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Abstract. As we are moving from a traditional software development
process to a new development paradigm where the process it largely
driven by tools and automation, new challenges for verification and
validation (V&V) emerge. Productivity improvements will in this new
paradigm be achieved through reduced emphasis on testing of imple-
mentations, increased reliance on automated analysis tools applied in
the specification domain, verifiability correct generation of source-code,
and verifiably correct compilation. The V&V effort will now be largely
focused on assuring that the formal specifications are correct and that
the tools are trustworthy so we can rely on the results of the analysis
and code generation without extensive additional testing of the resulting
implementation. Most effort has traditionally been devoted to the veri-
fication problem. In this position paper we point out the importance of
validation and argue that if we fail to adequately address the validation
problem problem the impact of verifying code generation and compila-
tion will be limited.

1 Introduction

In software engineering we make a distinction between the validation and the ver-
ification of a software system under development. Verification is concerned with
demonstrating that the software implements the functional and non-functional
requirements. Verification answers the question “is this implementation correct
with respect to its requirements?” Validation, on the other hand, is concerned
with determining if the functional and non-functional requirements are the right
requirements. Validation answers the question “will this system, if build cor-
rectly, be safe and effective for its intended use?” There is ample evidence that
most safety problems can be traced to erroneous and inadequate requirements.
Incomplete, inaccurate, ambiguous, and volatile requirements have plagued the
software industry since its inception. In a 1987 article [6], Fred Brooks wrote

The hardest single part of building a software system is deciding precisely
what to build. No other part of the conceptual work is as difficult as
establishing the detailed technical requirements... No other part of the
work so cripples the resulting system if done wrong. No other part is as
difficult to rectify later.

We know that the majority of software errors are made during requirements
analysis [5, 12, 34, 29], and that requirements errors are more likely to affect the



safety of a system than errors introduced during design or implementation [24,
26].

Therefore, to improve the safety of software intensive systems it is critical
that the requirements are properly validated. Unfortunately, current certification
standards, for example, DO-178B [31], as well as the research effort outlined in
the Verifiable Software Project focus almost exclusively on various verification
activities. We find this unfortunate since one of the most critical problems with
current certification standards and development practices is a lack of robust
and reliable ways of assessing whether the requirements are correct; to gain the
full advantage of verifying code generators and compilers we have to develop
techniques to determine if the requirements have been adequately validated.

There is a significant effort in the avionics and medical technology industry
to reduce the high cost of software development. The current trend is to focus on
tools and automation, for example, automatically generating certifiably correct
production code from a formal requirements specification or generating MC/DC
tests for certification could provide dramatic cost savings. This approach is com-
monly referred to as model-based development. Since this approach relies heavily
on the correctness of the model (or specification) for the correctness of the de-
rived system, our current inability to adequately validate our requirements raises
a serious concern regarding the adoption of this type of automation. In the re-
mainder of this position paper we will discuss model-based development in more
detail and point to some concerns that must be considered as we adopt verifying
translators in software development.

2 Model-Based Development

Traditionally, software development has been largely a manual endeavor. Vali-
dation that we are building the right system has been achieved through require-
ments and specification inspections and reviews. Verification that the system is
developed to satisfy its specification is archived through inspections of design
artifacts and extensive testing of the implementations (Figure 1). In critical em-
bedded control systems, such as the software controlling aeronautics applications
and medical devices, the validation and verification phase (V&V) is particularly
costly and consume approximately 50%–70% of the software development re-
sources. Thus, if we could devise techniques to help us reduce the cost of V&V,
dramatic cost savings could be achieved. The current trend towards model-based
development (or specification-centered development [3, 32]) is one attempt to
address this problem.

