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Abstract. After some general remarks about program verification, we
introduce separation logic, a novel extension of Hoare logic that can
strengthen the applicability and scalability of program verification for
imperative programs that use shared mutable data structures or shared-
memory concurrency.

1 Introduction

Proving programs is not like proving mathematical theorems. A mathematical
conjecture often gives no hint as to why it might be true, but a program is
written by a programmer who inevitably has at least an informal understanding
of why the program might behave as it should. The goal of program verification
is not to search some huge proof space, but to formalize the programmer’s own
reasoning to the point where any flaws become evident.

Thus, I believe that programs should be proved as they are written, and that
the programmer must be intimately involved in the proof process.

At Syracuse University, from 1972 to 1986, I taught a course on structured
programmming and Hoare-style program proving to at least a thousand students,
mostly master’s candidates in computer science. This experience convinced me
that good programmers can annotate and prove their programs rigorously, and
in doing so achieve vast improvements in the quality of these programs.

No mechanical aids were used — not even a compiler. Indeed, much of the
effectiveness of the course came from forcing the students to produce logically
correct programs without debugging.

To scale from classroom examples to modern software, however, effective
mechanical assistance will be vital. Since proofs are as prone to errors as pro-
grams are, they must be checked by machine. Moreover, to avoid drowning in a
sea of minutiae, the programmer must be freed from trivial arguments that are
amenable to efficient decision procedures.

On the other hand, interaction with the programmer is vital. The ultimate
goal of creating error-free software will not be met by filtering the results of
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conventional programming through any form of post-hoc verification. Instead
specification and verification must be tightly interwoven with program construc-
tion — and thus require a logic that is concise and readable.

2 Separation Logic

Around the turn of the millenium, Peter O’Hearn and I devised an extension
of Hoare logic called “separation logic” [1–4]. Our original goal was to facilitate
reasoning about low-level imperative programs that use shared mutable data
structure. Extensions of the logic, however, have proven applicable to a wider
conceptual range, where access to memory is replaced by permission to exercise
capabilities, or by knowledge of structure. In a few years, the logic has become
a significant research area, with a growing literature produced by a variety of
researchers.

For conventional logics, the problem with sharing is that it is the default
in the logic, while nonsharing is the default in programming, so that declaring
all of the instances where sharing does not occur — or at least those instances
necessary for correctness — can be extremely tedious.

For example, consider the following program, which performs an in-place
reversal of a list:

LREV def= j := nil ; while i 6= nil do (k := [i + 1] ; [i + 1] := j ; j := i ; i := k) .

(Here the notation [e] denotes the contents of the storage at address e.)
The invariant of this program must state that i and j are lists representing

two sequences α and β such that the reflection of the initial value α0 can be
obtained by concatenating the reflection of α onto β:

∃α, β. list α i ∧ list β j ∧ α†
0 = α†·β .

(Here the predicate list α i can be read “i is a list representing the sequence α.”)
However, this is not enough, since the program will malfunction if there is

any sharing between the lists i and j. To prohibit this in Hoare logic, we must
extend the invariant to assert that only nil is reachable from both i and j:

(∃α, β. list α i ∧ list β j ∧ α†
0 = α†·β)

∧ (∀k. reachable(i, k) ∧ reachable(j, k)⇒ k = nil) .

In separation logic, however, this kind of difficulty can be avoided by using
a novel logical operation P ∗ Q, called the separating conjunction, that asserts
that P and Q hold for disjoint portions of the addressable storage. Since the
prohibition of sharing is built into this operation, our invariant can be written
succinctly as

(∃α, β. list α i ∗ list β j) ∧ α†
0 = α†·β .

A second, more general, advantage of separation logic is the support it gives
to local reasoning, which underlies the scalability of the logic. For example, using



the invariant given above, one can prove the following specification of the list-
reversal program:

{list α i}LREV {list α† j} .

