
The Role of Model-Based Testing

Mark Utting

The University of Waikato, New Zealand
Email: marku@cs.waikato.ac.nz

Abstract. This position paper gives an overview of model-based testing
and discusses how it might fit into the proposed grand challenge for a
program verifier.

1 Introduction

Model-based testing [EFW02,BBN04,LPU04,UL07] is a break-through innova-
tion in software testing because it can completely automate the validation test-
ing process. Model-based testing tools automatically generate test cases from a
model of the software product. The generated tests are executable and include
an oracle component which assigns a pass/fail verdict to each test.

Model-based testing helps to ensure a repeatable and scientific basis for prod-
uct testing, gives good coverage of all the behaviors of the product and allows
tests to be linked directly to requirements. Intensive research on model-based
testing in the last 5-10 years has demonstrated the feasibility of this approach,
shown that it can be cost-effective, and has developed a variety of test genera-
tion strategies and model coverage criteria. Some commercial tools have started
to emerge, from the USA (T-Vec, Reactive Systems, I-logix), and also from Eu-
rope (Conformiq, Leirios Technologies, Telelogic), as well as a wide variety of
academic and research tools [BFS05].

The discussion in this paper is limited to functional testing, rather than the
more specialist areas of testing real-time software or concurrent software, because
model-based testing is less mature in these areas.

The paper gives an overview of the variety of methods and practices of model-
based testing, then speculates on how model-based testing might promote or
complement the program verifier grand challenge.

2 Overview of Model-Based Testing

Model-based testing is the automation of black-box test design. It usually in-
volves four stages:

1. building an abstract model of the system under test. This is similar
to the process of formally specifying the system, but the kind of specifica-
tion/model needed for test generation may be a little different to that needed
for other purposes, such as proving correctness, or clarifying requirements.



2. validating the model (via typechecking, static analysis and anima-
tion). This is done to increase the quality of the model, by removing some
obvious errors. This validation process is usually incomplete, but this is less
crucial in this context, than in the usual refinement-to-code context. With
model-based testing, if some errors remain in the model, they are very likely
to be detected when the generated tests are run against the system under
test (see below).

3. generating abstract tests from the model. This step is usually auto-
matic, but the test engineer can control various parameters to determine
which parts of the system are tested, how many tests are generated, which
model coverage criteria are used etc.

4. refining those abstract tests into concrete executable tests. This is a
classic refinement step, which adds concrete details missing from the abstract
model. It is usually performed automatically, after the test engineer specifies
a refinement function from the abstract values to some concrete values, and
a concrete code template for each abstract operation.

After this, the concrete tests can be executed on the system under test, in
order to detect failures (where the outputs of the system under test are different
to those predicted by the tests).

It is the independence between the test model and the implementation that
is important. Experience shows that failures that occur when the tests are run
are roughly equally likely to be due to errors in the model or errors in the
implementation.

So the process of model-based testing provides useful feedback and error
detection for the requirements and the model, as well as the system under test.

The remainder of this section gives a brief overview of the variety of model-
based testing practices, under five headings.

Nature of the Model: The model used for test generation can be a functional
model of just the system under test, or of the environment of the system
(capturing the ways in which the system will be used), or (more usually)
a model of both the system and its environment. Models of the system are
useful for predicting the outputs of the system, which allows test oracles
to be generated, while models of the expected environment are useful for
focussing the test generation on an expected usage of the system.

Model Notation: Almost all formal specification notations can and have been
used as the basis for model-based testing. Pre/post notations such as Z, B,
VDM, JML and Spec# are widely used for model-based testing, but so are
transition-based notations such as Statecharts and UML state machines.

Control of Test Generation: It is necessary to be able to control the gener-
ation of tests, to determine how many tests are generated and which areas
or behaviours of the system they test.
One approach for controlling the generation is to specify (in addition to the
model) some patterns or test specifications, and then generate only tests
that satisfy these patterns or specifications.



Another approach is to specify a model coverage criteria which determines
which tests are interesting. Most of the usual code-based coverage crite-
ria (such as statement coverage, decision/condition coverage, MC/DC, full
predicate coverage, def-use coverage) have been adapted to work as model
coverage criteria.

