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Abstract—The objective of this paper is to propose a reduced-
dimension resource allocation scheme in the context of cognitive
radio system in presence of co-channel interference between
users. We assume a multicarrier transmission for both the
primary and secondary systems. Instead of optimizing the powers
over all sub-carriers, the sub-carriers are grouped into clusters
of sub-carriers, where the power of each sub-carrier is directly
related to the power of the correspondent cluster. The power
optimization is done only over the set of clusters instead of
all sub-carriers which can significantly reduce the complexity
of the resource allocation problem. The performance loss of the
reduced dimension solution with respect to the optimal solution,
where the optimization is carried over all active sub-carriers,
allows trading-off complexity versus performance. Numerical
evaluation indeed revealed that a limited performance loss occurs
by optimizing over a reduced set of clusters instead of the full
optimization in the context of cognitive radio systems.

I. INTRODUCTION

The concept of cognitive radio was first presented by Mitola

[1] to solve the problem of spectrum scarcity pointed by

the Federal Communication Commission report [2]. The main

principle of this concept is to let secondary (cognitive) users

access the spectrum of the primary users opportunistically

under the condition of satisfying e.g. an interference constraint

to the primary user. There are three main paradigms for cogni-

tive radio as classified by Goldsmith et al. [3]: 1) Interweave

systems, in which cognitive users are allowed to transmit only

in the channels where the primary user is absent; 2) in underlay

systems, the secondary users are allowed to use all channels

but under the constraint that the total interference caused to

the primary user does not exceed a threshold level while in 3)

overlay systems, secondary users will help the primary user

improving its performance by playing the role of relays, and

at the same time take advantage from the knowledge of the

primary user code-books to transmit in parallel for its own data

without harming the primary user. In our work, we consider a

hybrid scheme of interweave and underlay. It consists first in

sensing the activity of the primary user and then transmitting

without limit when it is absent (like the interweave case), and

under the interference constraint when it is present (like the

underlay case). This hybrid scheme allows a better exploitation

of the available channels for transmission. The two original

schemes can be deduced from this scheme by simple choice

of the interference parameters.

The dynamic power allocation in the context of cognitive

radios has been extensively studied in the context of cognitive

radio systems [4], [5], [6]. Due to the nature of cognitive radio

requiring rapid exploitation of the opportunities that occur

before the status of the primary users change, complexity

reduction of the resource allocation algorithms remains a chal-

lenge for this system. In multicarrier systems like Orthogonal

Frequency-Division Multiple Access (OFDMA), the selection

of the sub-carrier bandwidth is a key factor since it controls the

trade-off between computational complexity and performance.

For instance, a large sub-carrier width allows to reduce notably

the computational complexity under the assumption of con-

stant channel gains over each sub-carrier which is not usually

the case in wireless channels. On the other hand, reducing the

sub-carrier width results in large number of channels that have

to be optimally allocated; Hence the computational complexity

of the resource allocation problem becomes cumbersome,

which is not desirable in rapidly changing channels.

In this work, we propose a low complexity algorithm for

the channel assignment under co-channel interference. In the

proposed scheme the available sub-carriers are grouped into

clusters or blocks of sub-carriers where the size of each

cluster is a design parameter that depends on e.g. the spectral

properties of the channels. Thus, the power allocation will

be performed over reduced number of clusters instead of

all sub-carriers. An interpolation matrix will be defined to

relate the power allocation per sub-carrier and the relevant

cluster’s power. The regrouping of the sub-carriers will depend

on the channel and noise smoothness. The choice of the

clustering is not the focus of this paper; we rather work

with predefined clusters and concentrate on how to solve

the reduced dimension optimization problem and evaluate its

performance and complexity compared to the optimal scheme

where the optimization is carried over all sub-channels. We

should note that similar ideas of reduced dimension spectrum

allocation were studied in the context of digital subscriber

line systems [7]. However, the problem here is treated with

different interpolation matrix in addition to the additional

challenges of the wireless channels and the cognitive radio
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context.

We will propose a resource allocation problem were the

weighted sum of the achievable rates of the different users

is maximized in the utility function, under power and target

rate constraints in addition to the interference constraint to the

primary users. We will formulate the optimization problem

considering the clustering of sub-carriers and show that the

new problem with clustering can still be decomposed into per

cluster independent sub-problems. The complexity gain using

this approach is then proportional to the average number of

sub-carriers per cluster. Inherent to this interpolation, there is

a performance loss that will be evaluated by simulations.

The rest of the paper is organized as follows: We describe

in section II the cognitive system model and formulate the

resource allocation optimization problem under the clustering

property in section III. In section IV, we analyze and solve the

optimization problem. In section V, we present some numer-

ical simulation results showing the complexity/performance

tradeoffs of the reduced dimension approach. Finally, in sec-

tion VI we draw some conclusions.

II. SYSTEM MODEL

Consider a cognitive radio system composed of Kc sec-

ondary users and Kp primary users sharing N sub-carriers

in an OFDMA based transmission. We denote by H
(n)
pl,cu the

channel gain from the cognitive user u to the primary user

l, and H
(n)
ck,cu the channel gain from the cognitive user u to

the cognitive user k. The channel gains from the secondary to

the primary users are assumed to be known by the secondary

users.

