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Abstract—' The capacity of Multiple Input Multiple Output
(MIMO) Rayleigh fading channels with full knowledge of channel
state information (CSI) at both the transmitter and the receiver
(CSI-TR) has been shown recently to scale at low Signal-to-Noise
Ratio (SNR) essentially as SNR log(1/SNR), independently of
the number of transmit and receive antennas. In this paper, we
investigate the ergodic capacity of MIMO Rayleigh fading chan-
nel with estimated channel state information at the transmitter
(CSI-T) and possibly imperfect channel state information at the
receiver (CSI-R). Our framework can be seen as a generalization
of previous works as it can capture the perfect CSI-TR as a
special case when the estimation error variance goes to zero. In
our work, we mainly focus on the low SNR regime and we show
that the capacity scales as (1-«) SNR log(1/SNR), where « is the
estimation error variance. This characterization shows the loss
of performance due to error estimation over the perfect channel
state information at both the transmitter and the receiver. As a
by-product of our new analysis, we show that our framework can
also be extended to characterize the capacity of MIMO Rician
fading channels at low SNR with possibly imperfect CSI-T and
CSI-R.

Index Terms—Ergodic capacity, MIMO, CSI-T, CSI-R, channel
estimation, Rayleigh fading channel, Rician fading channel, low
SNR.

1. INTRODUCTION

Multiple-Input Multiple-Output (MIMO) systems have cap-
tured in the last two decades great interest as they have been
shown to provide an increased spectral efficiency compared to
the conventional wireless systems [1]-[11]. For an independent
and identically distributed (i.i.d.) Rayleigh fading channel,
the capacity scales linearly min(N,, N;) times compared to
Single-Input Single-Output (SISO), where N, is the number
of transmit antennas and N, is the number of receive antennas
with perfect Channel State Information (CSI) at high signal-
to-noise ratio (SNR) [1]-[3]. When perfect CSI is available at
both the transmitter and at the receiver (CSI-TR), the capacity
of MIMO channels is well known and has been widely studied
in [1], [12].

In a realistic scenario, the estimates of the channel gains are
not perfectly known at the transmitter side and/or the receiver
side. Indeed, the CSI at the receiver (CSI-R) is generally

" An enhanced version of this paper has been submitted to IEEE Transac-
tions on Communications for a possible publication and is now under review.

obtained using the transmission of training sequences. The CSI
at the transmitter (CSI-T) is obtained via a feedback channel
or from previous measurements via the channel reciprocity
property [13]. While CSI-R can be assumed to be perfect or
not, depending on the practical cases, CSI-T is far from being
perfectly known in realistic models. Thus, much more work
has been conducted in the literature in order to characterize
the MIMO capacity with more realistic assumptions than
perfect CSI at the transmitter (CSI-T). When only the CSI
is available at the receiver (CSI-R), the capacity of MIMO
channels has been derived in [1], [3]. The capacity of MIMO
channels with partial CSI-T or statistical CSI-T and perfect
CSI-R was also derived in [1], [8], [10]. The capacity of some
channels with imperfect CSI-T and perfect CSI-R was derived
in [14]. In [4], lower and upper bounds on the capacity of
MIMO channels subject to an average power constraint were
derived under channel estimation error at both the transmitter
and the receiver. The optimal transmitter power allocation
was also determined with and without estimated CSI-T in
[4]. In [5], [6], the capacity of MIMO Rician channels was
derived when perfect CSI-R is assumed but the transmitter
has neither instantaneous nor statistical CSI-T. In [6], the
capacity of MIMO Rician channels was approximated by that
of correlated MIMO Rayleigh channels. These works show
that the availability of the channel state information at the
transmitter has a considerable impact on the channel capacity.
This influence vanishes at high SNR , but at low SNR the ratio
of the capacity with CSI-T over the capacity without CSI-
T goes to infinity according to [15]. Hence, it is interesting
to investigate how does the capacity scale at low SNR with
imperfect CSI-T. Besides to the assumption of imperfect CSI-
T, we also investigate the effect of channel estimation at the
receiver on the capacity at low SNR.

Moreover, our motivation to focus on the low SNR
regime is not only dictated by the high energy efficiency
of communication at this regime, but also by the nature
of wireless communication in some specific but important
situations. Indeed, many wireless systems now operate at low
SNR. For instance, in wideband communication, we have a
huge bandwidth and we can operate at low power regime
and still achieve high capacity [16]. In sensor networks, there
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is a detrimental request for power savings [17], [18]. More
generally, the low power regime applies to any communication
system where the bandwidth and the power are fixed, but
the system degrees of freedom are large enough such that
the power per degree of freedom is very low [15]. Hence,
analyzing the capacity as a performance metric at low power
regime is of practical and theoretical interests.

