
Scalable Specification and Reasoning: Challenges
for Program Logic

Peter W. O’Hearn

Queen Mary, University of London

Abstract. If program verification tools are ever to be used widely, it is
essential that they work in a modular fashion. Otherwise, verification will
not scale. This paper discusses the scientific challenges that this poses
for research in program logic. Some recent work on separation logic is
described, and test problems that would be useful in measuring advances
on modular reasoning are suggested.

1 Introduction

Software verification has seen an upsurge of interest in recent years. Partly this
is a result of a convergence that has resulted from maturation of proof tools and
lowering of aims, from full behavioural specifications to partial (often safety)
properties of a system. Prominent examples include the SLAM model checker [2]
and the ESC/Java static assertion checker [19, 14]. But modularity is a problem.

Modularity is essential for scalable specification and reasoning. If we find
ourselves in a position where the specification of one program component must
talk about all other components in a system, or the states of other components,
then we will very quickly be overwhelmed by the complexity of specifications.
Programming features such as pointers (in various of their guises), concurrency
and reflection raise particularly challenging problems for program logic. Sim-
ple methods for achieving modularity, such as listing the variables that might
change (using “modifies” clauses), are not sufficient for common programs writ-
ten in widely-used languages, which feature complex and dynamically changing
interconnections between program components.

The problem faced by program logic is not an in-principle one – being able
to describe behaviours at all – but rather is one of tractability. For example,
when one considers programs with pointers and concurrency, reasoning with
traditional program logic can become so complex as to be detached from com-
putational intuition. The best way to illustrate this claim is with examples, and
I consider three, describing what the more general technical challenges are as
we go along. Some relevant work on separation logic [46, 26, 37, 47] is described,
and the promise of and problems for this approach are discussed. Finally, some
wholly unresolved problems are mentioned.

There are many obstacles facing any Program Verifier challenge project [24]
– particularly, the strength of theorem provers – and I am not saying that full
solutions to the problems I discuss are necessary for it to have some success. My
aim here is just to communicate some unsolved problems in program logic which,
if progress were made on them, could have a considerable positive impact.



2 Framing and Indirection

I begin with a simple program and consider how one might specify it using
traditional Floyd-Hoare logic. The specification is found to be unsatisfactory,
and then is amended to provide a technically correct one. It is then argued that
this technically correct specification is conceptually wrong.

2.1 An Incorrect Specification

Consider a procedure for disposing a tree, held as a linked structure in memory.

procedure DispTree(p)
local i, j;
if p 6=nil then

i = p�l ; j:= p�r;
DispTree(i);
DispTree(j);
dispose(p)

This is the expected procedure that walks a tree, recursively disposing left and
right subtrees and then the root pointer. It uses a representation of tree nodes
with left, right and data fields, and the empty tree is represented by nil.

A first attempt at a specification might be something like{
tree(p) ∧ reach(p, n)

}
DispTree(p)

{
¬allocated(n)

}
assuming that we have defined the predicates that say when p points to a (binary)
tree in memory, when n is reachable (following l and r links) from p, and when
n is allocated. This spec says that any node n which is in the tree pointed to by
p is not allocated on conclusion.

While this specification says part of what we would like to say, it leaves too
much unsaid. It does not say what the procedure does to nodes that are not in
the tree; we have left out the notorious frame axioms [33].

The result is that, while the specification is something that we would expect
to be true of the procedure, it is too weak to use at many call sites. For example,
consider the first recursive call, DispTree(i), to dispose the left subtree. If we
use the specification (instantiating p by i) as an hypothesis, in the usual way
when reasoning about recursive procedures [22], then we have a problem. For, the
specification does not rule out the possibility that the procedure call alters the
right subtree j, perhaps creating a cycle or even disposing some of its nodes. As
a consequence, when we come to the second call DispTree(j), we will not know
that the required tree(j) part of the precondition will hold. So our reasoning will
get stuck.

The moral of this story is that [37]

if one does not have some way of representing or inferring frame axioms,
then the proofs of even simple programs with procedure calls will not go
through.

