (CAV'02) volume 2404 ofLNCS pages 505-509, Copenhagen, Denmark,
July 2002. Springer.

B. Cook, A. Podelski, and A. Rybalchenko. “Absti@ictRefinement for Termina-
tion”. In Proceedings of 12th International Symposium on Static ysis(SAS’'05)
volume 3672 oLNCS pages 87-101, London, UK, September 2005.

R. DechterConstraint ProcessingMorgan Kaufmann, 2003.

D. Dams, R. Gerth, and O. Grumberg. “Abstract Intetation of Reactive Systems”.
ACM Transactions on Programming Languages and Syste{h9):253—291, 1997.

T. Elrad, R. Filman, and A. Bader. “Aspect-Orientetbgramming: Introduction”.
Communications of the ACNdages 29-32, October 2001.

A. Gurfinkel and M. Chechik. “Proof-like Counterexplas”. InProceedings of 9th
International Conference on Tools and Algorithms for then§tauction and Analysis

of Systems (TACAS’Q3yolume 2619 ofLNCS pages 160-175, Warsaw, Poland,
April 2003. Springer.

[GCO06] A. Gurfinkel and M. Chechik. “Why Waste a Perfectly @oAbstraction?”. In
Proceedings of 12th International Conference on Tools algithms for the Con-
struction and Analysis of Systems (TACAS'06)Jume 212-226 cENCS page 3920,
Vienna, Austria, April 2006. Springer.

[GS97] S. Grafand H. Saidi. “Construction of Abstract 8t@raphs with PVS”. IfProceed-
ings of the 9th International Conference on Computer-Aidledfication (CAV’97)
volume 1254 oLNCS pages 72-83, Haifa, Israel, 1997. Springer.

[GWCO06] A. Gurfinkel, O. Wei, and M. Chechik. “Systematic Gtnuction of Abstractions for
Model-Checking”. InProceedings of 7th International Conference on Verifiaatio
Model-Checking, and Abstract Interpretation (VMCAI'08blume 3855 ofLNCS
pages 381-397, Charleston, SC, January 2006. Springer.

[HIMMO4] T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. Mitlish. “Abstractions from
Proofs”. InProceedings of 31st ACM SIGPLAN-SIGACT Symposium on Blésobf
Programming Languages (POPL 200#pges 232—244, \fenice, Italy, January 2004.
ACM.

[HIMSO02] T. Henzinger, R. Jhala, R. Majumdar, and G. Sutreazy Abstraction”. InPro-
ceedings of 29th SIGPLAN-SIGACT Symposium on Principlesogfamming Lan-
guages (POPL 2002pages 58-70, Portland, Oregon, January 2002. ACM.

[HIMSO04] T. A. Henzinger, R. Jhala, R. Majumdar, and M. Sdovi“Extreme Model Check-
ing”. In Verification: Theory and Practicerolume 2772 ofLNCS pages 332—358.
Springer-Verlag, 2004.

[KGCO04] D. Kroening, A. Groce, and E. Clarke. "Counterexden@uided Abstraction Refine-
ment via Program Execution”. IRroceedings of International Conference on Formal
Engineering Methodgages 224-238, November 2004.

[LT88] K.G. Larsen and B. Thomsen. “A Modal Process Logich Rroceedings of 3rd
Annual Symposium on Logic in Computer Science (LICS|&®)es 203-210. IEEE
Computer Society Press, 1988.

[RSW04] T.W. Reps, M. Sagiv, and R. Wilhelm. “Static Programalysis via 3-Valued Logic”.
In Proceedings of 16th International Conference on Compaided Verification
(CAV'04), volume 3114 of.NCS pages 15-30, 2004.

[UC04] S. Uchitel and M. Chechik. “Merging Partial BehavialModels”. InProceedings
of 12th ACM SIGSOFT International Symposium on FoundatadriSoftware Engi-
neering pages 43-52, November 2004.

[VHB 03] W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda. ticChecking Programs”.
Journal of Automated Software Engineerid®(2), April 2003.

[WGCO05] O. Wei, A. Gurfinkel, and M. Chechik. “Identificatiand Counter Abstraction for
Full Virtual Symmetry”. InProceedings of 13th Advanced Research Working Confer-
ence on Correct Hardware Design and Verification Methods AGNE’05) volume
3725 ofLNCS pages 285-300, Saarbriicken, Germany, October 2005gepri

[WSO00] J. Whittle and J. Schumann. “Generating Statechesidhs from Scenarios”. In
Proceedings of 22nd International Conference on Softwargiteering (ICSE’0Q)
pages 314-323. ACM Press, May 2000.