In model-based development, the development effort is centered around a
formal description of the proposed software system. For validation and verifica-
tion purposes, this formal specification can then be subjected to various types
of analysis, for example, completeness and consistency analysis [17, 19] model
checking [15, 9, 10, 20, 11], theorem proving [1, 2], and test case generation [8,
14, 13, 4, 28, 21, 30]. Through manual inspections, formal verification, and sim-
ulation and testing we convince ourselves (and any regulatory agencies) that
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Fig. 1. Traditional Software Development Process.

the software specification possesses desired properties. The implementation is
then automatically and correctly generated from this specification and little or
no additional testing of the implementation is required (Figure 2). There are
currently several commercial and research tools that attempt to provide these
capabilities—commercial tools are, for example, Esterel and SCADE from Es-
terel Technologies, Statemate from i-Logix [16], and SpecTRM from Safeware
Engineering [25]; and examples of research tool are SCR [18], RSML−e [32], and
Ptolemy [23].
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Fig. 2. Specification Centered Development.

The capabilities of model-based development enable us to follow a different
process. The development is centered around the formal specification and the
V&V has been largely moved from testing and analyzing the code (Figure 1) to
analyzing and testing the specification (Figure 3)—the traditional (and, in the
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Fig. 3. Specification Centered Development Process.

critical systems domain, very costly) unit testing of code is replaced with testing
and analysis of the specification in a hope to provide higher quality at a lower
cost.

Note here that, in our opinion, the possibility of reducing or fully automating
the costly unit-testing efforts are key to success of specification centered develop-
ment. We have found very little support for this type of development if modeling
and analysis are to be performed in addition to what is currently done—these
new techniques must either make current efforts more efficient or replace some
currently required V&V activity. In either case, our increased reliance on tools
requires that they can be trusted—a prime opportunity for verifying translators
as well as analysis tools that provide proof justifications and proof explanations.
On the other hand, we are now demanding that the formal specification serving
as the basis for our development is correct with respect to the customers’ true
needs; a demand that can only be met through extensive model validation.

In an ongoing project with Rockwell Collins Inc. and NASA Langley Research
Center we have investigated model-based development and focused mainly on
the verification aspects of the problem. Below we provide a short overview of
one of our case examples and discuss some issues that have arisen during the
course of this project.

2.1 Overview of a Flight Guidance System

A Flight Guidance System (FGS) is a component of the overall Flight Control
System (FCS). It compares the measured state of an aircraft (position, speed,
and attitude) to the desired state and generates pitch and roll guidance com-
mands to minimize the difference between the measured and desired state. These
guidance commands are both displayed to the pilot as guidance cues on the Pri-
mary Flight Display (PFD) and sent to the Autopilot (AP) that moves the
control surfaces of the aircraft to achieve commanded pitch and roll.

The internal structure of the FGS can be broken down into the mode logic
and the flight control laws. The flight control laws accept information about



the aircraft’s current and desired state and compute the pitch and roll guidance
commands. The mode logic determines which lateral and vertical modes are
armed (attempting to lock on to a navigation source) and active (providing
guidance to the aircraft) at any given time.

The overall FGS system consists of two identical subsystems, one associated
with the left side of the aircraft and one with the right side. In most modes
of operation, only one side is active and responds to pilot inputs and produces
outputs. The inactive side simply copies its internal state from the active side,
serving as a hot backup. In a few critical modes such as Approach and Go
Around, both sides of the FGS are active and generate outputs that are compared
before they are used.

We have used the mode logic of a FGS as an example in several previous
studies [7, 22, 33]. It is an excellent example because it is complex and represen-
tative of a class of problems frequently encountered in the design of embedded
control systems.

2.2 Modeling Process

In the project, we collected the system requirements as informal “shall” state-
ments. These requirements were relatively mature and well-understood. The next
phase, modeling, consisted of constructing by hand an executable model that we
believed exhibited the behavior informally stated in the shall statements; in this
case we used the RSML−e notation developed at the University of Minnesota.
Throughout creation of the model, we continually used the simulation capabili-
ties of the RSML−e execution and analysis environment Nimbus to execute the
model and informally confirm that it behaved as we expected. As we built the
model, we discovered and corrected numerous ambiguous, unclear, and inconsis-
tent informal requirements.