2



The DispTree program makes this point especially vivid because of its use of
recursion, where the spec and the call sites have to get along:

for recursive programs attention to framing is essential if one is to obtain
strong enough induction hypotheses.

The problem does not depend on having low-level operations such as pointer
disposal. For example, specifying tree copying leads to similar difficulties.

2.2 An Unfortunate Fix

How can we fix the specification of DispTree? Here is my attempt:{
tree(p) ∧ reach(p, n) ∧ ¬reach(p, m) ∧ allocated(m) ∧ m.f = m′ ∧
¬allocated(q)

}
DispTree(p){
¬allocated(n) ∧ ¬reach(p,m) ∧ allocated(m) ∧m.f = m′∧
¬allocated(q)

}
This says, in addition, that any allocated cell not reachable from p has the same
contents in memory and that any previously unallocated cell remains unallo-
cated. The additional clauses are the frame axioms. (I am assuming that m, m′,
n and q are auxiliary variables, guaranteed not to be altered. The reason why,
say, the predicate ¬allocated(q) could conceivably change, even if q is constant,
is that the allocated predicate refers to a behind-the-scenes heap component.
f is used in the spec as an arbitrary field name.)

I believe that this specification is strong enough to prove the procedure, but
I have never attempted to carry out a proof. It would be complex. But, more
importantly, I believe that the specification is badly wrong from a conceptual
point of view.

The problem is not that we cannot specify DispTree at all, but rather is that
final specification makes ugly statements about what is not reachable and what
is not allocated that have, really, nothing to do with the program. Programmers
think locally , and when reasoning about a program they concentrate on the
resources that are relevant to its correct operating [37]. The need to state these
frame axioms explicitly is violently at odds with programming intuition. So,
even if technically alright, I view such a specification as conceptually wrong, a
symptom of a problem in program logic.

2.3 The Frame Problem

The frame problem is that, traditionally, an inordinate amount of effort needs to
be spent specifying what a program doesn’t change, so much so that these frame
axioms distract from the main concern – what changes [33]. In the absence
of pointers what doesn’t change can be succinctly summarized using modifies
clauses, which list the program variables corresponding to locations that can be
altered by a program. But, in the presence of pointers of other forms of indirect

3



addressing the relevant locations are not always directly named by program
variables, and the idea of modifies clause is then much more difficult to make
work. The unhappy consequence is that sound, modular specification methods
are lacking for widely-used programming languages such as C and Java.

A full solution to the frame problem would allow us to make a positive
statement about what changes, like in our first, faulty, specification, with the
frame axioms coming along for free. A partial solution would at least let us
represent the frame axioms compactly and intuitively.

The frame problem is extremely irritating. When you see it, you expect that
there should be some sort of easy solution. It should be possible for a specification
to say just what is relevant, like in our first specification of DispTree, and for
the rest (the frame axioms) to come along for free. I have often felt that way.

The frame problem has been intensely studied in AI, and there are too many
papers to survey here; I mention only one, the extremely clear paper of Reiter
[44], which can serve as a good introduction to the problem. Unfortunately,
there has been little crossover work applying the techniques there to programs (a
notable exception is [9]). Although the frame problem is irritating, it is genuine,
and a central problem in modular reasoning. But it is not the whole story, as we
shall see in later sections.

The frame problem is stated above in a decidedly negative manner. I prefer
to take a more positive perspective [37]:

When specifying a program, it should be possible to concentrate exclu-
sively on the information (data, resources, etc) that is relevant to its
correct operating. Any information it is independent of should not have
to be mentioned.

3 Separation Logic

The separation logic specification of DispTree is just{
tree(p)

}
DispTree(p)

{
empty}

which says that if you have a tree at the beginning then you end up with the
empty heap at the end. And the proof is very simple. The crucial part, in the
else branch, looks like this:

{p 7→[l:x, r: y] ∗ tree(x) ∗ tree(y)}
i := p�l; j := p�r;

{p 7→[l: i, r: j] ∗ tree(i) ∗ tree(j)}
DispTree(i);

{p 7→[l: i, r: j] ∗ tree(j)}
DispTree(j);

{p 7→[l: i, r: j]}
dispose p;

{empty}

4



After we enter the conditional statement we know that p 6=nil, so that p is an
allocated node that points to left and right subtrees occupying separate storage.
Then the roots of the two subtrees are loaded into i and j. Notice how the
proof steps then follow operational intuition. The first recursive call removes the
left subtree, the second call removes the right subtree, and the final instruction
removes the root pointer p. This verification is carried out using the procedure
specification as an assumption, as in the usual treatment of recursive procedures
in Hoare logic [22].