The semantics of this specification implies that the addressable storage described
by the precondition {list α i}, which is the storage containing the list i represent-
ing α, is the only addressable storage touched by the execution of LREV (often
called the footprint of LREV ). If LREV is a part of a larger program that also
manipulates some separate storage, say containing a list k representing a se-
quence γ, then one can use an inference rule due to O’Hearn, called the frame
rule [3]:

{p} c {q}

{p ∗ r} c {q ∗ r}

(where c does not assign to the free variables of r), to infer directly that the
additional storage is unaffected by LREV:

{list α i ∗ list γ k}LREV {list α† j ∗ list γ k} .

In a realistic situation, of course, LREV might be a substantial subprogram,
and the description of the separate storage might also be voluminous. Neverthe-
less, one can still reason locally about LREV, i.e., while ignoring the separate
storage, and then scale up to the combined storage by using the frame rule.

There is little need for local reasoning in proving toy examples. But it has
been critical in proving more complex programs, such as the Schorr-Waite mark-
ing algorithm [5, 6] or the Cheney copying garbage collector [7].

It should also be mentioned that the assertion list α i is only true for an
addressible storage containing the relevant list and nothing else. Thus either of
the above specifications of LREV indicates that LREV does not cause a memory
leak.

3 Semantics of the Logic

Separation logic describes programs in an extension of the simple imperative lan-
guage with commands for allocating, accessing, mutating, and deallocating data
structures, but without garbage collection. A critical feature of this language is
that any attempt to dereference a dangling pointer causes program execution to
abort.

In Hoare logic, the state of a computation is a mapping from variables to
integers, which we will henceforth call a store. Thus:

StoresV = V → Integers ,

where V is a set of variables. In separation logic, however, there is a second
component of the state, called a heap, which formalizes the addressable storage



where mutable structures reside. Specifically, the heap maps some finite set of
active addresses into integers, where addresses are a proper subset of the integers:

Addresses ⊂ Integers

Heaps =
⋃

A
fin
⊆Addresses

(A → Integers)

StatesV = StoresV ×Heaps .

The nature of the novel commands in our programming language can be
illustrated by a sequence of state transitions:

Store : x: 3, y: 4
Heap : empty

Allocation x := cons(1, 2) ; ↓
Store : x: 37, y: 4
Heap : 37: 1, 38: 2

Lookup y := [x] ; ↓
Store : x: 37, y: 1
Heap : 37: 1, 38: 2

Mutation [x + 1] := 3 ; ↓
Store : x: 37, y: 1
Heap : 37: 1, 38: 3

Deallocation dispose(x + 1) ↓
Store : x: 37, y: 1
Heap : 37: 1

The indeterminacy of allocation must be emphasized; for example, x:=cons(1, 2)
could augment the domain of the heap with any two consecutive addresses that
are not already in that domain.

It should also be noted that cons and the square brackets are part of the
syntax of command forms, rather than parts of expressions. As a consequence,
expressions do not depend on the heap and do not have side-effects.

A second example shows the effect of an attempt to mutate a dangling
pointer:

Store : x: 3, y: 4
Heap : empty

Allocation x := cons(1, 2) ; ↓
Store : x: 37, y: 4
Heap : 37: 1, 38: 2

Lookup y := [x] ; ↓
Store : x: 37, y: 1
Heap : 37: 1, 38: 2

Mutation [x + 2] := 3 ; ↓
abort

Similar faults are also caused by out-of-range lookup or deallocation.
The assertions of separation logic go beyond the predicate calculus used in

Hoare logic by providing four new forms for describing heaps:



– emp
The heap is empty.

– e 7→ e′

The heap contains a single cell, at address e with contents e′.
– p1 ∗ p2

The heap can be split into two disjoint parts such that p1 holds for one part
and p2 holds for the other.

– p1 −∗ p2

If the current heap is extended with a disjoint part in which p1 holds, then
p2 holds for the extended heap.

The separating conjunction ∗ is associative and commutative, with emp as its
neutral element. The operation −∗, called the separating implication, is adjoint
to ∗ . Neither the law of contraction nor the law of weakening hold for ∗ .