In [16], Borade and Zheng have shown that the capacity of
the SISO Rayleigh flat fading channel at low SNR essentially
scales as SNR log(1/SNR) nats/symbol. In [19], the low-SNR
capacity of M-ary phase-shift keying (PSK) over both the
additive white Gaussian noise (AWGN) and fading channels
is studied when a hard-decision detection is employed at the
receiver end. In [9], [10], the low SNR regime of the MIMO
Rician capacity has been investigated with no CSI-T or mean
CSI-T and perfect CSI-R. In [10], the low SNR capacity of
MIMO Rician channels with statistical CSI-T and perfect CSI-
R was investigated. In [11], Tall et al. have characterized
the ergodic capacity of MIMO Rayleigh fading channels with
perfect channel state information at both the receiver and the
transmitter (CSI-TR) for any number of transmit and receive
antennas at asymptotically low SNR and they proposed an
on off power scheme to be capacity achieving. However,
the channel may not be perfectly known at the transmitter
and/or the receiver. Several techniques have been proposed in
order to estimate the channel gains at the transmitter or/and
the receiver. Motivated by these results, we propose in this
paper to investigate the effect of the channel estimation on the
ergodic capacity of a MIMO Rayleigh fading channel with an
estimated CSI-T and possibly imperfect CSI-R, and provide
the asymptotically low-SNR characterization of the capacity.
We then deduce the ergodic capacity of a MIMO Rician fading
channel with possibly imperfect CSI at both the transmitter and
the receiver at low SNR.

II. SystEm MoDEL

We consider a MIMO Gaussian fading channel with N,
transmit antennas and N, receive antennas given by

y=Hx+n, (D)

where x is the N, X 1 complex random vector that represents
the channel input, y is the N, X 1 complex random vector that
represents the channel output, n is the N, X 1 complex random
vector that represents the AWGN noise with zero mean and
covariance matrix E(nn®) = Iy, and H is the N, X N; random
complex Gaussian channel matrix with i.i.d. entries that are
complex circularly symmetric Gaussian with zero mean and
1/2 variance per dimension, i.e. CN(0, 1), where E[-] denotes
the expectation operation.

Let us denote by m = min(N,, N;) and n = max(N,, N;). The
transmitted signal x is subject to an average power constraint
Py

E[x"x] < Py )

Since the noise has normalized covariance, P, can be simply
designated as the transmit SNR, i.e., P,,, = SNR.

When the channel state information is available at the
transmitter and the receiver, the expression of the capacity
is given by [2], [3]

C=Ey [Z (log (uA))" |, 3)
i=1

where A;,i = 1,...,m are the eigenvalues of the matrix HHY
and p is chosen via the water-filling policy to satisfy the
average power constraint with equality as

- 1
SNR = Fp IZ(y - I)+]’ 4)
i=1 !

where (-)* is defined as (x)* = max(x,0). However, when the
transmitter does not have full knowledge of the channel matrix
H and only an estimated version of the channel is available at
the transmitter, to the best of our knowledge, no closed form
expression of the capacity is available in the literature. Only
upper and lower bounds on the capacity were derived in [4]
when the channel is estimated at both the transmitter and the
receiver. In this paper, we derive an asymptotic expression of
the ergodic capacity at low SNR and characterize the loss in
capacity due to channel estimation error at the transmitter or
the receiver, in the low power regime. In the remainder of this
paper, we define f(x) = g(x) if and only if lim,_ % =1
Note that f<g, and fSg are defined analogously.

III. Low SNR capacity oF MIMO RayLEiGH FADING CHANNEL

We assume that CSI-T is always imperfect. However,
CSI-R is possibly assumed to be perfect or imperfect. The
case when CSI-T is imperfect and CSI-R is perfect (Case
I) can be associated to the practical scenario when we have
perfect channel estimation at the receiver and a noisy channel
feedback between the receiver and the transmitter [20]. The
noisy feedback channel is basically the cause of the mismatch
between the estimated channel at the receiver and the trans-
mitter. This case also can be justified by the fact that the true
channel evolves over time by the addition of an independent
matrix with C(0, 1) entries where « is a forgetting factor which
describes the rate of evolution of the channel matrix. However,
the case when CSI-T and CSI-R are both imperfect (Case II)
can be associated to the practical scenario when the channel
estimation at the receiver is not perfect, while the feedback
channel is perfect and instantaneous [4], [20]. We suppose
that the channel matrix H in both cases can be expressed as
(4], [20]