III. PROBLEM FORMULATION

We consider as a utility function the maximization of the

weighted sum of the cognitive users’ rates

max
P

(n)
u

Kc
∑

u=1

αuRu, (1)

where

• αu is the weight associated to the rate of the user u,

• Pu =

N
∑

n=1

P
(n)

u is the total power of the user number u

that cannot exceed certain maximum budget denoted P̂u,

• P
(n)
u is the power allocated to the user u on the sub-

carrier n that is upper bounded by a per-subcarrier mask

denotedP̂
(n)
u ,

• Ru = fs

N
∑

n=1

log2

(

1 +
γ(n)
u

Γu

)

refers to the user u rate,

with fs the symbol rate in Hz, Γu the total gap to capacity

containing the effects of the coding gain and the discrete

bit loading, and γ
(n)
u the signal-to-interference plus noise

ratio (SINR) of the user u over the n-th sub-carrier

expressed as

γ(n)
u =

|H
(n)
cu,cu |

2P
(n)
u

Kc
∑

k=1

k 6=u

|H
(n)
cu,ck |

2P
(n)
k +N

(n)
u

, (2)

where N
(n)
u /fs is the power spectral density of the back-

ground noise which incorporate implicitly interference

from primary users or other devices as well.

A. Interference Constraint in Cognitive Radio Systems

In cognitive radio systems, the interference constraint is a

key parameter as it directly affects the achievable performance

of the cognitive system as well as the protection level of

the primary users against the interference from the secondary

users. Although different formulations where proposed in

literature in order to reduce the primary user’s feedback or

channels estimation overhead, in this work we consider a

standard instantaneous interference constraint as follows:

B
(n)
l

Kc
∑

u=1

|H(n)
pl,cu

|2P (n)
u ≤ Ǐ

(n)
l ∀ l, n. (3)

This constraint ensures that for each sub-carrier n where

the primary user l is active, the total power received from the

different cognitive users should not exceed a fixed interference

threshold Ǐ
(n)
l . The activity of the primary user is defined

by the N × Kp indexing matrix B (Bn,l = B
(n)
l ), where

B
(n)
l = 1 indicates that the l-th primary user is active on

the n-th sub-carrier and B
(n)
l = 0 otherwise. The advantage

of this interference constraint is that it ensures instantaneous

protection to the primary users but it assumes an instantaneous

estimation of the interference channel to the primary users and

feedback about the tolerable interference per sub-carrier. The

interference threshold Ǐ
(n)
l can be determined in function of

the required bit loading or the tolerable SINR of the primary

user. This interference threshold is assumed to be known by

the cognitive system in this paper.

B. Sub-carriers Clustering

The sub-carriers are grouped into M ≤ N clusters. An

N×M binary indicator matrix A relates the active sub-carriers

to the different clusters where An,m = 1 means that sub-

carrier n belongs to cluster m and otherwise An,m = 0. In

the present clustering formulation, we consider the case when

each sub-carrier can only belong to one cluster; hence we have

per row of the indicator matrix A the following constraint
∑M

m=1 An,m = 1, ∀n. Thus, the power allocation for each

sub-carrier can be deduced from the power allocated to each

cluster as

P (n)
u =

M
∑

m=1

An,m ·Q(m)
u = An,mn

·Q(mn)
u , (4)
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where P
(n)
u is the power spectrum assigned to the sub-carrier n

of user u, Q
(m)
u is the power assigned to sub-carriers belonging

to the cluster m of the user u. The index mn of the cluster to

which the sub-carrier n belongs is defined as

∀n, ∃!mn, An,m =

{

1 if m = mn

0 otherwise.

This indexing matrix can be generalized to an interpolation

matrix where the parameters An,m can take not only binary

values0 or 1 but any positive real value in the interval

[0, 1]. In this case, the parameters An,mwill play the role of

scaling coefficients of the sub-carrier power in reference to the

subgroup power to which they belong. The only constraint in

this generalized case is that a sub-carrier should belong to

only one cluster, i. e. 0 < An,mn
≤ 1 and An,m 6=mn

= 0.

Inversely, the power per cluster can be obtained from the sub-

carrier powers as

Q(mn)
u =

P
(n)
u

An,mn

, ∀n. (5)

The scaling coefficients An,mn
can be determined using e.g.

the shape of the mask and empirical models of the channel

dependency versus frequency. The choice of such coefficients

is beyond the scope of this paper. We rather focus on a

indexing interpolation where An,mn
= 1 and An,m 6=mn

= 0.

We assume that the clustering is selected according to the

primary users activity in order to ensure that the primary

users have the same state for all the sub-carriers of the

same cluster (either active or inactive over all sub-carriers in

each cluster). Thus, for each cluster m and all sub-carriers n
belonging to it, we have B

(n)
l = B

(mn)
l , ∀ l. This assumption

is realistic since in practice usually spectrum allocation is

done similarly over adjacent sub-carriers. For example in

Long-Term Evolution (LTE), Orthogonal Frequency-Division

Multiple Access is used with blocks of 12 sub-carriers. Thus,

the primary occupation will be the same for all sub-carriers in

each block.