On-line or Off-line Test Generation: On-line model-based testing generates
tests from the model in parallel with executing them. This makes it easy to
handle non-determinism in the system under test, since the test generator
can see the outputs from the system under test (after its non-deterministic
choice) and change the subsequent test generation accordingly.
On the other hand, off-line test generation generates tests independently
of executing those tests. This has numerous practical advantages, such as
being able to execute the generated tests repeatedly (for regression testing),
in different environments etc.

Requirements Traceability: It is highly desirable for model-based testing
tools to produce a requirements traceability matrix, which relates each infor-
mal requirement to the corresponding tests. This kind of traceability helps
with validation of the informal requirements, and can also be used as a cov-
erage criteria (every requirement is tested).
Requirements traceability can be obtained by annotating the model with
requirements identifiers, then preserving those annotations throughout the
test generation process, in order to produce a relation between requirements
and test cases.

3 Similarities and Differences

This section discusses several similarities and several differences between using
model-based testing to find errors in a program versus using a program verifier.

3.1 Similiarities

Independent Specification To verify the behavioural correctness of a pro-
gram, we must have a specification of the expected behaviour of the program.
Similarly, model-based testing requires a specification (model) of the expected
behaviour. In both cases, we have two descriptions of the program behaviour:
one is the specification and the other is the executable code.

It is important that these two descriptions should be as independent as pos-
sible, since the goal of model-based testing, and of program verification, is to
find discrepancies between the two descriptions (or prove that there are no dis-
crepancies). That is, there must be a large degree of independence between the
specification/model and the implementation code. For example, it is usually
pointless to derive a specification from the code, then use that specification as
the basis for verifying or testing the code—one would expect to find no errors,
because there is no independence between the two descriptions of behaviour—
they are consistent by construction. (The only reason for performing such an
exercise would be to try and find errors in the testing/proof tools themselves).



This shows that both model-based testing and program verification have a
common overhead of writing the specification. The requirement for independence
implies that the specification and the code must both be the result of some
human creativity, since if one was derived automatically from the other there
would be no independence.

Abstract Specification We have seen that model-based testing and program
verification both require a specification of the expected behaviour of the system.
Another similarity between the two approaches is that this specification needs
to be abstract. That is, we want the specification to be shorter and simpler than
the program itself, typically by omitting many of the details of the program.
Otherwise, programmers would not be willing to write such lengthy specifica-
tions, the cost of writing them and validating them would be prohibitive, and it
would be difficult to have confidence in the correctness of the specification. So
abstraction is the key to developing practical specifications, and is a key goal of
both model-based testing and program verification.

Reasoning Technology The goal of most model-based testing tools is to
fully automate the test generation process. This requires sophisticated reason-
ing about specifications and sequences of operations. The reasoning technologies
that have been used in model-based testing include: model-checking, symbolic
execution, constraint-based simulation, automated theorem proving, and even
interactive theorem proving.

These are the same kinds of reasoning technologies that are needed and used
within program verifiers. Indeed, the needs of the two approaches are almost
identical. One difference is that, because model-based testing does not try to test
all behaviours, it is often acceptable to restrict data types to be small and finite,
to make reasoning decidable and fast. However, if the focus of a program verifier
is on finding errors (like ESC/Java2 1), and completeness is not an essential goal,
then the same technique can be used.

3.2 Differences

Colour Model-based testing is a black-box approach, which can be applied to
binary programs without source code, to embedded software, or even to hardware
devices. In contrast, program verification is a white-box approach, which requires
the source code of the program to be verified, and also requires a formal semantics
of that source code. This means that program verification is more restricted in
the kinds of systems that it can verify, than model-based testing.

Partiality Model-based testing is quite often used to test just one aspect of a
complex system. This means that the specification can specify just that aspect,
rather than having to specify the complete system behaviour. For example, in a
1 See http://secure.ucd.ie/products/opensource/ESCJava2.



GPS navigation system for a car, we might use model-based testing to test the
tracking of the vehicle’s position, and ignore all route planning, route display
and user interaction features. A separate model-based testing project might test
the route planning algorithms, while ignoring the other features such as position
tracking. Such an approach tests each aspect independently, but does not explore
any interactions between the aspects (for example, between route planning and
position tracking).

The ability to perform model-based testing from a partial specification means
that each partial specification can be more smaller and more abstract than one
comprehensive specification would be, which makes it easier to get the specifi-
cation right and simplifies the test generation task. Furthermore, it seems likely
that fewer specifications will be needed for model-based testing than for verifi-
cation of a program, since a verifier usually requires specifications of all modules
within the system, whereas model-based testing requires just a specification of
the observable behaviour of the top-level system. One can argue that it is good
engineering discipline to require specifications of all modules! However, the point
here is simply that the minimum level of specification needed for model-based
specification is likely to be less than that required for verification, which may
help to make model-based testing less costly than verification.