H = V1-aH + VaH, (5)

where H is the channel matrix described in (1), H is the
estimate of H where the entries are assumed to be CN(0, 1),
H is the error matrix independent of H where the entries
are assumed to be CN(0, 1), and «a € [0, 1] is the estimation
error variance due to the noisy feedback channel (Case I) or
the channel estimation at the receiver (Case II). Note that in
Case II, we consider the case when we have the same channel
estimate at the transmitter and the receiver. Different channel
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estimates at the transmitter and the receiver can be the object
of further works.

A. Case I: Imperfect CSI-T and Perfect CSI-R

In this subsection, we investigate the case when CSI-R is
perfectly available at the receiver; whereas only an estimated
version of H is available at the transmitter as given in (5).
The effect of the CSI-T estimation on the low SNR capacity
of the MIMO Rayleigh channel is stated as follows.

Theorem 1: The capacity of MIMO Gaussian channels with
Rayleigh fading at low SNR when only an MMSE estimator
of the channel is available at the transmitter and when the
channel is perfectly known at the receiver is given by

—(1—a) L SNR Wo((SNR)1),if L <0,

Ca0 ~{—(1—a) SNR log(SNR),if L = 0, (6)
—(1 —a) LSNR W_;(~(SNR)1),if L > 0,
~ —(1 — @) SNR log(SNR), (7)

where L = n+m—4, Wy(.) and W_;(.) are the principal branch
and the lower branch of the Lambert function, respectively.
In other words, Theorem 1 states that the asymptotic capacity
loss due to CSI-T estimation is proportional to a.
Proof: The proof is in Appendix 1. ]
Note that Theorem 1 captures the perfect CSI-TR scenario
as a special case by setting @ = 0. Naturally, the SISO (n =
m = 1) Rayleigh fading with perfect CSI-TR is also a special
case of Theorem 1. Therefore, our result in Theorem 1 may
be regarded as a non-trivial generalization of previous works
[11], [16].

In this section, we have assumed that the receiver has
perfect CSI-R and we have studied the impact of imperfect
CSI-T. This relies on the fact that the receiver is able to
track perfectly the channel using pilots, for instance, and then
feeds back this channel gain to the transmitter via a noisy
channel. However, in the low-SNR regime, channel estimation
becomes very challenging and thus perfect CSI-R does not
seem realistic. Whether the result in Theorem 1 is robust
against the perfect CSI-R assumption or not is addressed next.

B. Case II: Imperfect CSI-T and Imperfect CSI-R

In this subsection, we investigate the case when only an
estimated version of H is available at both the transmitter and
the receiver as given in (5). To the best of our knowledge,
there is no closed form expression of the capacity. Upper
and lower bounds of the capacity have been derived in e.g.
[4]. Likewise in [4], we assume that there is a perfect and
instantaneous feedback from the receiver to the transmitter, so
that whatever CSI-R the receiver has, is also available at the
transmitter. Hence, the estimated channel H is the same at the
transmitter and at the receiver and the channel estimation error
a is perfectly known to both the transmitter and the receiver.
Different estimated channels and channel estimation errors at
the transmitter and the receiver might be the object of further
research work. The effect of the CSI-T and CSI-R estimation

on the low SNR capacity of the MIMO Rayleigh channel is
stated as follows.

Proposition 1: The capacity of MIMO Gaussian channels
with Rayleigh fading at low SNR when only an MMSE
estimator of the channel is available at both the transmitter
and the receiver is given by

Coa = Cop
—(1 —a) L SNR Wo((SNR)1),if L <0,
= {—(1 — @) SNR log(SNR),if L =0, )
—(1 — @) L SNR W_;(—(SNR)1),if L > 0,
= —(1 — a) SNR log(SNR). )
Proof: The proof is in Appendix 2. [ ]

Proposition 1 states together with Theorem 1 that the
channel estimation at the receiver is not crucial at low signal-
to-noise ratio (SNR) and only channel state information (CSI)
at the transmitter (CSI-T) matters for the asymptotic capacity
loss. Note that CSI at the receiver (CSI-R) is not crucial as
long as the later has better or equal CSI than the one at the
transmitter.

