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Abstract—In this paper we analyze the interaction between
two communication protocols implemented in TinyOS 2.x: Deluge
T2, an over-the-air programming protocol, and the Low Power
Listening (LPL) implementation provided with the standard
Medium Access Control layer, BoX-MAC. We show how the
characteristics of the two layers deeply diverge, leading to a
sensible performance degradation. We present REACTIVE, a
simple algorithm that, integrated in Deluge, is able to dynamically
disable and re-enable LPL in order to boost Deluge performance,
leveraging on the critical aspects of the layers integration.
REACTIVE is able to increase the performance of Deluge,
compared to its standard implementation, by a factor of 2.6 in
terms of energy efficiency and 7 in terms of dissemination time.

I. INTRODUCTION

Over the Air Programming (OAP) for Wireless Sensor
Networks (WSNs) is an essential feature for long-term ap-
plications, where physical access to deployed wireless motes
cannot be guaranteed or when time and costs of manual repro-
gramming exceed the benefits. Typically, OAP protocols for
WSNs are based on broadcast dissemination of a new image
or part of it [1], [2], [3], [4]. Because of its inherent broadcast
nature and of the large amount of data disseminated over
the network, OAP is an energy consuming task. Commonly
used metrics for evaluating the energy efficiency of an OAP
protocol are the disseminated image size and the dissemination
time: the smaller will the image be, the less network traffic it
will require, moreover, the less time it takes for an image to
disseminate, the earlier the nodes can activate energy saving
features.

Another important aspect that rarely is taken into account
is the efficiency of the integration between the OAP protocol
and the underlying low-power Medium Access Control (MAC)
layer, that is mandatory in long-running network applications.
Anyway, it is straightforward to notice the contrasts there
exist between requirements of a low-power MAC protocol and
an OAP protocol. Indeed, to save power, a low-power MAC
protocol increases the overall network latency which degrades
the dissemination time of an OAP protocol. On the contrary,
the high number of broadcast packets of an OAP protocol
sensibly increases the duty-cycle of the MAC layer. In this
paper we deeply investigate this relevant aspect and show how,
through the knowledge of the underlying MAC protocol, the
efficiency of the OAP protocol can be significantly increased.

We used the official 2.1.2 release of the TinyOS operating
system [5] that has been ported on our custom hardware plat-

form dedicated to WSNs, the MagoNode [6]. TinyOS comes
with an official OAP protocol named Deluge T2 and a low-
power MAC protocol featuring Low Power Listening named
BoX-MAC [7]. We made a preliminary experiment comparing
Deluge with and without LPL showing the parameters we
could leverage on to increase its efficiency. We then proposed
a simple reactive algorithm integrated in Deluge able to
dynamically disable part of the LPL features to boost Deluge
over-the-air reprogramming. With our simple approach, we are
able to increase the performance of Deluge, compared to its
standard implementation, by a factor of 2.6 in terms of energy
efficiency and 7 in terms of dissemination time.

In the remainder of this paper we will present the state
of the art of OAP procols (section II) and we will introduce
BoX-MAC and Deluge (section III). Furthermore, in section
IV and V we will present the experimental data and analysis
of the reactive algorithm we implemented compared to other
solutions. Finally, in section VI we will give some conclusions
and intentions for the future.

II. STATE OF ART

TinyOS does not support loadable modules, which means
that the whole ROM image needs to be disseminated before
reprogramming can occur. On the contrary, other operating
systems like Contiki [8] and SOS [9] have the ability to
load dynamic modules, which allow those systems to limit
propagation to updated modules only, thus, limiting the overall
disseminated code size. In the last years similar techniques
acting on the code structure in such a way that only the code
differences are propagated and then reassembled locally on
each mote before reprogramming, have been presented for
TinyOS.

A. Zephyr

Zephyr [1] uses an optimized byte-level algorithm based
on rsync to compute delta difference between ROM images.
The computed delta is then disseminated and the ROM image
reconstructed on each mote. The authors observe that comput-
ing byte-level delta is not enough, since small changes in the
code might shift entire code blocks, thus, generating big sized
deltas. To face this issue, the authors substitute function calls
with jumps to fixed code locations acting as indirection table.
So all the calls to a particular function in a user program will
refer to the same entry in the indirection table. In this way if
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these calls are placed in different locations (i.e., shifted) only
the value on the indirection table will be affected, thus keeping
the delta between the two versions small.