In the formal verification phase, we manually translated the shall statements
into formal properties stated over the model in CTL and merged these formal
properties with the translation of the RSML−e model into NuSMV created using
a translator developed by the University of Minnesota. Again, the formalization
process helped us improve the informal requirements. The NuSMV model checker
was then used to confirm whether the property held over the model or not.

When completed, the model of the FGS mode logic consisted of 41 input
variables (Boolean and enumerated), 16 small, tightly synchronized hierarchi-
cal finite state machines, 122 macro or function definitions, 29 output variables
(Boolean and enumerated), and was roughly 160 pages long in its typeset ver-
sion. We developed 300+ CTL properties based on the informal requirements.
A detailed description of the model and its simulation environment is available
in [27].

3 The Specification Will be Wrong

As mentioned above, the process of creating a model from the English prose
requirements caused us to go back and clarify the English statement of the



requirements. In the same way, translating the English statements into SMV
also prompted us to go back and clarify the English statement. In addition,
the verification that the model satisfied the requirements (formalized as CTL
properties) led to some insight into the validation problem. For example, consider
the well-validated and non-controversial requirement below.

If Heading Select mode is not selected, Heading Select mode shall be
selected when the HDG switch is pressed on the Flight Control Panel.

After formalization into CTL, this property did not verify in our model.
Using the model-checker we discovered two ways in which this property will not
be true. First, if another event arrived at the same time as the HDG switch was
pressed, that event could preempt the HDG switch event. Second, if this side of
the FGS was not active, the HDG switch event was completely ignored by this
side of the FGS. These were two scenarios that were correctly handled in the
implementation of the FGS systems, but not captured in any specification. The
counterexamples from NuSMV led us to modify the requirement to state

If this side is active and Heading Select mode is not selected, Heading
Select mode shall be selected when the HDG switch is pressed on the FCP
(providing no higher priority event occurs at the same time).

While longer and more difficult to read than the original statement, it has
the advantage of being a more accurate description of the system’s behavior. Of
course, we also had to clearly define what a “higher priority”‘ event was.

We found that the process of proving the properties forced us to go back
and modify virtually all of our original English requirements; consequently, all
formal specification properties also had to be modified.

It also became clear to the engineers formalizing the properties that great care
needs to be taken when formulating SMV properties to ensure that their proofs
are meaningful. For example, in the modelling of the FGS we frequently used
macros to encapsulate commonly used properties, for example, we might encap-
sulate a complex condition in a macro named “When Lateral Mode Manually Se-
lected”. The macros were frequently used when the properties were stated as
SMV properties. In most cases, the macro was used as the antecedent of an
implication, for example,

AG(m_When_Lateral_Mode_Manually_Selected.result ->

Onside_FD_On)

Naturally, if the macro “When Lateral Mode Manually Selected” was over-con-
strained in the model (or even contradictory and thus always false) this proof
would succeed but it would be rather meaningless.

To summarize, when developing formal models of any substantial system, the
models will most likely be incorrect with respect to the real needs of the sys-
tem. In our case, the three complementary models—informal English language
requirements, requirements formalized as CTL properties, and an executable



formal model—served to check each other in a rigorous validation process. Had
we only built the executable model and validated it through testing, chances
are significant flaws would have remained. Similarly, had we been blessed with
a correct-by-construction tool that would have helped us refine our 300+ CTL
properties to an implementation, the implementation would certainly have been
grossly incorrect with respect to the customers’ real needs. It is clear that a
rigorous validation process must be in place to ensure that any formal artifacts
serving as the basis for downstream automation are correct; without this vali-
dation any breakthroughs in verifiably correct code generation and compilation
will achieve limited success.

