
Toasters, Seat Belts, and Inferring Program Properties

David Evans

University of Virginia, Department of Computer Science
Charlottesville, Virginia

evans@cs.virginia.edu

Abstract. Today’s software does not come with meaningful guarantees. This
position paper explores why this is the case, suggests societal and technical
impediments to more dependable software, and considers what realistic,
meaningful guarantees for software would be like and how to achieve them.

If you want a guarantee, buy a toaster.

Clint Eastwood (The Rookie, 1990)

1 Introduction

Software today doesn’t come with guarantees. Should it? What kinds of guarantees
should they be?

I wouldn’t want to argue with “Dirty Harry”, but toasters don’t really come with
guarantees either, certainly not in the sense of a mathematical proof that they will
satisfy a set of precisely defined requirements. What a toaster does come with is: (1)
a reasonable expectation that a semi-intelligent user will be able to get the toaster to
transform a typical slice of bread into toast; (2) a warranty that the manufacturer
promises to replace the toaster if it is defective, and (3) in the United States to a large
degree, and to varying degrees in other countries, the assurance that if the defectively
designed or manufactured toaster causes your house to burn down, you will be able to
sue the toaster manufacturer for damages far in excess of the cost of the toaster.

Software is a long way from satisfying any of those properties: (1) purchasers of
software do not expect it to work correctly; instead of returning misbehaving
software, users are conditioned to blame themselves; (2) software usually comes with
an offer to replace defective disks, by no warranty on correct behavior; and (3)
software vendors, to date, have managed to be immune from liability lawsuits even in
cases where negligent implementations produce serious losses. We do, however,
have many of the essential technologies in place to provide meaningful guarantees
regarding software systems. Research tools have been developed to check properties
of large programs [5, 10, 12, 14, 20, 22], and dozens of companies are now offering
analysis tools and services (e.g., Coverity, Fortify, Ounce Labs, PolySpace,
Reflective).

The rest of this paper discusses four of the major impediments that remain before
routine software comes with effective guarantees: a lack of mechanisms for providing
the necessary incentives to encourage software vendors to invest resources and delay
products to improve dependability; inadequate ways to identify properties worth
checking; insufficient theoretical understanding of how to interpret the outcome of
checking, especially unsound analyses, as meaningful guarantees; and deficiently
educated developers unable to effectively use and insist on the use of appropriate
program verification tools and techniques.

The first principle was security... A consequence of this principle is that
every occurrence of every subscript of every subscripted variable was on
every occasion checked at run time against both the upper and the lower
declared bounds of the array. Many years later we asked our customers

whether they wished us to provide an option to switch off these checks in the
interests of efficiency on production runs. Unanimously, they urged us not

to—they already knew how frequently subscript errors occur on production
runs where failure to detect them could be disastrous. I note with fear and

horror that even in 1980, language designers and users have not learned this
lesson. In any respectable branch of engineering, failure to observe such

elementary precautions would have long been against the law.
Tony Hoare, describing Elliott Brothers’ Algol 60 implementation

The Emperor’s Old Clothes, 1980 Turing Award Speech

2 Incentivizing Verification

Twenty-five years after Hoare’s speech, computing is still not a “respectable branch
of engineering”: software developers and language designers continue to release code
where memory references are unchecked and no one has yet been sent to jail or even
fined for doing it. The technologies for preventing this particular type of error have
been available for many decades, yet vendors still ship software without using them.
If jail sentences had been established in 1980 for the CEO of any company that sells a
product containing a buffer overflow vulnerability, I suspect there would have been
no programs with buffer overflow vulnerabilities sold in 1981, and certainly not in
2005. Alas, I know of no jurisdiction that has made programming in C++ or
designing a language without bounds checking a criminal offense [8]. This is an
incentive problem, not a technology problem.

An automobile company could not sell a car that suffers from a problem like
unchecked array references, without losing billions of dollars in lawsuits. As a result,
technologies that improve safety are quickly deployed throughout the industry. Some
parallels can be drawn between safety belts in cars and bounds checking in software.
Safety belts were introduced in the 1950s because of biomechanical research
suggesting their effectiveness; they were, however, rarely used by car occupants until
mandatory belt wearing laws were passed [16]. As with bounds checking, a very

effective technology was available but largely unused for many decades. However,
unlike the case with software, legal mechanisms in the form of both regulation and
liability, placed pressure on vendors to incorporate the best known technology in their
products. In 1986, General Motors became the first US auto manufacturer to decide
to install lap/shoulder belts in the rear seats of cars, instead of lap-only belts. GM
began installing lap/shoulder belts in selected 1987 model cars. The other auto
companies followed within a few years, and it later became a government standard.
GM faced a $200M lawsuit (which was settled under seal) claiming that GM was
negligent in not making the change sooner since its internal research indicated that
lap-only belts were less effective than previous government estimates [16, 17].

