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Abstract. The Verifying Compiler checks the correctness of the program it com-
piles. The workhorse of such a tool is the reasoning engine, which decides validity
of formulae in a suitably chosen logic. This paper discusses possible choices for
this logic, and how to solve the resulting decision problems. A framework for
reducing decision problems to propositional logic is described, which allows the
surprising improvements in the performance of propositional SAT solvers to be
exploited. The only assumption the framework makes is that an axiomatization
of the desired logic is given.

1 Introduction

The solution to the Grand Challenge proposed by Tony Hoare [1] is close to millions
of programmers’ daydream: a compiler that automatically detects all the bugs in their
code.

More realistically, the goal is to prove or refute assertions given together with a
program. Writing assertions is common practice. It will certainly remain difficult to
write a specification that is strong enough to capture the designer’s intent, but leaving
this problem aside, just checking what we are able to specify would be tremendously
useful already.

The way these assertions are specified is intentionally left open; this may range from
simplistic assert () statements inserted into the code to a formula given in a temporal
logic like LTL to even another higher-level program, which serves as specification. In
general, it is to be expected that the specification or the assertions themselves will not be
strong enough to serve as inductive invariants for loop constructs. Part of the challenge,
therefore, is to strengthen the property to allow reasoning about the loops.

Manifold methods have been proposed to address this challenge, ranging from in-
teractive theorem proving to automated methods such as Model Checking [2, 3]. The
workhorse of basically all software verification techniques is an efficient decision pro-
cedure, which decides validity of formulae in a suitably chosen assertion logic.

This paper discusses possible choices for this logic, and how to solve the resulting
problems. We argue that any choice of assertion logic has to be sufficiently rich to per-
mit expressions over the operators offered most commonly by the major programming
languages. It also has to permit reasoning about dynamic data structures. Even for sim-
plistic data structures, this requires support for quantification, either explicitly, in the
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form of universal and existential quantifiers, or implicitly, in the form of predicates that
are defined by means of quantifiers.

A decision procedure for program analysis also needs to deal with decision prob-
lems that arise from refutation attempts, which are encodings of the feasibility of certain
program paths. Given a large program, the paths can become very long, and conse-
quently, the resulting formulae can become very large. The formulae often have a non-
trivial propositional structure. Many decision procedures still perform case-splitting on
the propositional structure, which limits the capacity of these tools severely.

Outline In Section 2, we introduce the existing decision procedures that are used by
program analysis tools, and discuss their suitability for this task. In Section 3, we pro-
pose a framework for encoding decision problems into propositional logic assuming an
axiomatization of the assertion logic is given.

2 Decision Procedures for Program Verification

2.1 Existing Approaches

Almost all program verification engines, such as symbolic model checkers and ad-
vanced static checking tools, employ automatic theorem provers for symbolic reason-
ing. For example, the static checkers ESCJAVA [4] and BOOGIE [5] use the Simplify [6]
theorem prover to verify user-supplied invariants.

The SLAM [7-12] software model-checker uses ZAPATO [13] for symbolic simula-
tion of C programs. The BLAST [14] and MAGIC [15] tools use Simplify for abstrac-
tion, simulation and refinement. Other examples include the Invest tool [16], which uses
the PVS theorem prover [17]. Further decision procedures used in program verification
are CVC-Lite [18], ICS [19], and Verifun [20].

However, the fit between the program analyzer and the theorem prover is not always
ideal. The problem is that the theorem provers are typically geared towards efficiency
in the mathematical theories, such as linear arithmetic over the integers. In reality, pro-
gram analyzers rarely need reasoning for unbounded integers. Linearity can also be too
limiting in some cases. Moreover, because linear arithmetic over the integers is not a
convex theory (a restriction imposed by the Nelson-Oppen and Shostak theory combina-
tion frameworks), the real numbers are often used instead. Program analyzers, however,
need reasoning for the reals even less than they do for the integers.

Program analyzers must consider a number of program constructs that are not easily
mapped into the logics supported by the theorem provers. These constructs include
pointers, pointer arithmetic, structures, unions, and the potential relationship between
these features.

CBMC [21], a Bounded Model Checker for ANSI-C programs, uses a different
approach: the program is unwound into a bit-vector logic formula, which is satisfiable
if and only if there exists a trace up to a given length that refutes the property. This
decision problem is reduced to propositional logic by means of circuit-encodings of
the arithmetic operators. This allows supporting all operators as defined in the ANSI-C
standard. The propositional formula is converted into CNF and passed to a propositional



SAT solver. If the formula is satisfiable, a counterexample trace can be extracted from
the satisfying assignment, which the SAT solver provides.

