Some interdisciplinary observations
about getting the “right” specification

CIiff B Jones

Newcastle University
Newcastle, NE1 TRU, UK
cliff.jones@ncl.ac.uk

One can use formal approaches either post facto to try to show that a program
has desirable properties or one can aim for verified by construction (VxC). The
former approach tends to focus on specific properties such as avoiding the de-
referencing of null pointers; the latter is more likely to address the question of
whether the steps of design satisfy some overall specification. I not only prefer
the latter but I have also argued that this is the main way to get formal methods
to pay off: there is more mileage in getting a clean architecture than in trying
to debug a bad design by retrofitting a proof.

I think VxC is also a way to choose an appropriate level of formality perhaps
using outline arguments and filling in details if doubt arises (see [Jon96]; Jackson
and Wing made a similar point in the same journal; [Jon05] makes a similar point
related to proofs).

But we must also face the crucial question “how do we know that the specifi-
cation is right?”. This is not a trivial question especially with the way computers
are used today. As computers have become more powerful and less expensive,
they have become ever more deeply embedded in the way nearly everyone works.
In their short history, computers have moved from batch processors in their own
buildings to work tools on every desk (or lap). They are now essential com-
ponents of administration, retail trade, banking and vehicles; computers in the
future will become invisible dust sprinkled on who-knows-what. This has trans-
formed the task of understanding the requirements of a system. Above all, the
close interaction of people with computer systems makes it essential that design-
ers consider the whole system when formulating a specification of the technical
parts. This larger system involves people as essential components.

Model-oriented specification techniques like VDM, Z, ASMs and B have an
enormous amount in common; among other things shared by this formal methods
community is the view that one can start with a formal specification and show
that a design/implementation satisfies that specification. It is obvious however
that, if a specification does not actually reflect the real need, proving a program
correct with respect to it is somewhat pointless. Am I arguing in favour of “XP”
or fluid prototyping? Certainly not — at least not for most applications. But
one might have to proceed in this way if we were to decide it’s impossible to get
the right specification.

I strongly believe that, for a crucial set of computer uses, one can —and must—
start with a careful process of establishing a good specification. Mine is not a
council of despair; I want to see how we can use technical ideas to improve the

process of getting to a specification. In particular, some of the ideas below relate
strongly to formal methods.

The point about where effort will have the greatest effect on dependability can
be made by looking at accidents: Donald MacKenzie in [Mac94,Mac01] has traced
the cause of just over 1100 deaths (up to 1994) where computer systems appear
to be implicated. Only three percent of the lives lost appear to be attributed
to program bugs! Far more common causes of accidents appear to be situations
where humans misunderstand what is going on in a control system or the object
being controlled. This is a much deeper issue than the details of HCI; in many
cases it is a fundamental question of the allocation of tasks between person and
machine. Key questions include the visibility of the “state” of the system being
controlled and the extent to which operations which the user can perform are
grouped together.

Although accidents are shocking and grab attention, there is also a significant
penalty in the deployment of systems which make their users’ lives more difficult
than they need be. The enormous cost (often to the taxpayer) of systems which
are so unusable that they are not even deployed is reported all too often in
newspapers.

Of course, we should use formal specification and design techniques for fault
avoidance and we still need research to make them more widely usable. (I have
contributed to several sets of tools in this area including [JJLM91].) But it would
also appear to be worthwhile to see whether there is a technical response to the
question of how one arrives at a specification which does reflect the needs of
the environment in which a system will be embedded. Does the formal methods
community have a contribution to make here? I believe so.

This paper sets out some research challenges to which we might be able to
offer useful responses. The suggestions have arisen from the six year “Interdis-
ciplinary Research Collaboration on Dependability” (DIRC) — see the WWW
pages at [WWWO06] for further details. DIRC is focusing its research on how to
design Dependable computer-based systems. The phrase “computer-based sys-
tems” is intended to emphasise that most computer systems today are deeply
embedded into an environment which also involves people. For example, the
requirement in a hospital is for dependability of the overall system. In such do-
mains, humans will use a computer system to achieve objectives even where they
know that it delivers less than perfect information; on other occasions, computers
can be programmed to warn when errors appear to be made by humans. People
are less good than computers at narrowly specified repetitive tasks but are much
better at recognising and reacting to exceptional situations. To achieve overall
system dependability, both humans and programs must be properly deployed.