It is useful to introduce several more complex forms as abbreviations:

e 7→ − def= ∃x′. e 7→ x′ where x′ not free in e

e ↪→ e′
def= e 7→ e′ ∗ true

e 7→ e1, . . . , en
def= e 7→ e1 ∗ · · · ∗ e + n− 1 7→ en

e ↪→ e1, . . . , en
def= e ↪→ e1 ∗ · · · ∗ e + n− 1 ↪→ en

iff e 7→ e1, . . . , en ∗ true .

By using 7→, ↪→, and the two forms of conjunction, it is easy to describe
simple sharing patterns concisely:

1. x 7→ 3, y asserts that x points to an adjacent pair
of cells containing 3 and y (i.e., the store maps x and
y into some values α and β, α is an address, and the
heap maps α into 3 and α + 1 into β).

y

3-x

2. y 7→ 3, x asserts that y points to an adjacent pair
of cells containing 3 and x. x

3-y

3. x 7→ 3, y ∗ y 7→ 3, x asserts that situations (1)
and (2) hold for separate parts of the heap. ◦

3-x

◦
3 � y*Y

4. x 7→ 3, y∧ y 7→ 3, x asserts that situations (1) and
(2) hold for the same heap, which can only happen
if the values of x and y are the same.

◦
3HHj

��*

x

y
y

5. x ↪→ 3, y ∧ y ↪→ 3, x asserts that either (3) or (4)
may hold, and that the heap may contain additional
cells.



It is also possible (and, except in trivial cases, necessary) to define predicates
by structural induction over abstract data types. For example, the predicate
list α i:

◦

α1-i

◦

α2

nil

αn* * · · · *

can be defined by structural induction on the sequence α:

list ε i
def= emp ∧ i = nil

list (a·α) i
def= ∃j. i 7→ a, j ∗ list α j .

A more elaborate representation of sequences is provided by doubly-linked
list segments. Here, we write dlist α (i, i′, j, j′) when α is represented by a doubly-
linked list segment with a forward linkage (via second fields) from i to j, and a
backward linkage (via third fields) from j′ to i′:

i′

◦
α1-i

◦
◦
α2

◦
j

αn j′�* * *k k k· · ·
· · ·

The inductive definition (again on sequences) is:

dlist ε (i, i′, j, j′) def= emp ∧ i = j ∧ i′ = j′

dlist a·α (i, i′, k, k′) def= ∃j. i 7→ a, j, i′ ∗ dlist α (j, i, k, k′) .

It is straightforward to use inductive definitions over any initial algebra with-
out laws. An obvious example is the set S-exps of S-expressions in the sense of
LISP, which is the least set satisfying

τ ∈ S-exps iff τ ∈ Atoms or τ = (τ1 · τ2) where τ1, τ2 ∈ S-exps

(where atoms are integers that are not addresses).
Suppose we call the obvious representation of S-expressions without sharing a

tree, and the analogous representation with possible sharing (but without cycles)
a dag. Then we can define

tree a (i) def= emp ∧ i = a

tree (τ1 · τ2) (i) def= ∃i1, i2. i 7→ i1, i2 ∗ tree τ1 (i1) ∗ tree τ2 (i2)

and

dag a (i) def= i = a

dag (τ1 · τ2) (i) def= ∃i1, i2. i 7→ i1, i2 ∗ (dag τ1 (i1) ∧ dag τ2 (i2)) .



(Notice that tree τ (i) describes a heap containing a tree-representation of τ
and nothing else, while dag τ (i) describes a heap that may properly contain a
dag-representation of τ .)

4 Extending Hoare Logic

The meaning of the triples used to specify commands is roughly similar to that
of Hoare logic. More precisely, however, the partial-correctness triple {p} c {q}
holds iff, starting in any state in which p holds:

– No execution of c aborts.
– If any execution of c terminates in a final state, then q holds in the final

state.

Notice that the universal quantification in this definition extends over both store
and heap components of states, and also over the multiple possible executions
that arise from the indeterminacy of allocation.

Also notice that, even for partial correctness, specifications preclude abortion.
This is a fundamental characteristic of the logic — that (to paraphrase Milner)
well-specified programs do not go wrong (when started in states satisfying their
precondition). As a consequence, one can implement well-specified programs
without runtime memory-fault checking.