I have just given you a proof snippet in what is probably an unfamiliar formal-
ism, so some explanation is in order. To understand separation logic intuitively
you should think in terms of heaplets, portions of heap, rather than the whole
global heap. The separating conjunction P ∗Q holds of a given heaplet if it can
be split into two disjoint heaplets, one of which satisfies P and the other of which
satisfies Q. So, the assertion p 7→[l: i, r: j] ∗ tree(i) ∗ tree(j) describes a portion of
heap with a pointer p that points to a record with l and r fields holding values
i and j that themselves point to trees. The use of ∗ indicates that there is no
overlap between p and i’s tree and j’s tree.

A question that often comes up is whether a pointer can go from one ∗-
conjunct to another. The answer is yes. For instance, p 7→[l: i, r: j] describes just
a single cell, p, whose contents i and j point across ∗ into other heaplets in
p 7→[l: i, r: j]∗ tree(i)∗ tree(j). it helps to use a graphical intuition: take a directed
graph, and then draw a line, partitioning it in two. Some of the links in the graph
will go over the partition. The p to the left of 7→ corresponds to the sources of
links to targets i and j.

There is a subtle point in the specification of DispTree that the reader might
have noticed: In order to get the empty heap in the postcondition the precondi-
tion must say that “p points to a tree, and there are no other cells in the given
heaplet”. For, if there were other cells then you could not conclude empty, those
cells that were not originally in the tree would still be around. This “no other
cells” aspect is treated implicitly in separation logic. The tree predicate satisfies
the recursive specification

tree(E) ⇐⇒ (E=nil ∧ empty)
∨ (∃x, y. E 7→l:x, r: y ∗ tree(x) ∗ tree(y))

where the use of empty when E=nil leads, inductively, to tree(E) not having
additional cells.

Finally, there is a crucial interplay between the separating conjunction and
a “tight” interpretation of Hoare triples [37, 51, 50]. A specification {P}C{Q}
means that C will (if it terminates) transform a heaplet satisfying P into one
satisfying Q. It does this transformation in an in-place fashion, leaving the global
heap surrounding the input heaplet unchanged. This in-place aspect can be seen
clearly in the proof steps. For instance, for the first recursive call to DispTree
the precondition is p 7→[l: i, r: j]∗tree(i)∗tree(j), and this does not match up with
the overall specification, which would expect only tree(i). What we do is use the

5



overall specification to replace tree(i) by empty, obtaining p 7→[l: i, r: j]∗ empty∗
tree(j), and then we can take one further step using the identity empty∗P ↔ P .

These intuitions about heaplets and in-place update are codified in an infer-
ence rule, the frame rule

{P} C {Q}
{R ∗ P} C {R ∗Q}

ModifiesOnly(C) ∩ free(R) = ∅

The R here is a frame axiom. The idea of this rule is that if C works on a portion
of heap described by P , then it will not alter any additional heaplet described
by R. There is also a side condition which has to do with named variables; e.g.,
the i and j in DispTree. (It is an embarassment that the heap is treated more
cleanly than simple variables here, and we hope someday to get rid of the variable
conditions altogether; see [10].)

As it is a relatively recent development, research on mechanized reasoning
with separation logic is just beginning. The Smallfoot static assertion checker
discovers proofs of lightweight shape specifications done using the logic [5]. And
there are developing applications using interactive proof tools [32, 49] and ab-
stract interpretation [17, 12, 7, 20, 21].

4 Independence, Interference and Concurrency

Reasoning about concurrency is a subject that has received significant attention,
and for good reason. The tremendous number of potential interactions between
concurrent processes makes concurrent programs hard to grasp; a successful
Program Verifier could provide considerable help to the concurrent programmer.