IV. Low SNR caracity oF MIMO RiciaN FabiNG

In this section, we consider a MIMO Rician fading channel
where the channel matrix in (1) is modeled by [7]

H= K ﬁ"' 1 Ho.n
VK+1 VK+1

where K > 0 is the Rician factor, H € CV*N is a normalized
deterministic complex matrix that represents the line of sight
component in H , H, € C¥*M is a random complex matrix
with i.i.d. CCSG entries with zero mean and variance 1/2
per dimension. For this type of fading, we consider the case
when we have perfect CSI-TR, and the case when we have an
estimated CSI-T and possibly imperfect CSI-R.

A. Case I: Perfect CSI-TR

When we have perfect CSI-TR, the capacity of MIMO
Rician fading channels at low power regime can be derived as
follows.

Proposition 2: The capacity of MIMO Gaussian channel
with Rician fading at low SNR with perfect CSI at both the
transmitter and the receiver is given by

(10)

L_ I SNR W,((SNR)1),if L <0,

s
Coo = {—%7 SNR log(SNR),if L =0, (11)
— 2= L SNR W_(~(SNR)?),if L >0,

1
= ———— SNR log(SNR). (12)

K+1

Proof: To prove the result in Proposition 2, we will derive
an upper bound and a lower bound in a similar way as in the
proof of the Theorem 1.

« Upper bound on Cyj
If we take into account (10), the channel model in (1)
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can be seen as the combination of the outputs of two-

MIMO receivers that observes y; = 1/%ﬁx+ \en; and

Yo = \/gwa+ V1 — en,, where 0 < € < 1, ny and n,
are complex symmetric Gaussian vector with zero mean
and covariance matrix Iy.. The capacity of the channel
in (1) is upper bounded by the capacity of the channel
with outputs y,; and (y,, H,), respectively. Indeed, the
capacity of the channel with the output y, can be seen
as the capacity of a MIMO AWGN channel (since H
is deterministic) and is proportional to log (1 + %%)
However, the capacity of the channel with the output
(y,,H,) is exactly the capacity of a MIMO channel
that encounters a Rayleigh fading channel as derived in
Theorem 1 but with an average power equal to (ﬁ %)
As we are operating at low SNR, the capacity of the
channel with the output y,; is asymptotically vanishing
when compared to the capacity of the channel with
the output y,. Then we can easily obtain the result in

Proposition 2 by using the facts [21]

WoBD _ ¢ i Wol _q p W@ _
W = 1> limgey =1, JL%]- W) = b

Tim 285 = 1, VB > 0.x > 0,y <0,

and letting € — 0.

« Lower bound on Cyp
The lower bound on Cpg can be obtained in a similar
way as in the proof of Theorem 1 using an on-off power
control scheme applied to H. The proof is the same as
in the Theorem 1, except that the average power is now
——SNR instead of SNR.

lim

X—00

B. Case II: Imperfect CSI-T and Possibly Imperfect CSI-R

The low SNR capacity of the MIMO Rician channel with
estimated CSI-T and possibly imperfect CSI-R can also be
derived in a similar way as in Theorem 1 and Proposition 1
and it is given in the following Corollary. Note that likewise
in III-B, we assume that we have a perfect and instantaneous
feedback from the receiver to the transmitter [4]. Hence, the
estimated channel H is the same at the transmitter and at the
receiver and the channel estimation error « is perfectly known
to both the transmitter and the receiver.

Corollary 1: The capacity of MIMO Gaussian channel with
Rician fading at low SNR with the same MMSE estimated CSI
at the transmitter and at the receiver is given by

C(Y,(Y = C(Y,O = (1 - a’) C0,07 (13)

where « is the estimation error variance and Cpo is the
capacity of MIMO Gaussian channel with Rician fading with
perfect CSI at both the transmitter and the receiver stated in
Proposition 2.

Proof: When the channel matrix H in (10) is not fully
known by the transmitter and only an MMSE estimate of the
channel is available, the low SNR capacity of the MIMO
Rician channel with noisy CSI-T and perfect CSI-R can be
derived in a similar way as in the proof of Theorem 1 and

it is straightforward to see that in this case the capacity
scales asymptotically as (1 — a) Cpp. Then, we can deduce
the capacity with estimated CSI-T and estimated CSI-R in
a similar way as in Proposition 1, provided that the channel
estimates at the transmitter and the receiver are the same. M

Note that this result captures the case of SIMO channel
when we have only one transmit antenna and multiple receive
antennas that we have studied in previous works [22], [23].
Again, Corollary 1 can be seen as a generalization of our
previous works. Note that in [23], we have only considered
the perfect CSI-TR 2.