4 Loss of “Collateral Validation”

The goal of adopting model-based development is to reduce the high cost of
software development. The hope is that by relying on tools and automation,
for example, automatically generating certifiably correct production code from
a formal requirements specification or generating MC/DC tests for certification,
we could provide dramatic cost savings. These cost savings will be achieved
by replacing time consuming and costly manual processes, for example, design,
coding, and definition of test-cases, with tools. As mentioned above, our cur-
rent inability to adequately validate our requirements raises a serious concern
regarding the adoption of this type of automation. Manual processes, may that
be design, coding, testing, or putting a medical device through clinical studies,
draw on the collective experience and vigilance of many dedicated software pro-
fessionals; professionals that provide “collateral validation” as they are working
on the software. Experienced professionals designing, developing code, or defin-
ing test cases provide additional validation of the software system; if there is a
problem with the specified functionality of the system, they have a chance of
noticing and taking corrective action. As an example, consider the requirements
example from the previous section. Although the facts that the FGS had to be
active and that no higher-priority events were received at the same time were
not explicitly sated in the requirements, the engineers implemented the FGS
functionality correctly; these problems were caught in the manual development
process. When replacing these manual efforts with automation, proper valida-
tion of the formal requirements specifications on which the automation is based
becomes absolutely essential; there may be no safeguards in the downstream
development activities to catch critical flaws in the formal model—the collateral
validation is lost.

Naturally, the tools we use in the validation process may lead to additional
problems. For example,

1. If the specification execution environment misrepresents the semantics of the
specification language, all testing and validation done in the specification
domain is invalid.



2. If the code generation is incorrect, the resulting implementation will natu-
rally be wrong (and it may not be caught since we are now reducing testing
in the code domain).

3. If any of our analysis tools applied in the specification domain provide false
negatives (they fail to catch a faulty specification), we may mistakenly accept
a specification as correct and use it for code generation (again, this problem
is unlikely to be caught with the reduced code testing).

Solutions to such problems must be provided before these promising tech-
niques can be effectively used in the development of critical systems. The research
agenda laid out in this workshop promises to address some of the concerns related
to the tools used in model-based development, for example, verifying translators
and trusted proof checkers would address issues 2 and 3 above. Unfortunately,
execution environments, code generators, and analysis tools are not simple pieces
of software and it is highly unlikely that we will be able to provide the level of
confidence necessary to trust a specific tool as a development tool [31] in critical
systems development. Also, consider tool evolution and the cost of reverification
of evolving tools and the situation looks grim.

5 No Need For Perfection

As we ponder how new analysis techniques and development tools can be ef-
fectively deployed in the critical systems domain, we cannot loose track of one
important fact—although perfection and full verification is the goal, perfection is
not necessary for deployment and highly effective use. After all, our aim with in-
creased use of tools is to replace costly, time consuming, and error prone manual
tasks such as inspections and testing, and all that is really necessary from our
tools is that they are better than the manual tasks they replace. Unfortunately,
we do not know much about how error prone our manual processes really are,
nor do we know how to compare the effectiveness of an automated process to a
manual process—much important analytical and empirical research is needed to
help answer this question.

6 Summary

The emergence of formal modeling languages acceptable to practicing engineers
and the development of powerful analysis tools, for example, model checkers,
will enable a new development paradigm relying heavily on the use of auto-
mated tools for analysis and code generation—a development paradigm often
referred to as model-based development. As a community, we are now in a po-
sition to bring the full power of formal software development to fruition. As
discussed in this position paper, however, we have to approach this opportunity
cautiously. All formal development efforts rely on a correct specification as a
basis for development and verification; this puts enormous demands on the vali-
dation of the specification—the specification simply must be correct with respect



to the customers’ needs. Unfortunately, research efforts outlined in the Verifiable
Software Project focuse almost exclusively on various verification activities. We
find this troublesome; to gain the full advantage of verifying code generators and
compilers we have to concurrently develop techniques to determine if the speci-
fications have been adequately validated. It would be highly disappointing if the
enormous advantages in verification technology we have seen the last decade,
and will most likely see in the future, are used to verify that faulty specifications
are implemented correctly. A few well publicized failures are enough to make
widespread industry adoption and regulatory acceptance very difficult and set
our efforts back a decade—let us make sure that this does not happen.
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