An obviously analogous treatment of total correctness is straightforward.
Except for the so-called rule of constancy, which is replaced by the frame

rule, all the inference rules of Hoare logic remain sound in separation logic. In
addition, there are rules for the new heap-manipulating commands. For instance,
for mutation there is a local rule:

{e 7→ −} [e] := e′ {e 7→ e′} ,

from which one can use the frame rule to infer a global rule:

{(e 7→ −) ∗ r} [e] := e′ {(e 7→ e′) ∗ r} .

There is also a backward reasoning form of the rule that uses separating impli-
cation:

{(e 7→ −) ∗ ((e 7→ e′) −∗ p)} [e] := e′ {p} .

These three rules are interderivable, and the last describes weakest preconditions.
A similar situation holds for allocation, lookup, and deallocation, although

the first two cases are complicated by the need to use quantifiers to describe
variable overwriting.

5 Present Accomplishments

At present, separation logic has been used to verify manually a variety of small
programs, as well as a few that are large enough to demonstrate the potential
of local reasoning for scalability [5–7]. In addition:



1. It has been shown that deciding the validity of an assertion in separation logic
is not recursively enumerable, even when address arithmetic and the charac-
teristic operation emp, 7→, ∗ , and −∗, but not ↪→ are prohibited [8, 6]. On
the other hand, it has also been shown that, if the characteristic operations
are permitted but quantifiers are prohibited, then the validity of assertions
is algorithmically decidable within the complexity class PSPACE [8].

2. A decision procedure has been devised for a restricted form of the logic that
is capable of shape analysis of lists [9].

3. An iterated form of separating conjunction has been introduced to reason
about arrays [4].

4. The logic has been extended to procedures with global variables, where a
“hypothetical frame rule” permits reasoning with information hiding [10].
Recently, a further extension to higher-order procedures (in the sense of
Algol-like languages) has been developed [11].

5. Separation logic itself has been extended to a higher-order logic [12].
6. The logic has been integrated with data refinement [13, 14].
7. The logic has been extended to shared-variable concurrency with conditional

critical regions, where one can reason about the transfer of ownership of
storage from one process to another [15, 16].

8. Fractional permissions (in the sense of Boyland) and counting permissions
have been introduced so that one can permit several concurrent processes to
have read-only access to an area of the heap [17].

9. In the context of proof-carrying code, separation logic has inspired work on
proving run-time library code for dynamic allocation [18].

6 The Future

As with Hoare logic, it is difficult in separation logic to assert relations between
states at different points in a program; one must use ghost variables, but now
their values may need to be finite functions or relations. Moreover, the usual
notation for such functions or relations is distractingly different from assertions
about the current local heap. (These complications are evident in the proof of
the Cheney algorithm [7].)

It is likely that the extension to higher-order logic mentioned above will
alleviate this problem; for example, it should be possible to use ghost variables
to denote the past values of heaps.

Recent advances in generalizing the logic have outstripped our experience in
proving actual programs. We particularly need further experience proving pro-
grams where the sharing patterns of data structures convey semantic information
— for example, when a cyclic graph is used to represent a network. And we have
just begun to explore concurrent programs.

If separation logic is going to have an impact on verification, we must be able
to automate proof-checking, at a high enough level to avoid trivial details. Judg-
ing by recent preliminary research, the likely route here is to express separation
logic in a system such as Coq (as in [18]) or Isabelle, so that the inference rules
of separation logic become theorems in the underlying logic.



Moreover, the logic must be adapted to real-world languages. This is likely to
be relatively straightforward for languages such as C or assembly languages, but
a number of issues arise for higher-level languages. These include the treatment
of complex type systems (including typed values in the heap), garbage collec-
tion [19] (perhaps coexisting with explicitly allocated storage or some form of
regions), and the presence of code pointers or closures in the heap [4, 20].

A final goal is an integration of logic and type systems. One would like
to have a type system for shared mutable data structures, with at least the
expressiveness of Walker and Morrisett’s alias types [21], that is a checkable
sublanguage of separation logic.
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