But, though it has received much attention, the difficulties that the theory
meets on even simple examples are not as widely appreciated as perhaps they
ought to be. To illustrate, I consider a very simple program: parallel mergesort.{

array(a, i, j)
}

procedure ms(a, i, j)
local m:= (i+j)/2;
if i < j then(

ms(a, i,m) ‖ ms(a,m+1, j)
)
;

merge(a, i,m + 1, j);{
sorted(a, i, j)

}
For simplicity this specification just says that the final array is sorted, not that
it is a permutation of the initial array.

Now, this program displays a trivial form of concurrency: disjoint concur-
rency . The recursive calls are completely independent, because they act on dis-
joint array segments. And yet, the program causes immediate difficulties for all
of the best known proof methods.

Hoare had provided a beautiful rule for disjoint concurrency [23]

{P}C{Q} {P ′}C ′{Q′}
{P ∧ P ′}C ‖ C ′{Q ∧Q′}

6



where C does not modify any variables free in P ′, C ′, Q′, and conversely. Unfor-
tunately, using this rule we cannot reason about the parallel calls in mergesort,
because Hoare logic treats array-component assignment globally, where an as-
signment to a[i] is viewed as an assignment to the entire array

{P [(a | i:E)/a]} a[i]:= E {P}

In this view the two parallel calls to ms are judged to be altering the same
variable, a. So, the rule does not apply.

Cliff Jones has proposed a powerful approach to reasoning about concurrency,
in his rely-guarantee formalism [27] (see also, [34]). For this example, we would
add two conditions to the pre/post specification, formalizing the

– Rely: No other process touches my array segment array(a, i, j); and
– Guarantee: I do not touch any storage outside my segment array(a, i, j).

The Guarantee condition here is something like a frame axiom. The Rely, how-
ever, goes beyond the frame issue (one might fancifully consider it a kind of
inverse frame axiom).

The point of this example is that it illustrates a breakdown of modularity.
The guarantee condition (when formalized) talks about parts of the array not
touched by a procedure call. In the worst case, this would have to be extended
to other parts of memory than the single array given as a parameter. The issue
is not just the cost for individual steps of reasoning, but rather that the rely and
guarantee conditions, which are present to deal with subtle issues of interference,
complicate the specification itself, even when no interference is present.

I have focussed on rely-guarantee here because is rightly lauded as providing
a compositional approach to reasoning about concurrency. My point is that com-
positionality in program text does not guarantee locality in reasoning about re-
sources such as program state: compositional reasoning can be extremely global.
Also, I used a pre/post specification just because it is appropriate to the ex-
ample, but the same modularity problem I have described here arises as well in
temporal logics.

Because it is intuitively about separation, this example can be treated very
easily in a concurrent extension of separation logic [39, 11]. The crucial part of
the proof is the following proof figure for the parallel composition.

{array(a, i, m) ∗ array(a,m+1, j)}
{array(a, i,m)} {array(a,m+1, j)}
ms(a, i, m) ‖ ms(a,m+1, j)
{sorted(a, i,m)} {sorted(a,m+1, j)}

{sorted(a, i,m) ∗ sorted(a,m+1, j)}

The use of the ∗ connective in array(a, i,m)∗ array(a,m+1, j)} implies that the
array segments occupy separate memory, and we can then use a proof rule

{P}C{Q} {P ′}C ′{Q′}
{P ∗ P ′}C ‖ C ′{Q ∗Q′}

7



that lets us reason independently about the two processes independently.
This rule is, of course, a descendent of Hoare’s rule for disjoint concurrency.

There are two reasons why we are able to treat this example where the original
rule was not: (i) the assignment a[i]:= e is not viewed by separation logic as
an assignment to a, but rather to a single cell; (ii) ∗ can be used to describe
partitioning of an array that is dynamic, depending on the program state.

My remarks on the rely-guarantee method should be taken in the right spirit:
Indeed, they agree with a criticism of it lodged by Jones himself [28]. What he
wants, and what I want, is a way to use complex methods where necessary to
deal with interference when it is present, but to contain this complexity and
default to simpler specification forms for interfaces between components that do
not interfere with one another. The desire is to prevent interference flooding ,
where the mere possibility of interference complicates the specification notation,
even in situations where there is a great degree of independence.

