
Toasters, Seat Belts, and Inferring Program Properties 

David Evans 

University of Virginia, Department of Computer Science 
Charlottesville, Virginia 

evans@cs.virginia.edu 

Abstract.  Today’s software does not come with meaningful guarantees.  This 
position paper explores why this is the case, suggests societal and technical 
impediments to more dependable software, and considers what realistic, 
meaningful guarantees for software would be like and how to achieve them. 

 
If you want a guarantee, buy a toaster. 

Clint Eastwood (The Rookie, 1990) 

1 Introduction 

Software today doesn’t come with guarantees.  Should it? What kinds of guarantees 
should they be? 
 
I wouldn’t want to argue with “Dirty Harry”, but toasters don’t really come with 
guarantees either, certainly not in the sense of a mathematical proof that they will 
satisfy a set of precisely defined requirements.  What a toaster does come with is: (1) 
a reasonable expectation that a semi-intelligent user will be able to get the toaster to 
transform a typical slice of bread into toast; (2) a warranty that the manufacturer 
promises to replace the toaster if it is defective, and (3) in the United States to a large 
degree, and to varying degrees in other countries, the assurance that if the defectively 
designed or manufactured toaster causes your house to burn down, you will be able to 
sue the toaster manufacturer for damages far in excess of the cost of the toaster.  
 
Software is a long way from satisfying any of those properties: (1) purchasers of 
software do not expect it to work correctly; instead of returning misbehaving 
software, users are conditioned to blame themselves; (2) software usually comes with 
an offer to replace defective disks, by no warranty on correct behavior; and (3) 
software vendors, to date, have managed to be immune from liability lawsuits even in 
cases where negligent implementations produce serious losses.  We do, however, 
have many of the essential technologies in place to provide meaningful guarantees 
regarding software systems.  Research tools have been developed to check properties 
of large programs [5, 10, 12, 14, 20, 22], and dozens of companies are now offering 
analysis tools and services (e.g., Coverity, Fortify, Ounce Labs, PolySpace, 
Reflective).   
 



The rest of this paper discusses four of the major impediments that remain before 
routine software comes with effective guarantees: a lack of mechanisms for providing 
the necessary incentives to encourage software vendors to invest resources and delay 
products to improve dependability; inadequate ways to identify properties worth 
checking; insufficient theoretical understanding of how to interpret the outcome of 
checking, especially unsound analyses, as meaningful guarantees; and deficiently 
educated developers unable to effectively use and insist on the use of appropriate 
program verification tools and techniques. 
 
 

The first principle was security... A consequence of this principle is that 
every occurrence of every subscript of every subscripted variable was on 
every occasion checked at run time against both the upper and the lower 
declared bounds of the array. Many years later we asked our customers 

whether they wished us to provide an option to switch off these checks in the 
interests of efficiency on production runs. Unanimously, they urged us not 

to—they already knew how frequently subscript errors occur on production 
runs where failure to detect them could be disastrous. I note with fear and 

horror that even in 1980, language designers and users have not learned this 
lesson. In any respectable branch of engineering, failure to observe such 

elementary precautions would have long been against the law.  
Tony Hoare, describing Elliott Brothers’ Algol 60 implementation 

The Emperor’s Old Clothes, 1980 Turing Award Speech 

2 Incentivizing Verification 

Twenty-five years after Hoare’s speech, computing is still not a “respectable branch 
of engineering”: software developers and language designers continue to release code 
where memory references are unchecked and no one has yet been sent to jail or even 
fined for doing it.  The technologies for preventing this particular type of error have 
been available for many decades, yet vendors still ship software without using them.  
If jail sentences had been established in 1980 for the CEO of any company that sells a 
product containing a buffer overflow vulnerability, I suspect there would have been 
no programs with buffer overflow vulnerabilities sold in 1981, and certainly not in 
2005.  Alas, I know of no jurisdiction that has made programming in C++ or 
designing a language without bounds checking a criminal offense [8].   This is an 
incentive problem, not a technology problem.   
 