B. Dynamic TinyOS

Dynamic TinyOS [2] has the ability to compile TinyOS
components as separated ELF files that are linked together
at run-time by a TinyManager. Separating the components in
multiple files allows Dynamic TinyOS to disseminate only
updated components while keeping the rest of the code un-
changed. With Dynamic TinyOS it is also possible to group
components whenever no updates are expected on those parts,
in order to improve code optimization of the compiler. The
result of this operation is a reduction in size of the ROM
image.

C. Elon

Elon [3] introduces the concept of replaceable components.
The principle relies on the fact that in TinyOS only few
application-level components are expected to be updated while
core modules are typically left unchanged. Hence, labeling
few components as replaceable let the user to disseminate
updates for those components only, keeping the update small.
In addition, while the base version of replaceable components
are stored in ROM, the updates are stored in RAM, without
the need to use external flash.

D. Stream

Stream [4] stores in the external flash memory an image that
implements the OAP protocol. When a network reprogram-
ming is needed, Stream switches to the OAP image in order
to disseminate the new application code. This technique allows
Stream to keep a small overhead on the application code size,
since it implements a very lightweight module whose job is to
disseminate the command to switch to the OAP image. This
small overhead greatly reduces the overall application code
size, thus the dissemination time and network traffic. However,
as pointed out in [3], in real-world complex applications, most
of the core modules of TinyOS (i.e., radio driver, routing
protocols, etc...) that are used by the OAP protocol, are already
imported in the application itself, thus limiting the benefits of
this approach.

We want to point out that most of the above solutions try to
reduce the power consumption required by an OAP protocol
by shrinking the size of the disseminated code. Those solutions
are complementary to the one presented in this paper. Indeed,
in our solution the power consumption is cut by boosting
the Deluge dissemination time. Thus, reducing the code size,
whenever is possible, further improves the performance of our
approach.

III. BOX-MAC AND DELUGE

BoX-MAC [7] is the default low-power mac protocol of
the TinyOS operating system. It is based on the Low Power
Listening technique where each node periodically wakes up
and checks for incoming packets. Despite the period is fixed

for all the nodes, the wake-up schedule is not shared. Hence,
the transmitter has to repeatedly send the packet for the whole
period length (figure 1). On unicast packets, the receiver
notifies the transmitter with an ack message as soon as the
packet is received, letting the transmitter to stop sending.

Fig. 1. BoX-MAC transmission of a broadcast packet.

Despite Low Power Listening greatly reduces the radio
power consumption, in [10] Langendoen et al. show how
under high traffic loads, overhearing and collisions, especially
in presence of broadcast packets, significantly degrade the
energy efficiency of such approach. This is exactly what we
expect during network reprogramming: hundreds of packets,
bearing the ROM image, are disseminated in broadcast over
the network. Thus, we have to keep into account the above
cited issue when using OAP protocols on top of BoX-MAC.

TinyOS provides Deluge T2 [11], a reliable data dissem-
ination protocol for propagating large data objects from one
or more sources to all the other nodes of the wireless sensor
network (WSN). Deluge can be exploited to support the over-
the-air network reprogramming of a WSN, disseminating in
a reliable way ROM images over the network. The start and
stop of the network reprogramming is managed by the Drip
[12] dissemination protocol, which disseminates broadcast
messages carrying program version and commands. Drip is
based on Trickle [13], a density-aware algorithm that organizes
data dissemination in rounds. The round frequency decays
exponentially to limit the number of packets retransmissions.
However, when a message handling an updated command is
detected, the frequency is restored to its initial value. Upon
the reception of a Drip message (DRIP) carrying a start
command, the mote starts transmitting broadcast advertisement
messages (ADV) to notify the neighbors of its current version
number and the portion of updated ROM it already has. The
transmission of ADV messages is also based on the Trickle
algorithm, thus, it is organized in rounds. At each round, all the
motes check whenever there is a node with an updated version
number and with updated portions of ROM. In such case,
they perform an unicast requests (REQ) to their neighbor to
start downloading data packets (DATA) containing the updated
code. DATA messages are transmitted as broadcast packets to
allow neighbors overhearing, thus, greatly reducing REQ and
DATA messages.
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Fig. 2. Testbed map at Department of Computer, Control and Management
Engineering.

