
Reliable Software Systems Design: Defect Prevention,
Detection, and Containment

Gerard J. Holzmann and Rajeev Joshi

Laboratory for Reliable Software (LaRS)
Jet Propulsion Laboratory, California Institute of Technology

Pasadena, CA 91109, USA

Abstract. The grand challenge that is the focus of this conference targets
the development of a practical methodology for software verification: a meth-
odology that can help us to reduce the number of residual defects in software
products. Reducing residual defects is of course not in itself the objective of this
exercise; the true objective is to reduce the number of failures in the use of
software products. Or in other words: the objective is the development of a
methodology for “reliable software systems design.”

Introduction

It has often been argued that with the right training, discipline, and tools it should be
possible to produce zero-defect code. Very few things in life, though, are zero-defect
– not even the things that can be considered life critical. If you practice sky-diving,
you are probably acutely aware that your main parachute could fail to open, no matter
how carefully you check it before each jump. The parachutist would also be wise not
to trust a company that tries to sell him a zero-defect parachute. He is more likely to
avoid disaster by bringing a spare chute on every jump. That is: the seasoned para-
chutist takes the possibility of component failure into account to achieve a lowered
probability of system failure. Elevators are another good example. Of course, any ele-
vator component can fail, including the cable from which the elevator cab is sus-
pended. But, the elevator system as a whole is designed in such a way that even when
the cable breaks, the car will not come crashing down. We trust the system, even
though we know that none of its components are zero-defect. For the parachute re-
dundancy can trivially be used, but in the case of the elevator redundancy does not
necessarily solve the problem. Multiple cables may help address one specific form of
component failure, but operating multiple elevators in parallel would not address the
real safety issue that is at stake here.

Reliable systems are always designed with the possibility of component failure in
mind, and with remedies in place to significantly reduce the odds of system failure.

It is worth contemplating how deeply engrained the discipline of reliable system
design is, outside software engineering. If your kitchen-sink leaks, you can close a
valve that stops the flow of water to that sink. The valve is there because experience
has shown that sinks do occasionally leak, no matter how carefully they are con-
structed to prevent just that. If you short-circuit an electrical outlet in your home, a
fuse will blow. The fuse is there to prevent greater disaster in case the unimaginable

happens. The presence of the fuse and the valve do not signify an implicit acceptance
of sloppy workmanship; they are an essential part of reliable system design.

In contrast, most software today is build without valves and fuses. We try to build
perfect parachutes that do not need a backup. When software fails, we blame the de-
veloper for failing to be perfect. Would it not be wiser to assume from the start that
even carefully constructed and verified software components, like all other things in
life, may fail in unexpected ways, and use this knowledge to construct assemblies of
software components that provide independently verifiable system reliability?

Building Reliable Systems from Unreliable Parts

Hardware designers already know how to construct reliable systems from unreliable
parts. In building these systems, the designer starts from the knowledge that any com-
ponent in the system might fail, while securing that such failures can not cause the
failure of the system as a whole. We have yet to learn how to apply similar principles
in the construction of reliable software systems.

Any improvement in this domain will have to be grounded firmly in strong soft-
ware verification techniques, some of which exist and some of which remain to be
developed. The purpose of this position paper, though, is to point out that the devel-
opment of those techniques alone will not suffice. Our ultimate objective, after all, is
not necessarily to produce zero-defect software, but to produce ultra-reliable software
systems. This position has implications for the type of work we need to do, as we will
outline in more detail in the remainder of this paper.

Blue Screens of Death

Non-critical software applications are often designed in a monolithic fashion. When
the application crashes, e.g. when it hits a divide by zero error, the only recourse one
then has is to restart the application from scratch. This approach is, of course, not
adequate to use in the construction of systems that are safety critical, for instance be-
cause human life depends on its correct and continued functioning. When, for in-
stance, a spacecraft experiences an unexpected failure of one of its components during
a launch or landing procedure, a complete restart of the software may in itself cost the
loss of the mission. In manned space flight, a few minutes spent in rebooting the
crew’s life support system may have unintended and unacceptable consequences. Sys-
tems like this have to be ultra-reliable, even if some of their software parts are not.
The wise thing to assume in these cases is that no software part is fail-proof, not even
those that have been verified exhaustively.

Simplicity and Redundancy

There are two primary strategies for achieving system reliability. The first strategy is
to use a design that emphasizes simplicity and robustness. A simple design is easier to
understand, easier to test or verify, and easier to operate. The second strategy is to ex-

ploit redundancy. If the probability of failure of individual components is statistically
independent, the chance of having both a prime and a backup component fail at the
same time can be made very small. If, for instance, all components have the same
probability p of failure, then the probability that all N components fail in an N-
redundant system would be pN. In a nutshell, simplicity seeks to reduce the value of p,
while redundancy seeks to increase the value of N. Trivially, for all values of N ≥ 1
and 0 < p < 1 both techniques can lower the probability of failure pN for the system.