Software in embedded systems is subject to potential lawsuits if the containing device
fails with disastrous results. As a result, the development and validation practices for
such software is quite different from that typically used for software-only systems.
With a few notable exceptions, critical software in embedded systems today is
remarkably reliable compared to software in software-only systems.

Applying product liability to software is not without risks, however. If companies
that do not deploy the best known technology can be liable for negligence, this
provides a strong disincentive to developing new technologies and stifles creativity
and innovation. Software liability also raises serious issues for open source
developers and academic researchers who wish to develop and distribute software
without fear of lawsuits or needing approval from lawyers.

An alternative is to use market forces. This has proven difficult so far with software,
primarily because of the difficulty in measuring software quality, especially security.
A research community is emerging that considers economic approaches to improving
security [3, 4] as well as measuring it [23]. Good ideas for software security metrics,
however, remain elusive. One promising direction is work on measuring relative
attack surfaces [19].

There are no easy answers here, but it seems many of the challenges we face in
improving software dependability and security are not so much in developing tools
and techniques to analyze programs, but in making using those tools cost effective in
a business sense. This involves the technical challenges of decreasing the costs of
using them and increasing the value they provide, but also the large contextual
challenge of making the costs of improving software quality economically justifiable
by increasing the cost disadvantages associated with low qualify software. The trends
are in the right direction as evidenced most clearly by Microsoft’s trustworthy
computing initiative [18] and increasing willingness to sacrifice functionality and
delay product releases to enhance security over that past few years [21].

It is easier to write an incorrect program than understand a correct one.

Alan Perlis

3 Identifying Properties

We can group properties into three categories:

1. Generic language semantics properties.
2. Documented application properties.
3. Unknown (but necessary) application properties.

The first category comprises those properties that should always be true of all
programs, such as all memory references are in bounds and the program never leaks
memory. Since these properties are universal, they should be identified once by the
programming language designers and there is no need to identify them for a particular
application. Most program analysis tools available today are focused on checking or
detecting violations of this type of property. Few viable excuses remain for releasing
software today that suffers from these kinds of flaws.

In most cases, documented application-specific properties do not exist. There is no
precise description of required application properties, and even the developers don’t
know what those properties are. Efforts to improve education for software developers
(discussed in Section 5) may increase the likelihood of there being documented
properties, but progress here will be slow and limited. Except for the most safety-
critical (and thus expensive) software, it is unreasonable to expect required
application properties to be clearly documented in the near future. Even when
developers are willing to spend the effort required to formally document these
properties, they often do not know what properties are necessary for correctness or
would be useful to document.

Our efforts should focus, then, primarily on the third category – unknown and
undocumented, but necessary, application properties. Over the past few years, several
research groups have developed tools for inferring those properties. Daikon infers
data invariants on programs by analyzing execution traces on a test suite [13]. Other
researchers have developed techniques for inferring specifications of programs from
their dynamic behavior [2, 9, 31] and static analysis of their program texts [1, 30, 31].

My research group’s work in this area is motivated by the observation that many
properties in the third group are true during many or all test executions, but when they
are violated during real executions they produce serious consequences. We have
developed a tool, Perracotta [29], that takes a program and a test suite and produces a
set of inferred properties. We have focused primarily on inferring simple temporal
properties that constrain the order and occurrence of events in the program such as
calls to a particular method (such as all calls to the lock method must be followed by
calls to the corresponding unlock method) or combinations of temporal and data

properties (such as, object O is never modified between events A and B). The goal is
not to produce a specification of the program for human use, but rather to infer
properties that are useful for other purposes. We have used inferred properties to
identify undesirable behaviors [27]; unexpected differences between similar programs
or different versions of a program [28]; and as input to a model checker [29]. When a
counterexample to an inferred property is found, it may reveal a bug in the program or
a deficiency in the testing approach. By inferring properties this way and using them
with automatic checking and comparison tools, we are able to discover essential
properties about a program that developers would not think to document.

4 Towards Software Guarantees

Let’s return to the rather degenerate toaster example and the toaster guarantee is
shown in Figure 1. The guarantee does not claim that the toaster will always behave
according to a particular specification. Rather, it states that if the toaster “goes
wrong” it will be replaced, provided the user does not misuse, “neglect”, modify, or
damage the toaster. Despite its limitations, this guarantee has some value to the
purchaser, and it would be a major advance if software came with a similar guarantee.