IV. PRELIMINARY EXPERIMENTS AND ANALYSIS

A. Setup

We analyzed the effects and interactions between the Deluge
and BoX-MAC protocols, deploying a wireless sensor network
in the basement of the the Department of Computer, Control
and Management Engineering of our university (figure 2).
The deployed sensor network is made of 10 MagoNodes [6]
running TinyOS 2.1.2 and using the RfxLink library that
implements BoX-MAC’s Low Power Listening. To emulate
long-lasting network deployments, we set the duty cycle to 1%,
which leads to a LPL period of 500ms against a listen period
of 5ms. In addition, the application running on wireless motes
is made of the Collection Tree Protocol (CTP) [14] which
was programmed to periodically forward 1 dummy packet per
minute toward a mote acting as sink. We enabled the Traffic
Monitor provided by the RfxLink library to keep trace of the
radio power consumption, the number of packets transmitted
and received. In addition, we used a modified version of
Deluge that notifies the application layer the start/stop events
related to the over-the-air reprogramming. When on of those
events is triggered, a snapshot with the statistics is taken and
transmitted over the network exploiting the CTP protocol.
In this way, we are able to take accurate measurements on
ROM image dissemination time, power consumption and other
statistics about motes.

B. Preliminary Experiments

The preliminary experiments consist in comparing the dif-
ferences between wireless reprogramming of a fixed-size ROM
image on a network running the Deluge protocol with LPL

disabled, hence with 100% duty cycle, against the same job
performed with LPL with duty cycle set at 1%. We will refer to
these two modes as NO-LPL the former and W-LPL the latter.
We use the following metrics to perform the comparison:

• Dissemination time: the average time elapsed from the
start command, received by means of a drip message, to
the completion of the image download

• Radio duty cycle: the average percentage of radio activity
over the dissemination time

• AVG TX packets: the average number of packets trans-
mitted by each mote

• Packet types weight: which represents the percentage
composition of AVG TX packets in terms of DRIP, ADV,
REQ and DATA packets.

We performed the preliminary experiment running 10 times
the over-the-air reprogramming of a 28KB ROM, which cor-
responds to the Blink application available in TinyOS 2.1.2
with Deluge support.

C. Preliminary Results

The results are summarized in table I, figure 3a and figure
3b. The most relevant result is the sharp performance degra-
dation in terms of dissemination time, which increases by a
factor of 8 switching from NO-LPL to W-LPL mode, and the
co-related increase of the AVG TX Packets by a factor of 100.
The enormous increase in network traffic in the W-LPL mode
increases the duty cycle up to 36%. This, combined with the
longer dissemination time, makes the energy consumption to
increase up to 3 times the NO-LPL one. Looking at AVG TX
packets composition in figure 3a, we observe how in NO-LPL
the main network traffic is made of DATA messages (81.2%)
and, in smaller quantity, on ADV messages (13.6%). The
Deluge description of section III easily explains these values:
DATA packets represent the predominant part of the network
traffic due to the multi-hop dissemination of the 28KB ROM
image. Furthermore, we recall that, when a new ROM block
has been downloaded, the mote resets the Trickle timer to
increase the ADV frequency with respect to its neighbors. This
procedure, repeated several times on several nodes, makes the
ADV packets to represent a significant portion of the overall
traffic.

TABLE I
PRELIMINATY RESULTS

NO-LPL W-LPL
Value Std-dev Value Std-dev

Time (s) 65 12.7 524 27.6
Duty Cycle (%) 100 0 36 10
Energy (J) 3.29 0.3 9.6 3

Figure 3b shows the sharp increase of the transmission net-
work traffic when enabling W-LPL. The increase is explained
by the fact that each packet transmission in W-LPL is repeated
hundreds of time, as long as the 500ms LPL period. Despite
an increase was expected, what is noticeable is the difference
of the packet types weight: while with NO-LPL the DATA
packets were representing more than 80% of the overall traffic,
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in W-LPL it reduces to 42.2% only, while ADV messages
become the predominant part of the network traffic, growing
from 13.6% with NO-LPL to 52.9% with W-LPL. To find
the reason for this unexpected behavior we have to look at
the events which trigger a reset of the Trickle timer for ADV
dissemination, which are:

• a new block has been stored
• the whole image has been downloaded
• reception of the Drip start command
• reception of an ADV from a neighbor node that has

different number of blocks.
While the behaviors caused by the first three events are almost
the same in both W-LPL and NO-LPL mode, the response
at the occurrence of the latter is different. Indeed, using
LPL increases the probability that the nodes have different
block numbers during the dissemination phase. This implies
that ADV received from a neighbor will trigger a reset on
the Trickle time, increasing the transmission rate of ADV
messages.