Some of the insights from the DIRC project include:

Determining specifications An approach being worked on with Ian Hayes and
Michael Jackson [HJJ03,JHJ06] looks at determining the specification of, say,
a control system by first specifying a wider system including the phenomena of
the physical world which are to be influenced. To avoid having to build a model
of the behaviour of all physical components, assumptions about their behaviour

are recorded using rely conditions. This leaves a clear record of assumptions
which need to be considered before the control system is deployed. Development
from the derived specification of the control system is conducted in the standard
(formal) way. (Dines Bjgrner’s books [Bjg05] tackle “domain modelling”.)

Limiting failure propagation The design of boundaries that limit the propagation
of failures is better articulated for technical systems than for the human part
of computer-based systems. This is odd because the intuition about limiting,
say, accounting errors by auditors is long established. Many examples can be
cited to suggest that most human systems are “debugged” rather than designed.
The motivation for where to place containment boundaries ought to come from
an analysis of the frequency of minor faults and the danger of their affecting a
wider system. This analysis ought to precede the allocation of tasks to computers
which, in turn of course, must be done prior to their specifications being “signed
off”.

Cognitive mismatch A major cause of near or actual accidents is a “cognitive
mismatch”! between an operator’s view of what is going on and the actual state
of affairs in the system the operator is trying to control. This was a significant
factor in the Three Mile Island reactor incident. John Rushby [Rus99] has looked
at pilot errors on the MD-88: in simulators, they frequently breach the required
altitude ceiling. Rushby’s careful formal analysis builds a state model of the
pilot’s understanding of the system and explores its interaction with a model
of the aircraft systems. (It would be informative to compare this approach with
rely conditions.)

The role of procedures The general way in which processes (or procedures) are
used in the human parts of computer-based systems is interesting. If one con-
trasts a traditional car production line with the depiction in the film Apollo 13
of the search for a solution to the need to improvise COy scrubbers in the dam-
aged capsule, one sees that processes both limit action and reduce the need for
information. Designing processes which cope with all exceptions is in many cases
impossible and one argument for relying on humans in computer-based systems
is precisely that they notice when it is safer to violate a procedure than slavishly
to follow one that does not cover an exceptional case. Clearly, either following
an inappropriate process or deviating from a correct process can lead to sys-
tem failure. But it is absolutely mandatory that thought is given to processes
in the design of a computer-based system. Interestingly, one can spot errors in
legislation where an algorithmic rule is frozen into law: there have been several
cases in financial legislation where a well-intentioned trigger has had (or nearly
had) counter-productive effects. A recent DIRC book [Mac06] addresses financial
markets from this perspective.

! Both of James Reason’s books [Rea90,Rea97] look at relevant issues: the earlier
reference looks at a division of the sort of errors that humans make; the second
has insightful analyses of many system failures. Perrow in [Per99] talks of “Normal
accidents”.

Adwvisory systems Within DIRC, the role of advisory systems has received partic-
ular attention: [SPA03] studies a prompter used in the analysis of mammogram
images. Surprising conclusions include statistically significant evidence that, un-
der the tested conditions, the most accurate operators offered less accurate con-
clusions with the help of the advisory system than without its use. It is clear
that the role of such advisory systems has to be considered far more widely
than just by looking at their technical specifications. In fact, even pure safety
limiters (where one would believe they can only increase safety) have been used
by operators in a way which supplants their normal judgement.

Creating dependable systems Systems can create other things whose dependabil-
ity is the goal. In the simplest case, a production line might manufacture silicon
chips and faults in the manufacturing process might result in faulty components
for computers. A software example is a compiler that, if faulty, could translate a
perfect program into machine code which does not respect the formal semantics
of the source language. In many cases, the creation process is human and, for ex-
ample, a designer of a bridge which fails to withstand expected forces is at fault.
The creation of computer software is just such a process and is not always fault
free. DIRC has provided an opportunity to look at Gerry Weinberg’s conjec-
tures in [Wei71] that different psychological types might be more or less adept
at different sub-tasks within the broad area known as programming [DGO06].
The implications of this research for building dependable systems might include
steering people toward the tasks at which they are likely to perform best (and
probably be most content).