The technical challenge is to determine the equivalent of “goes wrong” for a complex
software system. Automatic property inference and checking is a step towards this
goal. Instead of attempting to formally specify the exact behavior for software, by
using property inference techniques to infer properties that are true of the “normal”
behavior of the software, and checking (or ensuring at run-time) that they are always
true we can establish claims about the scope of executions covered by the testing
strategy. If the inferred properties capture enough of the behavior of the software,
then we can claim that executions that satisfy those properties are “okay”, and
executions that do not satisfy them have “gone wrong”. In such circumstances,
measures can be taken to put the software right again to return to the “normal”

Figure 1. Kenwood TT360/TT390 Toaster Instructions (excerpted).

behavior. Rinard and his colleagues’ work on acceptability-oriented computing [11,
24, 25] and Swift et al.’s work on hiding device driver failures from executing
programs [26] illustrate the possibility of executing programs in ways that
programming errors are automatically recovered from. When unsound analysis
techniques are used, we cannot expect to make full correctness guarantees; instead,
we should strive to find ways to formalize guarantees more like the toaster guarantee
of nothing “goes wrong”, and to develop tools and techniques that allow us to make
such guarantees.

The use of COBOL cripples the mind;
 its teaching should, therefore, be regarded as a criminal offence.

Edsger W.Dijkstra, How do we tell the truths that might hurt? (EWD 498), June 1975

5 Education

The single most important factor in determining the quality of software is the
knowledge, experience and attitudes of people who design and implement it. People
choose the programming languages, compilers, analysis tools and testing and
validation approaches to use. Hence, it is unlikely that software quality will improve
dramatically without also changing the ways we educate programmers. Although
increasing automation can make analysis tools accessible to less sophisticated
developers, it will be up to developers to decide to use those tools and to correctly
interpret their results.

Computer science curricula have traditionally followed industry, not led it. With rare
exceptions, the choices of programming languages and tools used in most
introductory software engineering courses follow a few years behind the current needs
of industry rather than envisioning the future and focusing on producing graduates
with conceptual understanding and the ability to lead industry forward. To improve
the state of software engineering, academia needs to take the lead in teaching students
in introductory software engineering courses the theories, tools and techniques that
will be important for verified programming. Instead of focusing on the technical
details of complex programming languages that are popular in industry, introductory
software engineering courses should be teaching students to think about
preconditions, postconditions, data invariants, and temporal properties and to
understand what program analysis tools and testing techniques can allow them to state
about their programs. At the University of Virginia, we are developing a curriculum
towards these goals [6, 7] (which draws heavily from the MIT curriculum), and have
experimented with introducing static analysis tools in our introductory software
engineering course [7]. Although the state of the art in available tools presents some
challenges, and it is difficult for students in introductory courses to formally
document complex invariants, we are optimistic that incorporating automatic property
inference tools into the process can help [15] and that this approach can provide

students with the necessary background to develop more secure and dependable
software.

6 Summary

The research and industrial communities have made tremendous progress in program
analysis and verification tools over the past several years, and these tools have now
reached the point where they can be usefully applied to large, complex programs. In
order for their use to become prevalent, however, the appropriate incentive structure
must be in place. Technical challenges remain in determining useful properties to
check that go beyond generic language properties, and in better understanding the
claims that can be made as a result of unsound analyses. Promising directions for
research towards these goals include automatic property inference and automatic
detection of and recovery from errors. Full program verification against a precise
specification will remain expensive and rare, but perhaps advances in technology and
changes in incentive structure will make meaningfully guaranteed software
commonplace.

References

1. Rajeev Alur, Pavol Černý, P. Madhusudan and Wonghong Nam. Synthesis of Interface
Specifications for Java classes. In Proceedings of the ACM Symposium on Principles of
Programming Languages. 2005.

2. Glenn Ammons, Rastislav Bodik and James R. Larus. Mining Specifications. In
Proceedings of the ACM Symposium on Principles of Programming Languages. January
2002

3. Ross Anderson. Economics and Security Resource Page.
 http://www.cl.cam.ac.uk/users/rja14/econsec.html
4. L. Jean Camp and Stephen Lewis, editors. Economics of Information Security. Kluwer

Academic Publishers. September 2004.
5. Hao Chen, Drew Dean, and David Wagner. Model Checking One Million Lines of C

Code. In Proceedings of the 11th Annual Network and Distributed System Security
Symposium (NDSS). February 2004.