An automobile company could not sell a car that suffers from a problem like 
unchecked array references, without losing billions of dollars in lawsuits.  As a result, 
technologies that improve safety are quickly deployed throughout the industry.  Some 
parallels can be drawn between safety belts in cars and bounds checking in software.  
Safety belts were introduced in the 1950s because of biomechanical research 
suggesting their effectiveness; they were, however, rarely used by car occupants until 
mandatory belt wearing laws were passed [16].  As with bounds checking, a very 



effective technology was available but largely unused for many decades.  However, 
unlike the case with software, legal mechanisms in the form of both regulation and 
liability, placed pressure on vendors to incorporate the best known technology in their 
products.  In 1986, General Motors became the first US auto manufacturer to decide 
to install lap/shoulder belts in the rear seats of cars, instead of lap-only belts.  GM 
began installing lap/shoulder belts in selected 1987 model cars.  The other auto 
companies followed within a few years, and it later became a government standard.  
GM faced a $200M lawsuit (which was settled under seal) claiming that GM was 
negligent in not making the change sooner since its internal research indicated that 
lap-only belts were less effective than previous government estimates [16, 17].   
 
Software in embedded systems is subject to potential lawsuits if the containing device 
fails with disastrous results.  As a result, the development and validation practices for 
such software is quite different from that typically used for software-only systems.  
With a few notable exceptions, critical software in embedded systems today is 
remarkably reliable compared to software in software-only systems. 
 
Applying product liability to software is not without risks, however.  If companies 
that do not deploy the best known technology can be liable for negligence, this 
provides a strong disincentive to developing new technologies and stifles creativity 
and innovation.  Software liability also raises serious issues for open source 
developers and academic researchers who wish to develop and distribute software 
without fear of lawsuits or needing approval from lawyers. 
 
An alternative is to use market forces.  This has proven difficult so far with software, 
primarily because of the difficulty in measuring software quality, especially security.  
A research community is emerging that considers economic approaches to improving 
security [3, 4] as well as measuring it [23].  Good ideas for software security metrics, 
however, remain elusive.  One promising direction is work on measuring relative 
attack surfaces [19]. 
 
There are no easy answers here, but it seems many of the challenges we face in 
improving software dependability and security are not so much in developing tools 
and techniques to analyze programs, but in making using those tools cost effective in 
a business sense.  This involves the technical challenges of decreasing the costs of 
using them and increasing the value they provide, but also the large contextual 
challenge of making the costs of improving software quality economically justifiable 
by increasing the cost disadvantages associated with low qualify software.  The trends 
are in the right direction as evidenced most clearly by Microsoft’s trustworthy 
computing initiative [18] and increasing willingness to sacrifice functionality and 
delay product releases to enhance security over that past few years [21].   



 
It is easier to write an incorrect program than understand a correct one.  

Alan Perlis 

3 Identifying Properties 

We can group properties into three categories: 

1. Generic language semantics properties.   
2. Documented application properties.  
3. Unknown (but necessary) application properties. 

The first category comprises those properties that should always be true of all 
programs, such as all memory references are in bounds and the program never leaks 
memory.  Since these properties are universal, they should be identified once by the 
programming language designers and there is no need to identify them for a particular 
application.  Most program analysis tools available today are focused on checking or 
detecting violations of this type of property.  Few viable excuses remain for releasing 
software today that suffers from these kinds of flaws. 
 
In most cases, documented application-specific properties do not exist.  There is no 
precise description of required application properties, and even the developers don’t 
know what those properties are.  Efforts to improve education for software developers 
(discussed in Section 5) may increase the likelihood of there being documented 
properties, but progress here will be slow and limited.  Except for the most safety-
critical (and thus expensive) software, it is unreasonable to expect required 
application properties to be clearly documented in the near future.  Even when 
developers are willing to spend the effort required to formally document these 
properties, they often do not know what properties are necessary for correctness or 
would be useful to document. 
 
Our efforts should focus, then, primarily on the third category – unknown and 
undocumented, but necessary, application properties.  Over the past few years, several 
research groups have developed tools for inferring those properties.  Daikon infers 
data invariants on programs by analyzing execution traces on a test suite [13].  Other 
researchers have developed techniques for inferring specifications of programs from 
their dynamic behavior [2, 9, 31] and static analysis of their program texts [1, 30, 31]. 
 
My research group’s work in this area is motivated by the observation that many 
properties in the third group are true during many or all test executions, but when they 
are violated during real executions they produce serious consequences.  We have 
developed a tool, Perracotta [29], that takes a program and a test suite and produces a 
set of inferred properties.  We have focused primarily on inferring simple temporal 
properties that constrain the order and occurrence of events in the program such as 
calls to a particular method (such as all calls to the lock method must be followed by 
calls to the corresponding unlock method) or combinations of temporal and data 



properties (such as, object O is never modified between events A and B).  The goal is 
not to produce a specification of the program for human use, but rather to infer 
properties that are useful for other purposes.  We have used inferred properties to 
identify undesirable behaviors [27]; unexpected differences between similar programs 
or different versions of a program [28]; and as input to a model checker [29].  When a 
counterexample to an inferred property is found, it may reveal a bug in the program or 
a deficiency in the testing approach.  By inferring properties this way and using them 
with automatic checking and comparison tools, we are able to discover essential 
properties about a program that developers would not think to document.   