In [22], we proposed the use of such propositional SAT-solvers as a reasoning en-
gine for automatic program abstraction. The astonishing progress SAT solvers made in
the past few years is given in [1] as a reason why the grand challenge is feasible today.
Solvers such as ZChaff [23] can now solve many instances with hundreds of thousands
of variables and millions of clauses in a reasonable amount of time.

In [24], we report experimental results that quantify the impact of replacing ZAP-
ATO, a decision procedure for integers, with Cogent, a decision procedure built using
a SAT solver: The increased precision of Cogent improves the performance of SLAM,
while the support for bit-level operators resulted in the discovery of a previously un-
known bug in a Windows device driver.

This approach is currently state-of-the-art for deciding validity of formulae in a
logic supporting bit-vector operators. It is implemented by Cogent and CVC-Lite, while
ICS is still using BDDs to reason about this logic.

2.2 Open Problems

The existing approaches are clearly not satisfying:

1. First of all, the word-level information about the variables is lost when splitting
bit-vector operators into bits. A solver exploiting this structure is highly desirable.
Word-level SAT-solvers (sometimes called circuit-level SAT solvers) attempt to ad-
dress this problems, but provide only a very small subset of the required logic. In or-
der to compute predicate images or to perform a fixed-point computation, we need
to solve a quantification (or projection) problem, not a decision problem, which is
typically considered to be harder than the decision problem.

2. Second, the logic supported by this approach is still not sufficient. A major goal
of a Verifying Compiler is to show pointer-safety. In the presence of dynamic data
structures, this requires support for a logic such as separation logic [25]. The combi-
nation of such a non-standard logic with bit-vector logic in a joint efficient decision
procedure is a challenging problem.

3. Programs involving complex data structures will certainly require formulae that
use quantifiers, e.g., to quantify over array indices. Due to the high complexity
of these decision problems, there are currently no practical decision procedures
available. The progress that solvers for QBF (quantified boolean formulae) make
is encouraging, and promises to enable new applications just as the progress of
SAT-solvers did.

A successful decision procedure for program analysis has to support a very rich
logic, and be able to scale to large problem instances. In the next section, we discuss a
framework for reducing decision problems to propositional logic assuming an axioma-
tization of the desired assertion logic is given.



3 Encoding Decision Problems

3.1 Propositional Encodings

Definition 1 (Propositional Encoding). Let ¢ denote a formula that ranges over vari-
ables vy ...,v, from arbitrary domains D+, ..., D,. Let ¢p denote a propositional
function ranging over the Boolean variables by, . .., by,,. The function ¢p is called a
Propositional Encoding of ¢ iff ¢ p is equi-satisfiable with ¢:'

Fui, ..., 0 € Dy X oo X Dy d(v1, ..., 0p)
<~ dby,...,b, € {O, l}m'.(ﬁp(bl, .. ,bm)

Once we have computed a propositional encoding of a given formula ¢, we can
decide satisfiability of ¢ by means of a propositional SAT solver. Linear-time algorithms
for computing CNF for ¢ p are well-known [26].

The first efficient proof-based reduction from integer and real valued linear arith-
metic to propositional logic was introduced by Ofer Strichman [27]. The proof is gen-
erated using Fourier-Motzkin variable elimination for the reals and the Omega test for
the integers [28]. We generalize the approach in [27] to permit arbitrary logics as long
as a (possibly incomplete) axiomatization is provided.

Definition 2 (Propositional Skeleton).

Let A(p) denote the set of all atoms in a given formula ¢ that are not Boolean
variables. The i-th distinct atom in ¢ is denoted by A;(¢). The Propositional Skeleton
¢si of a formula ¢ is obtained by replacing all atoms a € A(¢) by new Boolean
variables e1, . .., e,, where v = | A(@)|. We denote the identifier to replace atom A; by

As an example, the propositional skeleton of

p=(=y)n((@b=0c)V(z#y))

ise1 A (e2 V—er)and A(g) is {z =y,a® b = c}.
Let E denote the set of variables {ey, . .., e, }, and let € denote the vector of the vari-
ables in E. Furthermore, let v, (p) denote the atom a with polarity p € {true, false}:

Ya(p) = {“ P (1)

—a : otherwise

Thus, 1), (true) is the atom a itself, whereas 1, (false) is the negation of a.