Unfortunately, one of the basic premises used in the redundancy argument that we
used above, the statistical independence of the failure probabilities of components,
can be very hard to achieve for software. Well-known are the experiments performed
in the eighties by Knight and Leveson with N-version programming techniques,
which demonstrated that different programming teams tend to make the same types of
design errors when working from a common set of (often flawed) design require-
ments. [KL86] Independently, Sha also pointed out that a decision to apply N-version
programming cannot be made independently of budget and schedule decisions. With a
fixed budget, each of N independent development efforts will inevitably receive only
1/N-th of the total project resources. If we compare the expected reliability of N de-
velopment efforts, each pursued with 1/N-th of the project resources, with one tar-
geted effort that can consume all available resources, the tradeoffs become very dif-
ferent. [S01]

Redundancy in the traditional sense, in the way that has proven to work well with
hardware systems, therefore cannot be duplicated easily in software systems. By
combining the strategies of simplicity and redundancy in a different way, though, we
may be able to build larger software systems that are indeed significantly more reli-
able than any of their individual parts.

Software Architectures for Fault Containment

Consider a standard software architecture consisting of software modules with well-
defined interfaces. Each module performs a separate function. The modules are de-
fined in such a way that information flow across module boundaries is minimized. We
will assume here, primarily for simplicity but without loss of generality, that the only
way for modules to interact is through message passing over trusted channels. Mod-
ules execute (at least logically) on independent hardware, to secure that the crash of
one module cannot affect other modules in any other way than across its module in-
terface. A failed module may stop responding, or fail to comply with the interface
protocols by sending erroneous requests or responses. We will make a further as-
sumption that module failures can be detected either through consistency checks that
are performed inside a module, or by peer modules that check the validity of mes-
sages that cross module boundaries.

One could make the argument that a failure that cannot be detected at runtime is
not a failure that can be remedied. We will have to accept that not all conceivable
types of failures can be defended against with this or any other fault containment dis-
cipline. We restrict our attention to those cases where a remedy is at least in principle
possible.

In our proposed software architecture, each software module is provided with a
simplified backup. During normal system operations, this backup module is idle.
When a fault is detected, though, the faulty module is switched offline and the backup
module replaces it. (Naturally, the backup module can have its own backup, and so
on, but we will not pursue this generalization here.) The backup, due to the fact that it
is a simplified version of the prime module, may offer fewer services, or it may offer
them less efficiently. The purpose of the backup, though, is to provide a survival and
recovery option to a partially failed system. It should provide the minimally necessary
functionality that is required to “stay alive.”

Note that in a traditional system the failing module is its own backup. Upon a fail-
ure one simply restarts the module that failed and hopes that the cause for failure was
transient. We suggest that we can defend against a substantially larger class of defects
if the backup module is distinct from the primary module and deliberately constructed
to be significantly simpler than the primary module.

As indicated earlier, if the primary and backup modules are constructed within an
N-version programming paradigm, we do not necessarily gain additional reliability
from this type of system structure. This system structure will not adequately defend
against design and coding errors. Some of the same design errors may be made in the
construction of both modules, and if the two modules are of similar size and complex-
ity, they should be expected to contain a similar number of residual coding defects
(i.e., coding defects that escape code testing and verification). Our proposal is there-
fore to make the backup modules significantly simpler than the primary modules.

Simplified Redundancy

The backup modules in our proposed architecture are constructed as simplified ver-
sions of the primary modules. Specifically, these backup modules can be designed
and build by the same developer(s) that design and build the primary modules. The
primary module is build for performance; the backup module is build for correctness.
The main purpose for a system architecture of this type is that the backup modules are
easier to verify thoroughly. The statistically expected number of residual defects in a
backup module should be significantly lower than that of the primary module, if they
contain significantly less code that can be checked thoroughly.

The backup module is used to guarantee continuity of operation, though in a possi-
bly degraded state of operation (e.g., slower and likely with reduced functionality).
The backup gives the system the opportunity to recover from unexpected failures: the
primary module is offline and can be diagnosed and possibly restarted, while the
backup module takes care of the most urgent of tasks in the most basic of ways. If
code is developed in a hierarchical fashion, using a standardized software refinement
approach, the backup module could encapsulate an earlier level in the refinement of
the final module: a simpler version of the code that is not yet burdened with all fea-
tures, extensions, and optimizations that will support the final version, but that does
perform the most critical and basic duties in the most straightforward way.

If this approach can be made to work (at the time of writing we not yet completed a
realistic case study) we would expect the backup modules to be significantly smaller
in size (e.g., in lines of code) than the primary modules. By virtue of being smaller

and simpler, the expected number of residual defects in this code should also be
smaller. We will tacitly assume here that the number of design and coding defects is
proportional to the size of a module, just like the number of syntax and grammar mis-
takes in English prose is proportional to the length of that prose. If the primary mod-
ule has a probability of failure due to residual defects p and for the backup module the
probability of failure is q, we would expect to have 1 > p > q > 0 (ignoring the bound-
ary cases where we have either certainty of failure or absolute perfection). Because
the backup module contains less code, and implements less functionality, it offers
fewer opportunities for design and coding defects. The module with its backup now
fails with probability (p.q) which should be smaller than the probability p for the same
module without the backup.