I do not claim that concurrent separation logic in its current state is the an-
swer. It is good at specifying independence, but struggles with tightly-coupled,
interfering processes. In contrast, rely-guarantee is good at describing interfer-
ence, but is not well oriented to specifications of independent processes. Recently,
there have been attempts to marry the advantages of concurrent separation logic
and rely/guarantee [41, 18]; these are perhaps further steps on the way to mod-
ular reasoning about (shared variable) concurrent processes.

5 Information Hiding

Pointers can wreak havoc with data abstraction. It is difficult to keep track of
aliases, different copies of the same address, and so it is difficult to know when
there are no pointers into the internals of a module. This problem has received
attention in the object-oriented types community in work on ownership and
confinement [13, 3], stemming Hogg’s colorful declaration “that objects provide
encapsulation is the big lie of object-oriented programming [25]”. Further dif-
ficulties, beyond confinement, are caused by low-level features such as address
arithmetic and storage deallocation.

A good initial challenge which illustrated many issues is a resource manage-
ment module, that provides primitives for allocating and deallocating resources
which are held in a local free list. A client program should not alter the free
list, except through the provided primitives; for example, the client should not
tie a cycle in the free list. However, it is entirely possible for a client program
to hold an alias to an element of the free list, after a deallocation operation is
performed.

As an example, suppose that we have written our own memory manager,
with operations alloc(x) and free(x) for allocating and deallocating records,
where our implementation uses a free list in the usual way. A first attempt at
specification might be something like{

allocated(y) ∧ y.f = m ∧ ¬allocated(z)
}

alloc(x)

8



{
allocated(y) ∧ y.f = m ∧ allocated(x) ∧ y 6= x

∧(z 6= x ⇒ ¬allocated(z))
}

{
allocated(y) ∧ y.f = m ∧ allocated(x) ∧ y 6= x ∧ ¬allocated(z)

}
free(x){
allocated(y) ∧ y.f = m ∧ ¬allocated(x) ∧ y 6= x ∧ ¬allocated(z)}

where, in addition to saying that x is allocated or deallocated, I have included
a lot of frame axioms. I admit to some unease, I am not sure I have got the
frame axioms exactly right (echoing the discussion from earlier), but there is
a further problem I want to show, so let us assume that these are indeed the
correct frame axioms. Here, I am again assuming that all variables other than x
are auxiliary variables that are guaranteed not to be changed, and that {x} is
the entire modifies set of the specs (modifies for variables, not heap cells).

The further problem is that this specification does not stop a user of the
memory manager from corrupting the free list, breaking the abstraction. For
example, a sequence of statements

alloc(x) ; free(x) ; x�r:=x

might tie a cycle in the free list, if the implementation uses the r field to point
to the next record in the free list.

We can get around this problem by adding an invariant to the specifications.
To each precondition and postcondition we add a predicate freelist(free)
saying that variable free used by the manager points to a linked list without
cycles, and where ¬allocated(n) holds for each element in the list.

This fix, though, has come at great cost: we have exposed the invariant
describing the ostensibly private storage of the memory management module.
To see the cost, suppose a program makes use of n different modules. It would be
unfortunate if we had to complicate specifications of user procedures by including
descriptions of the internal resources of all modules that might be accessed.
A change to a module’s internal representation would necessitate altering the
specifications of all other procedures that use it.

Stated plainly,

information hiding should be the bedrock of modular reasoning, but it is
difficult to support soundly

and this presents a great challenge for research in program logic.
This sort of example has been successfully treated in separation logic [38].

The details are much more involved than the earlier examples, and I will not
give the proof here. The basic idea is that the ∗ connective allows the separation
of the state owned by a client and the state owned by the manager (the free list).
Crucially, since ∗ is a logical connective, the partition it describes can change
over time: in a sense, the logic tracks the right to dereference a cell transfers
back and forth between client and module.

.