4 Towards Software Guarantees 

Let’s return to the rather degenerate toaster example and the toaster guarantee is 
shown in Figure 1.  The guarantee does not claim that the toaster will always behave 
according to a particular specification.  Rather, it states that if the toaster “goes 
wrong” it will be replaced, provided the user does not misuse, “neglect”, modify, or 
damage the toaster.  Despite its limitations, this guarantee has some value to the 
purchaser, and it would be a major advance if software came with a similar guarantee.   
 
The technical challenge is to determine the equivalent of “goes wrong” for a complex 
software system.  Automatic property inference and checking is a step towards this 
goal.  Instead of attempting to formally specify the exact behavior for software, by 
using property inference techniques to infer properties that are true of the “normal” 
behavior of the software, and checking (or ensuring at run-time) that they are always 
true we can establish claims about the scope of executions covered by the testing 
strategy.  If the inferred properties capture enough of the behavior of the software, 
then we can claim that executions that satisfy those properties are “okay”, and 
executions that do not satisfy them have “gone wrong”.  In such circumstances, 
measures can be taken to put the software right again to return to the “normal” 

 
Figure 1. Kenwood TT360/TT390 Toaster Instructions (excerpted). 



behavior.  Rinard and his colleagues’ work on acceptability-oriented computing [11, 
24, 25] and Swift et al.’s work on hiding device driver failures from executing 
programs [26] illustrate the possibility of executing programs in ways that 
programming errors are automatically recovered from.  When unsound analysis 
techniques are used, we cannot expect to make full correctness guarantees; instead, 
we should strive to find ways to formalize guarantees more like the toaster guarantee 
of nothing “goes wrong”, and to develop tools and techniques that allow us to make 
such guarantees. 
 
 

The use of COBOL cripples the mind; 
 its teaching should, therefore, be regarded as a criminal offence.  

Edsger W.Dijkstra, How do we tell the truths that might hurt? (EWD 498), June 1975  

5 Education 

The single most important factor in determining the quality of software is the 
knowledge, experience and attitudes of people who design and implement it.  People 
choose the programming languages, compilers, analysis tools and testing and 
validation approaches to use.  Hence, it is unlikely that software quality will improve 
dramatically without also changing the ways we educate programmers.  Although 
increasing automation can make analysis tools accessible to less sophisticated 
developers, it will be up to developers to decide to use those tools and to correctly 
interpret their results. 
 
Computer science curricula have traditionally followed industry, not led it.  With rare 
exceptions, the choices of programming languages and tools used in most 
introductory software engineering courses follow a few years behind the current needs 
of industry rather than envisioning the future and focusing on producing graduates 
with conceptual understanding and the ability to lead industry forward.  To improve 
the state of software engineering, academia needs to take the lead in teaching students 
in introductory software engineering courses the theories, tools and techniques that 
will be important for verified programming.  Instead of focusing on the technical 
details of complex programming languages that are popular in industry, introductory 
software engineering courses should be teaching students to think about 
preconditions, postconditions, data invariants, and temporal properties and to 
understand what program analysis tools and testing techniques can allow them to state 
about their programs.  At the University of Virginia, we are developing a curriculum 
towards these goals [6, 7] (which draws heavily from the MIT curriculum), and have 
experimented with introducing static analysis tools in our introductory software 
engineering course [7].  Although the state of the art in available tools presents some 
challenges, and it is difficult for students in introductory courses to formally 
document complex invariants, we are optimistic that incorporating automatic property 
inference tools into the process can help [15] and that this approach can provide 



students with the necessary background to develop more secure and dependable 
software. 

6 Summary 

The research and industrial communities have made tremendous progress in program 
analysis and verification tools over the past several years, and these tools have now 
reached the point where they can be usefully applied to large, complex programs.  In 
order for their use to become prevalent, however, the appropriate incentive structure 
must be in place.  Technical challenges remain in determining useful properties to 
check that go beyond generic language properties, and in better understanding the 
claims that can be made as a result of unsound analyses.  Promising directions for 
research towards these goals include automatic property inference and automatic 
detection of and recovery from errors.  Full program verification against a precise 
specification will remain expensive and rare, but perhaps advances in technology and 
changes in incentive structure will make meaningfully guaranteed software 
commonplace. 
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