Lazy vs. Eager Encodings Many decision procedures compute propositional encodings.
All of them use the propositional skeleton as one conjunct of ¢ p. The algorithms differ
in how the non-propositional part is handled.

! Note that we do not require that the reduction is done in polynomial time, and thus, we can
handle logics outside of NP.



Let z : A(p) — {true,false} denote a truth assignment to the atoms in ¢. Let

W 4(4)(x) denote the conjunction of the atoms a; € A(¢) where a; is in the polarity
given by z(a;):

Va)(@) = [\ vale(a) @)

a€A()

Intuitively, ¥ 4(4)(2) is the constraint that must hold if the atoms have the truth
values given by x. An Eager Encoding considers all possible truth assignments x before
invoking the SAT solver, and computes a propositional encoding ¢ (x) such that

p(r) = Yy (2) 3)

The number of cases considered while building ¢ can often be dramatically re-
duced by exploiting the polarity information of the atoms, i.e., whether an atom a ap-
pears in negated form or without negation in the negation normal form (NNF) of ¢. Af-
ter computing ¢, ¢ is conjoined with ¢, and passed to a SAT solver. A prominent
example of a decision procedure implemented using an eager encoding is UCLID [29].

A Lazy Encoding means that a series of increasingly stronger encodings ¢}, ¢%, ...
and so on with ¢ = ¢ is built. Most tools implementing a lazy encoding start off
with ¢} = @g. In each iteration, ¢% is passed to the SAT solver. If the SAT solver
determines ¢’ to be unsatisfiable, so is ¢. If the SAT solver determines ¢ to be sat-
isfiable, it also provides a satisfying assignment, and thus, a truth assignment z° to the
atoms A(¢).

The algorithm proceeds by checking if this assignment is consistent with the theory,
ie., if LDA¢(xi) is satisfiable. If so, ¢ is satisfiable, and the algorithm terminates. If not
s0, a subset of the atoms A’ C A(¢) that is already unsatisfiable under x is deter-
mined. The algorithm builds a blocking clause c, which prohibits this truth assignment
to the atoms .A’. The next encoding ¢:' is ¢ A c. Since the formula only becomes
stronger, the algorithm can be tightly integrated into one run of a SAT-solver, which
preserves the learning done by the solver in prior iterations. Advanced implementations
of lazy encodings also preserve learning done within the decision procedure for the
non-propositional theory.

Among others, CVC-Lite implements a lazy encoding of integer linear arithmetic.
The decision problem for the conjunction ¥ 4, (z") is solved using the Omega test.

3.2 Propositional Encodings from Proofs

Proofs in any logic follow a pre-defined set of proof rules. A proof rule consists of a set
of antecedents A1, ..., Ag, which are the premises that have to hold for the rule to be
applicable, and a consequence C'. The rule is written as follows, where « denotes the

“name” of the rule:
Ay, ... A

C
A logic can be axiomatized by defining a set of special proof rules called axioms or
axiom schemata, which define true statements in that logic. Many useful logics do not
permit a complete axiomatization, but the set of axioms is usually sufficient to prove
many theorems of practical interest.

(0%



Definition 3 (Proof Steps). A Proof Step s is a triple (r, p, 4), where r is a proof
rule, p a proposition (the consequence), and A a (possibly empty) list of antecedents

Ar, .o A

The fact that the dependence between the proof steps is directed and acyclic is
captured by the following definition.

Definition 4 (Proof Graph). A Proof Graph is a directed acyclic graph in which the
nodes correspond to the steps, and there is an edge (x,y) if and only if x represents an
antecedent of step .

Definition 5 (Proof-Step Encoder). Let | denote a contradiction, or the empty clause.
Given a proof step s = (r, p, 4), its Proof-Step Encoder is a function e(s) such that:

false p=_1
e(s) = { (@) tp=-p
new propositional variable : otherwise

/

For a proof step s = (r, p, 4), we denote by c(s) the constraint that the encoders of the

antecedent steps imply the encoder of s, or more formally: if 4 = A, ..., Ay are the
antecedents of s, then
k
c(s) == (/\ e(Ai)> — ¢e(p)
i=1

Definition 6 (Proof Constraint). A proof P = {s1,...,s,} is a set of proof steps in
which the antecedence relation is acyclic. The Proof Constraint ¢(P) induced by P is
the conjunction of the constraints induced by its steps:

seP
A proof P is said to prove validity of ¢ if e(—¢) A ¢(P) is unsatisfiable.
Theorem 1. For any proof P and formula ¢, ¢ implies ¢, N c(P).
Thus, the idea of [27] is applicable to any proof-generating decision-procedure:

— All atoms A(¢) are passed to the prover completely disregarding the Boolean struc-
ture of ¢, i.e., as if they were conjoined. A proof P is obtained.