V. NuMERIcAL RESULTS

In this section, selected numerical results are provided
to show the accuracy of our asymptotic characterization in
Proposition 1 (or equivalently Theorem 1), Proposition 2 and
Corollary 1. In Figs. 1, 2 and 3, we have plotted the MIMO
Rayleigh fading channel capacity at low SNR in nats per chan-
nel use (npcu) versus SNR in dB. The exact capacity plotted
in the latter figures is computed for perfect CSI-TR as in [11].
We have used standard root finding algorithms to find the
water filling level u and then we have numerically computed
the capacity using [11, (3)]. The no CSI-T capacity has been
obtained using the Monte Carlo simulation. To the best of our
knowledge, the exact capacity of the MIMO Rayleigh channel
with an estimated CSI-T that is not a deterministic function
of the estimated CSI-R is still not known. To validate our
asymptotic results, we compare them to the upper bound that
was previously derived by Yoo et al. in [4]. In fact, the upper
bound derived by Yoo er al. is plotted using [4, (13)]. Details
on how to numerically compute this bound can be found in
[4].

In Figs. 1, and 2, we have plotted the MIMO Rayleigh fad-
ing channel capacity at low SNR for 2-transmit antennas and
2-receive antennas. The estimation error variance « in Figs.
1, and 2 has been chosen equal to 0.2, and 0.5, respectively.
In Figs. 1 and 2, the expressions (6) and (7) are the same
since L = 0 in this case. Moreover, our asymptotic results in
Theorem 1 claim that the expression of the low SNR capacity
when L = 0 is independent of the spatial diversity (number
of transmit antennas and receive antennas). The expression of
the low SNR capacity only depends on the estimation error
variance, along with the value of SNR. As we increase a,
we decrease the capacity compared to the perfect CSI-T case.
In Fig. 1, the asymptotic capacity is below the upper bound
derived in [4] which implies that our characterization and thus
our upper bound is more refined than the one in [4] at low SNR
values. This observation holds for different channel estimation
quality as shown in Fig. 2. Note also that the asymptotic
capacity loss due to CSI-T estimation has increased from 0.2
in Fig. 1 to 0.5 in 2. In Fig. 2, the asymptotic capacity with
estimated CSI-T is about half the ergodic capacity with perfect
CSI-TR for all SNR values below —10 dB. As SNR increases
above —10 dB, the gap to the later curve increases slightly.

2In [23], the Rician factor represents the number of paths L times the per
branch K factor so that the results here and in [23] are consistent.
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Figure 1. Capacity in nats per channel use (npcu) of a Rayleigh fading channel
with 2-transmit and 2-receive antennas versus SNR, for @ = 0.2.
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Figure 2. Capacity in nats per channel use (npcu) of a Rayleigh fading channel
with 2-transmit and 2-receive antennas versus SNR, for @ = 0.5.

In Fig. 3, we have plotted the MIMO Rayleigh fading
channel capacity at low SNR for 3-transmit antennas and 2-
receive antennas. The estimation error variance « has been
chosen equal to 0.6. In Fig. 3, we have considered the case
when L > 0. In this case, we observe that the asymptotic
capacity with Lambert function in (6) is lower bounded by
the asymptotic capacity with Log function in (7) as depicted
in Fig. 3. This claims that the spatial diversity when L > 0
improves the capacity loss due to CSI-T channel estimation
error. If we compare Fig. 2 and Fig. 3, we can see that even
though we have increased a from 0.5 to 0.6, the asymptotic
capacity with Lambert function in Fig. 3 is very close to the
asymptotic capacity with Log function in Fig. 2.

On the other hand, we have plotted the MIMO Rician
fading channel capacity at low SNR versus SNR in dB in Figs.
4, and 5. The exact capacity with perfect CSI-TR defined in
(3) was computed using Monte Carlo simulations. There is
no framework (to the best of our knowledge) that deals with
Rician capacity with imperfect CSI-T and possibly imperfect

— Exact capacity with perfect CSI-TR

-%-Yoo & Goldsmith's upper bound [6]

-8~ Asympt capacity with Lambert function with perfect CSI-TR (Eq. (8) for & =0)

-@-Asympt capacity with Log function with perfect CSI-TR (Eq. (9) for a =0)

-8 - Asympt capacity with Lambert function with imperfect CSI-T & possibly imperfect CSI-R (Eq. (8))

10° }-©- Asympt capacity with Log function with imperfect CSI-T & possibly imperfect CSI-R (Eq. (9)) |- %%~
- - - Capacity with no CSI-T

Capacity (npcu)

—4 L L L L L L L
10 20 -15 -10 -5 0
SNR (dB)

Figure 3. Capacity in nats per channel use (npcu) of a Rayleigh fading channel
with 3-transmit and 2-receive antennas versus SNR, for @ = 0.6.