Evolution If the above list were not daunting enough (and it is far from complete
even with respect to DIRC’s findings) there is another overriding concern. The
sort of computer-based system we have been studying will always evolve. Design-
ing a system which can be modified in reaction to a reasonable class of evolutions
in the environment is extremely challenging. One class of system which has been
studied within the DIRC project is generic systems. The justification of this sort
of system is that it can be instantiated for a range of applications: characterising
this range is itself a technical problem (and a further challenges is trying to max-
imise the range). It is clear that issues around evolution will have a long-term
impact on dependability. There are related questions about how data survives
such evolution which are equally challenging.

DIRC has identified far more than the above set of issues; the selection here
has been based on the ease with which this one member of a project (involving
more than fifty researchers) could pull together the information.

One key experience from the project is the invaluable role of interdisciplinar-
ity. Looking at experiments on psychological type and debugging performance
required wholehearted collaboration of psychologists and computer scientists;
tackling the mammography advisory system involved interaction between statis-
ticians, sociologists and psychologists. DIRC researchers could list many more
examples of how our combination of psychologists, statisticians, sociologists and

computer scientists has made real progress that no one of these disciplines could
have accomplished.

My own inclination is to seek technical approaches to problems and I hope
that the list above indicates that this is a viable challenge. But the DIRC project
has been a superb example of collaboration and if faced with a complex applica-
tion area, I would now know how to call on the expertise of other disciplines. In
particular, the painstaking gathering of observational data needs sociologists.

One key message from our experience is to tackle application problems to-
gether as a team. With an “Operations Research” (OR) like team representing
several disciplines terminology problems disappear, contributions become under-
stood and something is achieved which no single discipline could have envisaged.

Acknowledgements

My research acknowledgement is to the many colleagues involved in DIRC; it is
a privilege to lead such an exciting project.

We are all grateful to EPSRC for the six year funding window which we feel
was essential to foster such a wide interdisciplinary span.

References

[Bjo05] D. Bjgrner. Software Engineering (8 vols.). Springer-Verlag, 2005.

[DGO6] A Devito Da Cunha and David Greathead. Does personality matter? an
analysis of code-review ability. In press, Communications of the ACM, 2006.

[HJJ03] Ian Hayes, Michael Jackson, and Cliff Jones. Determining the specification
of a control system from that of its environment. In Keijiro Araki, Stefani
Gnesi, and Dino Mandrioli, editors, FME 2003: Formal Methods, volume
2805 of Lecture Notes in Computer Science, pages 154-169. Springer Verlag,
2003.

[JHJO6] CIliff Jones, Ian Hayes, and Michael Jackson. Specifying systems that con-
nect to the physical world. Acta Informatica, 2006. submitted.

[JJLM91] C. B. Jones, K. D. Jones, P. A. Lindsay, and R. Moore. mural: A Formal
Development Support System. Springer-Verlag, 1991. ISBN 3-540-19651-X.

[Jon96] C. B. Jones. A rigorous approach to formal methods. IEEE, Computer,
29(4):20-21, 1996.

[Jon05] C. B. Jones. Reasoning about the design of programs. Royal Soc, Phil
Trans R Soc A, 363(1835):2395-2396, 2005.

[Mac94] Donald MacKenzie. Computer-related accidental death: an empirical ex-
ploration. Science and Public Policy, 21:233-248, 1994.

[Mac01] D.MacKenzie. Mechanizing Proof: Computing, Risk, and Trust. MIT Press,
Cambridge, Mass., 2001.

[Mac06] D. MacKenzie. An Engine, Not a Camera: How Financial Models Shape
Markets. MIT Press, Cambridge, Mass., 2006.

[Per99] Charles Perrow. Normal Accidents. Princeton University Press, 1999.

[Rea90] James Reason. Human Error. Cambridge University Press, 1990.

[Rea97] James Reason. Managing the Risks of Organisational Accidents. Ashgate
Publishing Limited, 1997.

[Rus99] John Rushby. Using model checking to help discover mode confusions and
other automation surprises. In Proceedings of 8rd Workshop on Human
Error, pages 1-18. HESSD’99, 1999.

[SPA03] L Strigini, A. Povyakalo, and E. Alberdi. Human machine diversity in the
use of computerised advisory systems: A case study. In DSN 2003-IEEE
International Conference on Dependable Systems and Networks, pages 249—
258, San Francisco, USA, 2003.

[Wei71] Gerald M. Weinberg. The Psychology of Computer Programming. Van
Norstrand, 1971.

[WWWO06] WWW. www.dirc.org.uk, 2006.