6. CS150: Computer Science from Ada and Euclid to Quantum Computing and the World
Wide Web. University of Virginia Course. http://www.cs.virginia.edu/cs150

7. CS201j: Engineering Software. University of Virginia. http://www.cs.virginia.edu/cs201j
8. CS655: Graduate Programming Languages. University of Virginia Course. Spring 2000.

http://www.cs.virginia.edu/evans/cs655-S00/mocktrial/
9. J. E. Cook, Z. Du, C. Liu, and A. L. Wolf. Discovering Models of Behavior for

Concurrent Workflows. Computers in Industry, pp. 297-319, Vol. 53, No. 3, April 2004.
10. M. Das, S. Lerner, and M. Seigle. ESP: Path-Sensitive Program Verification In Polynomial

Time. In Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation. June 2002.

11. Brian Demsky and Martin Rinard. Data Structure Repair Using Goal-Directed Reasoning.
Proceedings of the 2005 International Conference on Software Engineering. May 2005.

12. Dawson Engler, B. Chelf, A. Chou, and S. Hallem. Checking System Rules Using System-
Specific Programmer-Written Compiler Extensions. Symposium on Operating Systems
Design and Implementation. October 2000.

13. Michael D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin. Dynamically Discovering
Likely Program Invariants to Support Program Evolution. IEEE Transactions on Software
Engineering. February 2001.

14. David Evans. Static Detection of Dynamic Memory Errors. Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and Implementation, May 1996.

15. David Evans and Michael Peck. Simulating Critical Software Development. University of
Virginia Computer Science Technical Report, UVA-CS-TR2004-04. February 2004.

16. Leonard Evans. Traffic Safety. Science Serving Society Press, 2004.
http://scienceservingsociety.com/traffic-safety.htm

17. Leonard Evans. Personal communication, April 2005.
18. Bill Gates. Trustworthy Computing Initiative (memo to all Microsoft employees). 15

January, 2002.
19. M. Howard, J. Pincus, and J.M. Wing. Measuring Relative Attack Surfaces. Proceedings

of Workshop on Advanced Developments in Software and Systems Security. Taipei,
December 2003.

20. David Larochelle and David Evans. Statically Detecting Likely Buffer Overflow
Vulnerabilities. USENIX Security Symposium, August 2001.

21. Microsoft Corporation. Trustworthy Computing. http://www.microsoft.com/twc
22. M. Musuvathi, D. Park, A. Chou, D. R. Engler, and D. L. Dill. CMC: A Pragmatic Approach

to Model Checking Real Code. In Proceedings of the Fifth Symposium on Operating Systems
Design and Implementation, December 2002.

23. Andy Ozment. Bug Auctions: Vulnerability Markets Reconsidered. In Workshop on
Economics and Information Security. May 2004.

24. Martin Rinard. Acceptability-Oriented Computing. ACM SIGPLAN Conference on
Object-Oriented Programming Systems, Languages, and Applications Companion
(OOPSLA '03 Companion) Onwards! Session. California October 2003.

25. Martin Rinard, Cristian Cadar, Daniel Dumitran, Daniel M. Roy, Tudor Leu, and William
S. Beebee, Jr. Enhancing Server Availability and Security Through Failure-Oblivious
Computing. Proceedings of the 6th Symposium on Operating Systems Design and
Implementation. December 2004.

26. Michael Swift, Muthukaruppan Annalamai, Brian Bershad and Henry Levy. Recovering
Device Drivers. In Proceedings of the 6th Symposium on Operating Systems Design and
Implementation. December 2004.

27. Jinlin Yang and David Evans. Dynamically Inferring Temporal Properties. ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and Engineering,
June 2004.

28. Jinlin Yang and David Evans. Automatically Inferring Temporal Properties for Program
Evolution. 15th IEEE International Symposium on Software Reliability Engineering,
November 2004.

29. Jinlin Yang, David Evans, Deepali Bhardwaj, Thirumalesh Bhat, Manuvir Das. Perracotta:
Mining Temporal API Rules from Imperfect Traces. 28th International Conference in
Software Engineering, May 2006.

30. Westley Weimer and George Necula. Mining Temporal Specifications for Error
Detection. In Proceedings of the 11th International Conference on Tools and Algorithms
For The Construction And Analysis Of Systems (TACAS 05), April 2005.

31. John Whaley, M. C. Martin, and M. S. Lam. Automatic extraction of object-oriented
component interfaces. International Symposium on Software Testing and Analysis, July
2002.