A partial specification may be specifying a subsystem of the system under
test, with multiple specifications specifying different subsystems, or it may be
specifying a very abstract view of the behaviour, with multiple specifications
specifying alternative abstractions of the same system. The former case (verifying
subsystems independently) is often used for program verification too, but the
latter case (verifying a system with respect to multiple specifications) seems to
be rarely used for program verification and may deserve further investigation. It
is related to program slicing, which has recently been suggested as an abstraction
technique for model-checking programs [VTA04].

Confidence It is common wisdom that testing can never give a 100% guarantee
that a program is bug-free, whereas proof can. This is a fundamental and intrinsic
difference between testing and proof.

However, to play devil’s advocate, I shall misquote Dijkstra: “Program test-
ing can be used to show the presence of bugs, but [almost] never to show their
absence!” [Dij70]. I’ve added the ‘almost’ to comment that there are some cir-
cumstances, like the following, where testing can ‘prove’ the absence of bugs.

– Some of the algorithms for generating tests from finite state machines [LY96]
can guarantee that if all tests pass, then the system under test has identical
behaviour to the specification (the FSM), under the (rather strong!) assump-
tion that the implementation has a maximum number of distinct states that
is no greater than the number of states in the specification.

– HOL-Test [BW05] is an interactive model-based testing tool that generates
tests from a model, but also generates ‘uniformity assumptions’ which for-
malise the assumptions being made about the cases that are not tested and



their similarity to the tests. If one could prove these uniformity assump-
tions, then passing all the tests would imply that the implementation is a
refinement of the specification.

– Some algorithms for testing concurrent processes can exhaustively test all
interleavings of the processes, which can guarantee that there are no bugs
due to concurrency interactions between the processes.

– Cleanroom [Mil93] uses rigorous development techniques (informal proof) to
obtain high quality software, and does not use testing as a bug-detection
technique. Instead, it uses testing to determine the statistical reliability of
the software, by performing random testing based on a profile of the expected
usage of the software. This does not guarantee that the software is bug free,
but does tell us its mean time between failures.

Of course, we expect that the proposed program verifier will guarantee ab-
solutely no bugs! Well, except for out-of-memory errors, integer overflow errors
etc., which are usually considered outside the scope of verification.

The point is that formal verification is relative to a semantics of the program-
ming language that is usually a simplification of the real semantics. Typically,
we ignore some difficult issues such as resource limits. In contrast, testing is the
only verification technique that executes the program in its real environment,
under conditions that are as close as possible to its intended use. So, as Fig. 1
suggests, verification is good at finding all errors down to a certain level of ab-
straction (usually the simplified language semantics, but the long term goal is
to push this abstraction level down as far as possible), whereas testing is good
at finding some errors at all levels of abstraction (down to and including the
hardware).

Testing

Verification

100%0%

Hardware

Assembler

Program Code

Specification

Abstraction Level

Errors Found

Fig. 1. Strengths of Verification and Testing

For these reasons, it is likely that testing and proof will always be somewhat
complementary technologies, and the goal will be to find a suitable balance
between them.



4 Relationship to the Program Verifier Grand Challenge

Once the grand challenge of a fully automatic program verifier has been achieved,
one might argue that there will no longer be any need for model-based testing,
or any kind of functional testing, because it will be easy and cheap to prove
programs correct, rather than test them. And proof is obviously preferably to
testing, since it gives guarantees about all behaviours being correct, rather than
just detecting some (unknown) proportion of the obvious errors.

However, in the interim, model-based testing obviously has a role to play.
Even when the grand challenge has been achieved, model-based testing may still
be useful. Its roles could include:

1. Using model-based testing as an introduction to the ideas of formal models
and verification. That is, model-based testing is a cost-effective approach to
finding errors in non-verified programs.
The adoption of model-based testing by industry will build experience in
formal modelling skills and the use of automated testing/verification tools.
These are necessary prerequisites for the use of a full program verifier. Thus,
model-based testing can be viewed as an evolutionary step (the missing link!)
from the status quo, towards fully automatic program verification by proof.
Model-based testing changes the current software lifecycle in a small way (it
introduces formal modelling, and modifies the test development processes,
but leaves the rest of the lifecycle unchanged), whereas full verification seems
likely to require more significant methodological changes.