CSI-R. The asymptotic capacities with perfect CSI-TR at
low SNR were computed using the expressions in (11) and
(12). The asymptotic capacities with estimated CSI-T and
possibly imperfect CSI-R at low SNR were computed using
(13) combined with the expressions in (11) and (12).

In Fig. 4, we have plotted the low SNR Rician fading
channel capacity of a MISO channel with 2-transmit antennas
and 1-receive antennas for K = 0.5, which captures the case
studied in [23]. In this case, the asymptotic capacity with
Lambert function in (11) is upper bounded by the asymptotic
capacity with Log function in (12) since we have L < 0
(or equivalently ¢ < 3) [21, (23)]. We can also see that the
asymptotic capacities with estimated CSI-T (a = 0.5) is about
half the asymptotic capacities with perfect CSI-TR (a = 0) for
all SNR values.

— Exact capacity with perfect CSI-TR

-©-Asympt capacity with Log function with perfect CSI-TR (Eq. (12))

-8 - Asympt capacity with Lambert function with perfect CSI-TR (Eq. (1))

-©- Asympt capacity with Log function with imperfect GSI-T & possibly imperfect CSI-R (Egs. 12 & 14)

-8 - Asympt capacity with Lambert function with imperfect CSI-T & possibly imperfect CSI-R (Egs. 11 & 14)
10° IL= - ~Capacity with no CSI-T p

Capacity (npcu)

e i L L L L L L L
10,40 -35 -30 25 —20 15 -10 -5 0
SNR (dB)

Figure 4. Capacity in nats per channel use (npcu) of a Rician fading channel
with 2-transmit and 1-receive antennas versus SNR, for K = 0.5.

In Fig. 5, we have plotted the low SNR Rician fading chan-
nel capacity with 4-transmit antennas and 2-receive antennas
for K = 0.1. In this case, the asymptotic capacity with Lambert
function in (11) is lower bounded by the asymptotic capacity
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with Log function in (12) since we have L > 0.

— Exact capacity with perfect CSI-TR

-B-Asympt capacity with Lambert function with perfect CSI-TR (Eq. (11))
-®-Asympt capacity with Log function with perfect CSI-TR (Eq. (12))

- 8- Asympt capacity with Lambert function with imperfect GSI-T & possibly imperfect CSI-R (Egs. 11 & 14)| ]
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10° IL= - -Capacity with no CSI-T
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Figure 5. Capacity in nats per channel use (npcu) of a Rician fading channel
with 4-transmit and 2-receive antennas versus SNR, for K = 0.1.

VI. CoNCLUSION

In this paper, we have analyzed the capacity of MIMO
Gaussian channels undergoing Rayleigh fading at low SNR
with estimated CSI at the transmitter and possibly imperfect
CSI at the receiver. We have shown that the capacity scales
asymptotically as (1 — @) SNR log(1/S NR) regardless of the
number of the transmit antennas and the number of receive
antennas with @ as the estimation error variance. We have
deduced that the CSI-T estimation induces an asymptotic ca-
pacity loss proportional to the estimation error, @. We have also
deduced that the CSI-R estimation is not crucial at low SNR.
As a by-product of our analysis, we have also obtained the low
SNR capacity of MIMO Rician fading channels with perfect
CSI-TR and shown that it scales as - 1SNRlog(l/SNR)
where K is the Rician factor. We have also deduced that
the low SNR capacity of MIMO Rician fading channels with
estimated CSI-T and possibly imperfect CSI-R scales as (1-a)
times the low SNR capacity with perfect CSI-TR.

APPENDIX |
In this Appendix, we will derive an upper bound and a
lower bound on the capacity to get the result in Theorem 1.