From this preliminary experiment we can conclude that
introducing LPL, drastically degrades the overall OAP per-
formance in terms of dissemination and power efficiency,
as expected. On the other side LPL must be enabled when
running long-lasting sensor networks.

V. PROPOSED ALGORITHMS

A. DATA-NO-LPL

An easy and intuitive method, inspired by Stream (section
II), to mitigate the effect of LPL on the Deluge performance
can be summarized as follows: upon the reception of the start
command, switch from the current running application to a
dedicated golden image already stored in ROM which does
not use LPL. The only goal of the golden image is to let a new
image version get disseminated over the wireless network. At
the end of the dissemination, a node switch to the new image
version which uses LPL. The drawback of this approach is
that every node in the network must receive the dissemination
command almost at the same time. In this way all the nodes
are able to participate to the dissemination phase, switching to
the golden image and so disabling LPL. Otherwise, nodes are
unable to receive packets of the new image version since they
are still using an image featuring LPL, instead of the golden
image.

Recalling the outcomes of section IV-C, we conceived a
new approach, named DATA-NO-LPL, that drastically reduces
the network traffic by dynamically disabling LPL from DATA
packets. The proposed solution is able to guarantee state
correctness, i.e., the motes consistently switch between LPL
and non-LPL modes, and, thanks to the sensibly lower network
traffic, greatly reduces the image dissemination time.

To describe in details our approach, we first need to intro-
duce the following definitions: we refer to full-LPL as a mote
running LPL both, in transmission and reception, while we
will refer to tx-LPL as a mote running LPL in transmission
while keeping a fully-on radio in reception. First of all, we

observe that a mote running tx-LPL does not compromise
the overall mote-to-mote communication since an always-on
receiver is still able to receive packets from an LPL transmitter.
Symmetrically, a tx-LPL mote would continue to transmit
using LPL, which would let the mote to communicate with
another mote running full-LPL. As a matter of fact, a hybrid
network of motes running full-LPL and tx-LPL would not
compromise the overall network functionality.

DATA-NO-LPL takes advantage of this observation and
uses the Drip messages, that carry the start/stop commands
of Deluge, to trigger a switch between full-LPL and tx-LPL
on all the motes upon the reception of a start command. A
mote running our algorithm would switch back to full-LPL
at the completion of the new image download. This simple
algorithm allows the mote to react dynamically to the start of
an over-the-air reprogramming without the need to add any
kind of control overhead to the protocol. Of course this is
not enough to solve the performance degradation observed
in the previous experiments, since it would not disable the
LPL in transmission, which is the main responsible of the
performance degradation. Moreover, keeping the radio always
on increases the energy consumption. However, this simple
algorithm allows us to perform some optimization.

In particular, DATA-NO-LPL is based on the observation
that DATA messages in Deluge are transmitted upon the
reception of a REQ message. This means that the mote sending
the REQ message has already received the start command
from Drip, thus it is running tx-LPL. This implies that the
mote is able to receive packets without LPL, so we can safely
disable LPL transmission on the DATA packets. Since we have
seen that DATA packets represent half of the overall traffic
in an OAP protocol running LPL, without LPL we should
notice a great reductions in dissemination time. This lead us to
repeat the same test performed in the preliminary experiments
running Deluge with DATA-NO-LPL. Results are shown in
table II and figure 3c. We figure out that, as expected, the
dissemination time drops up to 50% when compared with the
W-LPL mode and that the DATA messages represent 42% of
the overall traffic when transmitted in W-LPL mode, while in
NO-LPL mode they represent only the 2%.

Despite the great reduction in both, dissemination time and
transmitted DATA packets, the overall energy consumption
increases from 9.6 Joules of the W-LPL mode to 14.9 Joules
of the DATA-NO-LPL one. This sensible increase is related
to the fact that the 50% reduction in dissemination time
is compensated by fact that the radio duty cycle is 100%
in DATA-NO-LPL, while in W-LPL it is 36%. In order to
outperform the energy consumption of the W-LPL mode, our
solution should reduce the dissemination time up to 70%.