2. Validating the specification notations which will be used by the program
verifier. Similar notations are needed for model-based testing and for full
verification. So model-based testing may be a useful way to validate the
expressive power and usability of proposed specification notations.

3. Using model-based testing as a specification-validation tool. Experience with
model-based testing shows that the faults exposed by executing the gener-
ated tests are often due to specification or requirements errors, rather than
implementation errors [BBN04]. So if we have a program and a proposed
specification for that program, model-based testing could be used to detect
errors in the specification, before starting verification.

4. Using model-based testing as an approximation of the program verifier. That
is, after an engineer has written a specification of the desired system, and
also written an implementation of that system (or done a large refinement
step towards an implementation), model-based testing could be used to au-
tomatically find some of the errors in that implementation/refinement. This
is similar usage as the previous role, but aimed at finding errors in the im-
plementation rather than the specification.
Model-based testing may give faster and more comprehensible detection of
errors than a proof approach. After all errors detected via model-based test-
ing have been corrected, then a proof approach could be started. This is
based on the oft-quoted observation that 90% of proofs fail because the con-
jecture that is being proved is false.



5. Using model-based testing as an alternative to full verification. If we assume
that the program verifier requires a significant amount of input to achieve
good results (for example, very precise specifications of the system and each
module within the system), then full verification may not be cost-effective
for some non-critical systems. Model-based testing is likely to require fewer
specifications than full verification (eg. only a top-level system model, rather
than a model of each module within the implementation, and a partial model
is often sufficient to generate useful test suites). So model-based testing may
remain a cost-effective alternative to verification, for applications where we
are willing to accept reduced guarantees about program correctness.

References

[BBN04] M. Blackburn, R. Busser, and A. Nauman. Why model-based test au-
tomation is different and what you should know to get started. In Inter-
national Conference on Practical Software Quality and Testing, 2004. See
http://www.psqtconference.com/2004east/program.php.

[BFS05] A. Belinfante, L. Frantzen, and C. Schallhart. Tools for Test Case Genera-
tion. In M. Broy, B. Jonsson, J.-P. Katoen, M. Leucker, and A. Pretschner,
editors, Model-Based Testing of Reactive Systems [BJK+05], Springer LNCS
3472, pages 391–438. Springer-Verlag, 2005.

[BJK+05] M. Broy, B. Jonsson, J.-P. Katoen, M. Leucker, and A. Pretschner, editors.
Model-Based Testing of Reactive Systems. Number 3472 in LNCS. Springer-
Verlag, 2005.

[BW05] A. Brucker and B. Wolff. Symbolic test case generation for primitive recursive
functions. In Jens Grabowski and Brian Nielsen, editors, Formal Approaches
to Testing of Software, number 3395 in LNCS, pages 16–32. Springer-Verlag,
Linz, 2005.

[Dij70] Edsger W. Dijkstra. On the reliability of mechanisms. In Notes On Structured
Programming. EWD249, 1970. See http://www.cs.utexas.edu/users/EWD/
ewd02xx/EWD249.PDF.

[EFW02] I.K. El-Far and J.A. Whittaker. Model-based software testing. In John J.
Marciniak, editor, Encyclopedia of Software Engineering, volume 1, pages
825–837. Wiley-InterScience, 2002.

[LPU04] B. Legeard, F. Peureux, and M. Utting. Controlling Test Case Explosion in
Test Generation from B Formal Models. The Journal of Software Testing,
Verification and Reliability, 14(2):81–103, 2004.

[LY96] D. Lee and M. Yannakakis. Principles and methods of testing finite state
machines — A survey. Proceedings of the IEEE, 84(2):1090–1126, 1996.

[Mil93] Harlan D. Mills. Zero defect software: Cleanroom engineering. Advances in
Computers, 36:1–41, 1993.

[UL07] Mark Utting and Bruno Legeard. Practical Model-Based Testing: A Tools
Approach. Morgan Kauffman, 2007. ISBN: 0-12-372501-1.

[VTA04] Vivekananda M. Vedula, Whitney J. Townsend, and Jacob A. Abraham.
Program slicing for ATPG-based property checking. In 17th International
Conference on VLSI Design, Mumbai, India, January 5-9 2004, pages 591–
596. IEEE Computer Society Press, 2004.