— Build ¢p as ¢s; A c(P).

— The prover must be modified to obtain all possible proofs, i.e., must not terminate
even if the empty clause is resolved.

Example We illustrate the algorithm above with the following Hoare triple:
{b=5A(p—aVpr—Db} xp:=3{b=5}

Informally, let p — a’ denote the fact that a pointer p points to some variable a.
We denote the dereferencing operation of a pointer p by *p. Let c?x : y denote z if ¢



holds, and y otherwise. Given a suitable definition of assignment to *p, the following
verification condition v could be generated for the triple above:

P = (0'=5A(p—aVp—bA
(p—ala=3:a=d)A
(p—b=3:0=0))

—b=5

As we aim at showing validity of ¢, we form ¢ := —1), and check satisfiability of
¢. A propositional encoding of ¢ can be obtained using the following mapping from
atoms to variables:

eV =5)=vy ela=d)=uy
e(p—a) = e(b=3)=wus
e(p—b)=vy elb=0)=uvg
e(a=3)=uvs3 e(b=1>5)=uvy

Reasoning for equality logic is sufficient to prove or disprove claims of the form of
our example. The only proof rule needed is transitivity of equality?:

An instance of this rule is (b = 3 A b = V') — b = 5, which yields the constraint
(vo A\ vg) — vy

Let this constraint conjoined with ¢ be denoted by ¢¢p,.. The formula ¢, can
be passed to a SAT solver. One of the satisfying assignments that the SAT solver could
produce is vg,—w1,V2,7Vs,V4,U5, Vg, V7, 1.6., p +— b, and b = 3, which refutes the
claimed post-condition.

3.3 Proofs for Program Verification

As motivated above, reasoning for integers is a bad fit for lower-level software, and
is basically useless to prove properties of system-level software or even hardware. We
would therefore like a proof-based method for a bit-vector logic, enriched with reason-
ing support for pointers. The main challenge is that any axiomatization for a reasonably
rich logic permits too many ways of proving the same fact, and the completeness of the
procedure as described above relies on enumerating all proofs.

% We also use the fact that equality is symmetric and axioms about integers; however, these facts
are usually hard-coded into the procedure that applies the transitivity rule.



Even if great care is taken to obtain a small set of axioms, the number of proofs
is still too large. Furthermore, in the case of bit-vector logic, the proofs will include
derivations that are based on reasoning about single bits of the vectors involved, result-
ing in a flattening of the formula, which resembles the circuit-based models used for
encodings of bit-vector logic into propositional logic.

We therefore propose to sacrifice precision in order to be able to reason about bit-
vectors, and compute an over-approximation of ¢ p. This does not necessarily imply
that the program analysis tool will become unsound. In fact, most existing program
analysis tools, e.g., SLAM and BLAST, use decision procedures that compute over-
approximations in order to save computational effort. Such over-approximations can
be refined automatically if needed, e.g., based on UNSAT cores as in [30] or based on
interpolants as in [31].

One trivial way to obtain an inexpensive over-approximation of ¢ p is for example,
bounding the depth of the proofs. Future research could, for example, focus on better
proof-guiding heuristics.

The technique described above is applicable to decision problems, e.g., for checking
verification conditions, and to quantification problems, as arising in fixed-point compu-
tations. For an explanation how this technique can be applied to quantification problems
arising in predicate abstraction, we refer the reader to [32, 33].

4 Conclusion

Program verification engines rely on decision procedures. However, despite many years
of research in this area, the available decision procedures are not yet geared towards
program analysis. Program analysis requires a logic with many features commonly not
found in today’s decision procedures, such as bit-vector operators, and ways to han-
dle structs, unions, and pointers. A possible logic to model the pointer operations is
separation logic.

The current state-of-the-art for deciding bit-vector logic is an ad-hoc approach us-
ing propositional SAT-solvers. An efficient decision procedure that supports a logic as
needed for program analysis is an open problem that has to be solved to succeed in the
grand challenge.
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