« Upper bound on C, o
The channel model described by (1) when taking into
account (5) becomes

y = (V1 -aH + vVaH) x + n. (14)

One can think of (14) as a specific combining of two
receivers with N, antennas each. Each receiver observes

an output
¥y = \/EIA{x+ \erny, (15)
¥, = V& Hx + Ven, (16)

where n; and n, are complex symmetric Gaussian vector
with zero mean and covariance matrix Iy, g1 = 1 — «,

308

g =a6 =1-€ 6 =¢€, and 0 < € < 1. Clearly, this
specific combining may not be optimal. Consequently, we
have

I(x;y|H) < I(x;y,,y,|H, H) (17)
< I(x;y,|H, H) + I(x;y,)H, H)  (18)
= I(x;y,|H) + I(x; y,|H). (19)

Maximizing both sides of (19) over all conditional inputs
p(x|H), we can see that the capacity of the channel
described in (1) is upper bounded by the sum of the
capacity of the channel with input x and output (y;,H),
and the capacity of the channel with input x and (yz,f{).
The capacity of the channel with input x and output
(yl,fi), which is the first term on the right hand side of
the (19), corresponds to the capacity where the transmitter
and the receiver perfectly know the channel matrix H
(perfect CSI-TR), which is asymptotically equal to [11]

I(x;,[H) < €y = maxI(x; y,|H) (20)
p(xIH)

—L =2 SNR Wy ((=2SNR)E),  if L <0,

Z {12 SNR log (=2SNR), if L €0)

~L =2 SNR W, (—(122SNR)Z), if L>0.

However, the capacity of the channel with input x and
(yz,fi ), which is the second term on the right hand side of
the (19), corresponds to the capacity where the transmitter
has absolutely no knowledge about H and the receiver
knows perfectly H (no CSI-T and perfect CSI-R) [3].
Then, it is asymptotically equal to

I(x; y2|H) < Cp = max/I(x; y2|H)<N SNR 22)
p(x\H)

At asymptotically low SNR, we can neglect the second
term on the right hand side of (19) when compared to the
first term in the expression above. Then, using the fact
[21]

Wo(Bx) 1(By)
XII_EE)WO() =1, th 0) =1,¥V8>0,x>0,y<0,

and letting &, — 0, we get

—L (1 -a) SNR Wo((SNR)1),  if L <0,

Ca0 24—(1 — @) SNR log(SNR), if L =@23)
—L (1 - a) SNR W_,(~(SNR)?), if L >0,

= —(1 - @) SNR log(SNR). (24)

Note that (24) has been obtained from (23) using the
fact that we can approximate the Lambert function by

a familiar function (log(.)) since hm 1‘}([)/;8 = 1 and
hm 1og(l—0>)) =1, for x>0 and y <0, respectlvely [21].

Lower bound on C,

Let us consider an on-off power control scheme [11], [21],
[22] that allows transmission only when the estimated
channel is very good. Since we are operating at low
SNR, we are expecting that the spatial diversity will
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not improve much the spectral efficiency of our chan-
nel. Therefore, we only exploit one transmit antenna at
the transmitter while turning off all the other transmit
antennas. Then, the equivalent channel is a Single-Input
Multiple-Output (SIMO) channel. We define the selected
channel as the one that corresponds to the best link with
respect to the best transmit antenna selected as

~ ~H

Bpae = max R, h;, (25)

1<j<N, !

~H
hmax
where i ; are the columns of the complex channel matrix
H. As we can see, the selected transmit antenna corre-
sponds to the best instantaneous channel gain. Note that
we are doing our selection with respect to the estimate and
not the true channel. After selecting the transmit antenna,
we perform the optimal Maximum Ratio Combining
(MRC) technique [24] at the receiver to maximize the
output SNR. Let guax = 7 Boaxs Gumax = P

max
and Zpax = ﬁ:axilmax. Note that A, and B, are
the corresponding columns of h,,,, and that they don’t
necessarily satisfy (25). Hence, the on-off power control

scheme is given by

hmathax,

N P > lf Amax > 1/
P @ma) ={ o 08 K (26)

0, otherwise.

In [11], it has been shown that u satisfies:

1 1
~ —(n+m-4) —+
SNR = T - ¥ ern @D

and is thus given by

LW, ((SNR)%), if L <0,
1/u = {-log (SNR), ifL=0 (28)
—L W (- (SNR)%), if L> 0.