9



6 The Boogie Methodology and Relatives

Many of the issues touched on in this paper have also been approached in work
on the “Boogie methodology” [30, 36, 4], and also in its precursors (see [29]). The
basic idea of Boogie it to use certain auxiliary variables, such as ones to describe
“ownership” of heap cells, to structure specifications and to constrain who can
access what and when. Boogie builds on type systems for ownership [13, 16], but
uses assertions rather than types. Ownership gives a way to express a form of
separation, and frame axioms are avoided by using general invariants which relate
the states of auxiliary variables and the program state. The auxiliary variables
allow fine control over when certain assertions, such as object invariants, must
hold; this has allowed a novel approach to the old and vexing problem of object
invariants for re-entrant modules (which allow implicit or explicit recursion).

I discussed an example similar to the first one in this paper with Peter Müller
(we discussed copytree rather than disposetree). The early versions of Boogie
could not handle that example due to inadequate framing properties, but a later
version [31] could. Conversely, the earliest approach to information hiding using
separation logic [38] could not handle re-entrant modules, but the later approach
of [40] can. As shown in [8], the approach pioneered in [40] can be understood as
using quantified predicates in a way that is analogous to the use of polymorphic
typing to account for hiding of internal representation types [45, 35]. On the
other hand, Boogie has “pack” and “unpack” primitives which are intuitively
similar to the corresponding primitives for existential types.

I just wanted to mention Boogie, to acknowledge (and point the reader to)
the advances it and its relatives have made on difficult problems concerning mod-
ular reasoning about object-oriented programs. The exact relationship between
Boogie and separation logic is not clear; there are similarities in intuition, but
many differences in technique. The reader is referred to [29] for more informa-
tion on this line of work, including work on ESC/Java and JML that I have not
mentioned here.

7 Conclusion

In this paper I wanted to show some difficulties as regards modularity that tra-
ditional program logic has on even simple examples, and how it is not impossible
to do much better, at least on those examples. In doing this I purposely started
from programs rather than specifications; it is a good way to show where for-
malisms have difficulties. There are many other, more difficult, programs that
can serve as challenging test cases.

Although I enjoy starting from programs, I would also love to be able to ar-
rive at the kinds of program I considered by refinement, starting from a simple
specification. I just don’t know how to do so. The refinement formalisms that
I am aware of (VDM, B, etc) are based on a static form of modularity, where
the state that a program component can change is listed in a fixed collection
of variables, and the frame properties used are with respect to modifies clauses

10



for these variables. This fixed modularity does not deal well when the partitions
between the state used by program components is more dynamic, as is the case
in parallel mergesort, in the resource manager example, and typically in systems
programs. Of course, this last point should be taken as a challenge. It seems in-
conceivable that the modularity issues that separation logic and Boogie attempt
to address should not show up as well on a design level. Furthermore, there are
all sorts of dynamic, interconnected structures other than the program heap,
those obtained from networks and message passing being prime examples. One
might hope for a design formalism (say, an analogue of B or Z) that goes beyond
static modularity, and that has the specific heap modularity of separation logic
or Boogie as an instance.

Similar remarks apply to my focus on imperative programs, and shared-
variable concurrency. A good problem would be to obtain a reasoning formalism
for, say, the pi-calculus or for socket programs that displays the same sort of
modularity in its account of channel usage as separation logic or Boogie does for
the heap.

All of the examples in this paper have concerned safety properties. Recently,
there has been progress on automatic proofs of liveness properties properties of
software, using novel applications of abstract interpretation [42, 15, 6]. The prob-
lem of modular, or local, specifications and verifications of liveness properties of
concurrent processes looms as an extremely difficult one; see [48, 1] for important
work in this direction.

Finally, one might question whether modular reasoning methods for software
are in general even possible. In temporal logic there have been negative technical
results [43], and we should be on the lookout for others. But, there has been
considerable progress on modular reasoning about programs and this author, for
one, plans to continue searching.

References

1. M. Amadi and L. Lamport. Composing specifications. In ACM TOPLAS 15(1),
pp73-132, 1993.

2. T. Ball, B. Cook, V. Levin, and S.K. Rajamani. SLAM and Static Driver Verifier:
Technology Transfer of Formal Methods inside Microsoft. In 4th IFM, LNCS 2999,
pp1–20, 2004.