Fault Detection and Secure Fall-Back

We have assumed that we can tell, in a sufficient number of cases, when a software
module fails to perform its intended function due to a design or coding error. There
are several ways in which this could work, at least in principle, but none are truly sat-
isfactory. The module code can contain assertions that check for the validity of inputs
and outputs (standard pre and post-condition checks), and they can verify that essen-
tial invariants are maintained in the module code. But if we assume that the nature of
the residual software defects is unpredictable and to first approximation will exhibit
itself as a random divergence of the intended or desired behavior, the conclusion will
be inevitable that a module cannot reliably detect all occurrences of defects in its own
code. Modules can, however, be reasonably expected to check each other. If a mod-
ule, for instance, detects that faulty input is provided to it across its module interface,
the module could declare the peer module that provided the input to be faulty, reject
the input, and command the suspect module to be switched over to its backup. There
is a close correspondence here to security related problems in mainstream software
design: how can a module trust that its peer is reliable? [R98, W89]

There is also another problem that has to be addressed. Even supposing that we
would have, or will be able to develop, a reliable defect detection discipline, how pre-
cisely can we arrange things in such a way that the switch-over from a primary mod-
ule to its backup (or vice versa) does not itself introduce a system failure? cf. [AB85,
RL81] We do not have answers to these questions, but suggest them as a potentially
fruitful area of research in reliable software systems design.

Synopsis

The goal of this position paper is to suggest that to achieve software reliability we
should not restrict ourselves solely to the investigation of ways to achieve zero-defect
code, but also more broadly to new methods to produce fail-proof systems. We would
like to develop the art of building reliable systems from unreliable parts into a mature
software engineering discipline.

The principal method of structuring code we propose to investigate is fairly simple.
The code is structured into modules that can fail largely independently. Modules

communicate only via well-defined interfaces. Each module is provided with at least
one backup that can take over basic operations when the primary module fails. The
backup module is constructed to be significantly simpler, smaller, and more reliable
than the primary that it supports, possibly performing less efficiently and providing
less functionality.

This basic mode of operation is already used today in the hardware design of
spacecraft. Spacecraft typically do not just have redundant components on board, but
also components of different types and designs, providing different grades of service.
Most spacecraft, for instance, have both a high-gain and a low-gain antenna. When
the high-gain antenna becomes unusable, the more reliable low-gain antenna is used,
be it at a significantly reduced bit-rate. Perhaps not surprisingly, this same principle
has also been applied on a modest scale in the design of mission critical software,
though not always systematically. The MER rover software, for instance, was de-
signed to support two main modes of operations: the fully functional mode with all its
features and functions enabled and a minimal basic mode of operation that has been
referred to as the “crippled mode.” It was precisely this “crippled mode” that made it
possible for the software engineers to recover from a serious software anomaly that
struck one of the rovers early in its mission. [RN05] Our proposal is to use these prin-
ciples more systematically, throughout the design of safety and mission critical soft-
ware components.

Acknowledgement

The work described in this paper was carried out at the Jet Propulsion Laboratory, California
Institute of Technology, under a contract with the National Aeronautics and Space Administra-
tion. Specifically, this work is part of a NASA funded project SISM-160, titled Reliable Soft-
ware Systems Development (RSSD), which targets the development of new tool-based method-
ologies for reliable software development.

References

[AB85] T. Anderson, P.A. Barrett, D.N. Halliwell, M.L. Moudling, “An evaluation of software
fault tolerance in a practical system”, Proc. Fault Tolerant Computing Symposium 1985, pp.
140-145.

[KL86] J.C. Knight and N.G. Leveson, “An Experimental Evaluation of the Assumption of In-
dependence in Multi-version Programming,” IEEE Transactions on SoftwareEngineer-
ing,Vol. SE-12, No. 1 (January 1986), pp. 96-109.

[RN05] G. Reeves and T. Neilson, “The Mars Rover Spirit Flash Anomaly,” IEEE Aerospace
Conference, Big Sky, MT, March 2005.

[RL81] R.D. Rasmussen, and E.C. Litty, “A Voyager attitude control perspective on fault toler-
ant systems,” Proc. AIAA Conf., August 1981, Alburquerque, NM, pp. 241-248.

[R98] J. Rushby, "Partitioning in Avionics Architectures: Requirements, Mechanisms, and As-
surance. Draft technical report, Computer Science Laboratory, SRI,1998.

[S01] L. Sha. “Using Simplicity to Control Complexity,” IEEE Software, July-August 2001,
pp. 20-28.

[W89] D.G. Weber, "Formal specification of fault-tolerance and its relation to computer secu-
rity", Proc. 5th Int. Workshop on Software Spec. and Design, pp 273-277, Pittsburgh, PA,
May 1989