Py in (26) satisfies the average power constraint as

SNR
1= Fg, (1/1)’
where Fg (-) is the cumulative distribution function
(CDF) of gax. Obviously, Fy, . (-) is the product of the
CDFs of ﬁfﬁj, for j = 1,...,N; that are i.i.d and chi-
square distributed with 2N, degrees of freedom. In fact,
we have

Py = (29)

F;..(x) = Probg,  (8max < X) (30)

N,

~H A
[ [ Probs, (hj W< x) 31)
=1

r(v. &))"
= [1_—(N,—1)!) (32)
A\ s N
xfm[l_(?zzf,—f)z J ’ (33)
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where Q = E[2,,.]/N,. The achievable rate of the above
on-off scheme is given by

Ra,O = 2 [E) ] [IOg (1 + P(gmux) gmax)] (34)
= A[E [log(l + PO gmax)] (35)
Zmax:&max=1/p
= E log|1
gma,\'vgmarzl/.“[ g(

Vl_ai’max"' \/&ilmax

+ Py

2
)} (36)
B 8maxs&max=1/p

12
+ PO |\/(1 - a) gmax - \/a' gmax ):| (37)

> E [log(l

> E [log(l

T BmaxSa.gmar=1/p

+ Po [ NT= ) &~ V@ G| )} (38)

> Fip (@) (1 = Fy,,,(1/) log (1

+ Py (VT =)/ - «/cﬁ)z), (39)

where (??) is obtained from (36) using the fact that
llzi + z2ll = [llz1ll = llz2ll |, where z; and z are two
complex vectors, where Fz  (-) is the cumulative function
of Z,ax, Where a in (38) is an arbitrary positive real

number. Now, choosing a in (39) equal to a = £=21/u'73,

we have |\/(1 -a)l/u— \/oz_a| = (1 -a)l/u and as

SNR — 0, @ — oo and Fj,  (a) = 1. Hence,

Ryo3(1 = Fg,,, (1/m)log(1 + Po(1 = )1 /), (40)
Then, using (29) along with (27), we have:

1 SNR
Py— = ————F——, 41
o 1 =Fe, 1/
1 —(n+m-3) -1
=D=M e
~ DT — (42)
() e m
I—11- (N,—1)!
1 —(n+m=3) ,— %
m=Di-nH e
Sl — (43)
N, (m) e K
TN

Note that as SNR tends toward zero, ¢ also converges to
zero due to (27) and so does the right hand side of (43).
Finally, using the fact that log(l + x) = x for x — O,
the achievable rate R, in (40) is asymptotically lower-
bounded as follows:

R0 S (1= Fg,, (1/w) Po(1—-a) 1/p,  (44)
= (1 —a) 1/u SNR, (45)

where (45) follows from (41). By substituting (28) in (45),
we obtain the result in Theorem 1.
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APPENDIX 2

In order to get the result in Proposition 1, we follow the
same sketch of proof as in Theorem 1. We derive an upper
and lower bound on C,, as follows.

« Upper bound on C,,

[1]

In order to derive the upper bound, we decompose the
channel in a similar way as in (15) in the proof of
Theorem 1. Maximizing both sides of (19) over all
conditional inputs p(xlfl ), we can see that the first term on
the right hand side of the (19) corresponds to the capacity
where the transmitter perfectly knows the channel matrix
H (perfect CSI-TR) and is given in a similar way as in
(20). However, the second term on the right hand side
corresponds to the capacity where the transmitter and the
receiver have absolutely no knowledge about H (no CSI-
TR). Then, it is upper bounded by the capacity C, where
only the transmitter has no knowledge about H (no CSI-
T and perfect CSI-R) as given in (22). Hence, the same
upper bound given in the proof of Theorem 1 still holds
true.

Lower bound on C,,

Now let us derive the lower bound on the capacity. We
again consider an on-off power control scheme as in (26).
The achievable rate of the on-off scheme when only g,
is known at both the transmitter and the receiver is given
by

gmux(l_a)
Rew= E |log|1+ Py 8mer-— 46
‘ gmzuﬂ[og( T T aSNR )] (46)
> (1 = Fg,,.(1/p)
(1 — )
log(1+ Py -~ 47
X Og( o 1+a/SNR) “7)

Note that (46) is a direct consequence of the lower bound
in [4, (6)] with an on-off power policy. Then, using (43)
along with (27), we have

‘("*""‘3)6_/%
R
I 043)

N el
1+aSNR ~ 1, , (=) g~ H0

1
(m—1)!(n—1)!

1
m=Dl(n-1)!

Then, we can write (47) as

. Po 1/u(1 -
Rua 5 (1= Fy,, (1) TECZD - gg)

_ SNR 1/u(1 - a)

~ 1+aSNR (50)

= (1 -a) 1/u SNR, (1)

and hence, by substituting (28) in (51), we obtain the
result in Proposition 1.
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