3. A. Banerjee and D. A. Naumann. Ownership confinement ensures representation
independence for object-oriented programs. J.ACM, to appear, 2005.

4. M. Barnett, R. DeLine, M. Fahndrich, K.R.M. Leino, and W. Schulte. Verification
of object-oriented programs with invariants. Journal of Object Technology, 3(6):27–
56, 2004.

5. J. Berdine, C. Calcagno, and P.W. O’Hearn. Smallfoot: Automatic modular asser-
tion checking with separation logic. In 4th FMCO, pp115-137, 2006.

6. J. Berdine, A. Chawdhary, B. Cook, D. Distefano, and P. W. O’Hearn. Variance
analyses from invariance analyses. 34th POPL, pp211-224., 2007.

7. J. Berdine, B. Cook, D. Distefano, P. W. O’Hearn, T. Wies, and H. Yang. Shape
analysis for composite data structures. 19th CAV , 2007.

11



8. B. Biering, L. Birkedal, and N. Torp-Smith. BI-hyperdoctrines, higher-order sep-
aration logic, and abstraction. ACM TOPLAS, to appear, 2007.

9. A. Borgida, J. Mylopoulos, and R. Reiter. On the frame problem in procedure
specifications. IEEE Transactions of Software Engineering, 21:809–838, 1995.

10. R. Bornat, C. Calcagno, and H. Yang. Variables as resources in separation logic.
In 19th MFPS, 2005.

11. S.D. Brookes. A semantics for concurrent separation logic. Festschrift for John
C. Reynolds’s 70th Birthday. Theoretical Computer Science 375(1-3), pp227-270 .
Prelim version appeared in CONCUR’04, LNCS 3170., 2007.

12. C. Calcagno, D. Distefano, P. W. O’Hearn, and H. Yang. Beyond reachability:
Shape abstraction in the presence of pointer arithmetic. 13th SAS , LNCS 4134,
pp182-203, 2006.

13. D. Clarke, J. Noble, and J. Potter. Simple ownership types for object containment.
Proceedings of the 15th European Conference on Object-Oriented Programming,
pages 53-76, Springer LNCS 2072, 2001.

14. D. Cok and J. Kiniry. ESC/Java2: Uniting ESC/Java and JML. CASSIS, pp108-
128, 2004.

15. Byron Cook, Andreas Podelski, and Andrey Rybalchenko. Termination proofs for
systems code. In 13th PLDI, 2006.

16. W. Dietl and P. Müller. Universes: Lightweight ownership for JML. Journal of
Object Technology (JOT), 2005. To appear.

17. D. Distefano, P. O’Hearn, and H. Yang. A local shape analysis based on separation
logic. In 12th TACAS, pages 287–302, 2006.

18. X. Feng, R. Ferreira, and Z. Shao. On the relationship between concurrent sepa-
ration logic and assume-guarantee reasoning. In 16th ESOP, 2007.

19. C. Flanagan, K.R.M. Leino, M. Lillibridge, G. Nelson, J.B. Saxe, and R. Stata.
Extended static checking for Java. In 9th PLDI, 2002.

20. A. Gotsman, J. Berdine, B. Cook, and M. Sagiv. Thread-modular shape analysis.
To appear in PLDI 2007.

21. B. Guo, N. Vachharajani, and D. August. Shape analysis with inductive recursion
synthesis. To appear in PLDI 2007.

22. C. A. R. Hoare. Procedures and parameters: An axiomatic approach. In E. En-
gler, editor, Symposium on the Semantics of Algebraic Languages, pages 102–116.
Springer, 1971. Lecture Notes in Math. 188.

23. C. A. R. Hoare. Towards a theory of parallel programming. In Hoare and Perrot,
editors, Operating Systems Techniques. Academic Press, 1972.

24. C.A.R. Hoare. The verifying compiler: A grand challenge for computing research.
J. ACM, 50(1):63–69, 2003.

25. J. Hogg. Islands: aliasing protection in object-oriented languages. 6th OOPSLA,
1991.

26. S. Isthiaq and P. W. O’Hearn. BI as an assertion language for mutable data struc-
tures. In 28th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 36–49, London, January 2001.