B. REACTIVE

Having a look back to figure 3c, we notice that most of the
remaining network traffic is now related to ADV messages
(93.5%) that are still transmitted in LPL. This is the reason
why REACTIVE, which extends DATA-NO-LPL, leverage on
the ability to dynamically disable LPL on ADV messages.
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Fig. 3. Network traffic during over-the-air reprogramming

As opposed to DATA-NO-LPL, removing LPL from ADV
messages is not straightforward. Indeed, issues arise during
start and stop transition phases, where not all the nodes share
the same LPL state, in particular:

• when starting over-the-air programming, nodes can be
in tx-LPL or full-LPL based on the fact they already
received the Drip start message or not;

• when finishing the download of the image, the node
switch back to full-LPL but other motes might still be
downloading the image, hence, they might still be in tx-
LPL

The problems during transition phases is that an ADV mes-
sage transmitted without LPL could not be overheard by its
neighbor. Actually, the start phase transition does not represent
an obstacle keeping state correctness in the network since a
node that has not yet received the Drip start message, would
anyway ignore incoming ADV messages. On the other side,
as soon as it receives the start message, it would switch to
tx-LPL, thus receiving ADV messages sent without LPL. The
real obstacle is represented by the early switch during the stop
transition. In fact, a node switching back to full-LPL will no
longer provide DATA packets to a node in tx-LPL. This will
prevent the him to finish the image download, keeping it in
tx-LPL almost forever.

To prevent this issue, REACTIVE uses a timeout timer
initialized to a value τ that determines whether the ADV
messages are sent in LPL or not. The principle is that if a mote
finishes the image download, it is prevented from switching
back to full-LPL until the timer fires. However, the timer is

reset each time the mote detects an ongoing reprogramming
activity. This means that the timer is reset when:

• the mote sent a REQ message,
• the mote sent a DATA message,
• the mote receives a REQ message,
• the mote receives an ADV message from a mote that

requires data.
This ensures that the mote does not switch back to full-LPL
until reprogramming activity is detected in the surrounding
neighborhood. It is important to point out that this simple
timeout timer added to our algorithm also guarantees state
correctness even in special cases where the timeout timer
erroneously elapses. In fact, let assume two nodes that are
performing over-the-air reprogramming. The one with the less
up-to-date ROM image is requesting data to its neighbor. But
if the neighbor has already finished to update the ROM image
and if the τ value of the timeout timer is too short, it will
switch back to full-LPL. This will leave the former node
in tx-LPL without the possibility to communicate with its
neighbor. However, the absence of communication will prevent
the timeout timer to reset, thus, at some point it will fire on
this node too. As a result, the node will start sending ADV
messages with LPL enabled that will notify its neighbor and
resume the communication.

We tested REACTIVE following the same experimental
setup described in section IV-A, setting the τ value equal to
4 seconds. The results are summarized in table II and figure
3d. Table II shows how REACTIVE shrinks the dissemination
time up to 7 times when compared to W-LPL and up to 4 times
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Fig. 4. Performance summary in terms of dissemination time and energy consumption

when compared to DATA-NO-LPL. Motes in REACTIVE
have an average energy consumption of 3.7 Joules which
is 61.5% less than W-LPL. Indeed REACTIVE dynamically
disables most of LPL communication during an over-the-
air programming phase. This brings REACTIVE performance
close to NO-LPL, but with the advantage of running on a long
lasting wireless network based on low power MAC protocols
such as BoX-MAC. Figure 4 shows a summary of the results
observed in this paper.

TABLE II
ALGORITHMS RESULTS

DATA-NO-LPL REACTIVE
Value Std-dev Value Std-dev

Time (s) 294 82 73 10
Duty Cycle (%) 100 0 100 0
Energy (J) 14.9 4.9 3.7 0.3

VI. CONCLUSION

This paper presents a reactive approach to the Over the Air
Programming (OAP) for Wireless Sensor Network in a LPL
scenario. Our modified protocol, named REACTIVE, mini-
mizes the reprogramming overhead of LPL, by dynamically
shrinking LPL transmissions of Deluge T2 protocol. In this
way we can obtain much better performance than the Deluge
standard version running on LPL. Indeed, our experiments
show that the image dissemination time is 7 times smaller
than Deluge with LPL, while the energy consumption falls
2.6 times. The advantage of our solution is that it perfectly
integrates in Deluge with LPL and can be complementary to
other solutions seen in section II that are focused on image
size reduction.
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