27. C. B. Jones. Specification and design of (parallel) programs. IFIP Conference,
1983.

28. C. B. Jones. Wanted: A compositional approach to concurrency. In A. McIver and
C. Morgan, editors, Programming Methodology, pages 1–15, 2003. Springer-Verlag.

29. G. T. Leavens, K. R. M. Leino, and P. Müller. Specification and verification
challenges for sequential object-oriented programs. Formal Aspects of Computing,
2007. To appear.

12



30. K.R.M. Leino and P. Müller. Object invariants in dynamic contexts. In 18th
ECOOP, LNCS 3086, pp491-516, 2004.

31. K.R.M. Leino and P. Müller. A verification methodology for model fields. In 15th
ESOP, LNCS 3924, pp115-130, 2006.

32. N. Marti, R. Affeldt, and A. Yonezawa. Verification of the heap manager of an
operating system using separation logic. Proceedings of the 3rd SPACE Workshop,
Charleston, 2006.

33. J. McCarthy and P. Hayes. Some philosophical problems from the standpoint of
artificial intelligence. Machine Intelligence, 4:463–502, 1969.

34. J. Misra and K.M. Chandy. Proofs of networks of processes. IEEE Trans. Software
Eng., 7(4):417–426, 1981.

35. J. C. Mitchell and G. D. Plotkin. Abstract types have existential types. ACM
Trans. Programming Languages and Systems, 10(3):470–502, 1988.

36. D. A. Naumann and M. Barnett. Towards imperative modules: Reasoning about
invariants and sharing of mutable state. In 19th LICS, pages 313–323, 2004.

37. P. O’Hearn, J. Reynolds, and H. Yang. Local reasoning about programs that
alter data structures. In Proceedings of 15th Annual Conference of the European
Association for Computer Science Logic, LNCS, pages 1–19. Springer-Verlag, 2001.

38. P. W. O’Hearn, H. Yang, and J. C. Reynolds. Separation and information hiding.
In 31st POPL, pages 268–280, 2004.

39. P.W. O’Hearn. Resources, concurrency and local reasoning. Festschrift for John
C. Reynolds’s 70th Birthday. Theoretical Computer Science 375(1-3), pp271-307 .
Prelim version appeared in CONCUR’04, pp49–67, LNCS 3170., 2007.

40. M. Parkinson and G. Bierman. Separation logic and abstraction. Proceedings of
POPL, 2005.

41. M. Parkinson and V. Vafaedis. A marriage of rely-guarantee and separation logic.
18th CONCUR, to appear, 2007.

42. Andreas Podelski and Andrey Rybalchenko. Transition invariants. In 19th LICS,
2004.

43. A. Rabinovich. On compositionality and its limitations. In ACM TOCL 8(1),
pp73-132, 2007.

44. R. Reiter. The frame problem in the situation calculus: a simple solution (some-
times) and a completeness result for goal regression. In V. Lifschitz, editor, Arti-
ficial Intelligence and Mathematical Theory of Computation: Papers in Honor of
John McCarthy, pages 359–380. Academic Press, 1991.

45. J. C. Reynolds. Types, abstraction and parametric polymorphism. Proceedings of
IFIP, 1983.

46. J. C. Reynolds. Intuitionistic reasoning about shared mutable data structure. In
Jim Davies, Bill Roscoe, and Jim Woodcock, editors, Millennial Perspectives in
Computer Science, pages 303–321, Houndsmill, Hampshire, 2000. Palgrave.

47. J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In
17th LICS, pp 55-74, 2002.

48. E.W. Stark. A proof technique for rely/guarantee properties. In FSTTCS, LNCS
206, pp369-391, 1985.

49. H. Tuch, G. Klein, and M. Norrish. Types, bytes, and separation logic. In 34th
POPL, 2007.

50. H. Yang. Local Reasoning for Stateful Programs. Ph.D. thesis, University of Illinois,
Urbana-Champaign, 2001.

51. H. Yang and P. O’Hearn. A semantic basis for local reasoning. In Foundations of
Software Science and Computation Structures, Springer LNCS 2303., 2002.

13