IV. REDUCED DIMENSION POWER ALLOCATION

A. Optimization Problem

We consider a centralized scheme where a central unit

(for example the base station in cellular system) will collect

all users’ requirements and channel states to distribute the

resources in an optimal way. Taking the utility function in

(1) under the constraints of 1) maximum power budget per

user P̂u, 2) maximum power per user per sub-carrier P̂
(n)
u ,

and 3) maximum interference to each primary user l, Ǐ
(n)
l as

described in (3). The optimization problem is then formulated

as

max
P

(n)
u

Kc
∑

u=1

αuRu (6)

S.t Pu ≤ P̂u∀u

0 ≤ P (n)
u ≤ P̂ (n)

u ∀u, ∀n

B
(n)
l

Kc
∑

u=1

|H(n)
pl,cu

|2P (n)
u ≤ Ǐ

(n)
l ∀ l, ∀n.

Using the clustering characteristic expressed in (4), the rate

of user u can be rewritten as

Ru =

M
∑

m=1

N
∑

n=1

fs log2

(

1 +
γ
(m,n)
u

Γu

)

, (7)

with γ
(m,n)
u defined as the SINR of the user u over the n-th

sub-carrier in cluster m expressed as

γ(m,n)
u =

An,m|H
(n)
cu,cu |

2Q
(m)
u

Kc
∑

k=1,k 6=u

An,m|H
(n)
cu,ck |

2Q
(m)
k +N

(n)
u

, (8)

where Q
(m)
k is the power loading in the m-th cluster for the

k-th user. We note that as postulated in the characterization

of the clusters, for a sub-carrier n that does not belong to

a cluster m (m 6= mn), the interpolation index is null (i.e.,

An,m = 0) leading to γ
(m,n)
u = 0 . Thus, in the expression of

the rate in (7), only the terms corresponding to the sub-carriers

belonging to each cluster m will remain in the sum.

Following this clustering relations, the problem (6) can be

reformulated as follows

max
Q

(m)
u

Kc
∑

u=1

αu

M
∑

m=1

N
∑

n=1,An,m 6=0

fs log2

(

1 +
γ(m,n)
u

Γu

)

S.t.

M
∑

m=1

N
∑

n=1

An,mQ(m)
u ≤ P̂u∀u (9)

0 ≤ Q(m)
u ≤ min

1≤n≤N

An,m 6=0

{

P̂
(n)
u

An,m

}

∀u, ∀m

An,mB
(n)
l

Kc
∑

u=1

|H(n)
pl,cu

|2 Q(m)
u ≤ Ǐ

(n)
l ∀l, ∀(m,n).

Thus, the problem is shown to be re-rewritten in function of

the new Kc ×M optimization variables Q
(m)
u referring to the

power allocation per cluster. Let us define for each cluster m
the following useful parameters:

• Tm ,

N
∑

n=1

An,m the number of sub-carriers in the cluster,

• R(m)
u ,

N
∑

n=1

An,m 6=0

fs log2

(

1+
γ(m,n)
u

Γu

)

the total achievable

rate per cluster,
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• Q̂
(m)
u , min

1≤n≤N

An,m 6=0

{

P̂ (n)
u

An,m

}

the maximum power per user

per cluster.

These definitions allow the optimization problem (9) over the

clusters of sub-carriers to be rewritten in an interesting form

that only depends on the clusters (except for the interference

constraint that we elaborate more in section IV-B):

max
Q

(m)
u

Kc
∑

u=1

αu

M
∑

m=1

R
(m)
u (10)

S.t.

M
∑

m=1

TmQ(m)
u ≤ P̂u∀u

0 ≤ Q(m)
u ≤ Q̂(m)

u ∀u, ∀m

An,mB
(n)
l

Kc
∑

u=1

|H(n)
pl,cu

|2 Q(m)
u ≤ Ǐ

(n)
l ∀ l, ∀ (m,n).

By setting M = N , the interpolation matrix is the identity

matrix (A = IN×N ) and the problem (10), is exactly the

original power allocation problem without clustering.

B. Per-cluster Sub-problems Decomposition

The problem (10) is a non-convex optimization problem

due to the co-channel interference between users. A common

way to solve this primal problem is to derive and solve its

equivalent dual problem by moving the constraints to the

objective using a Lagrange multiplier per constraint. For non-

convex problems, there is a duality gap; however [8] has shown

that for non convex optimization problems the duality gap is

0 under a time-sharing condition. The latter is typically sat-

isfied for practical multiuser spectrum optimization problems

in multicarrier systems when the number of sub-carriers is

sufficiently high or goes to infinity. Thus, reformulating the

problem into its Lagrangian dual, we obtain

min
λ≥0































max
Q

(m)
u

Kc
∑

u=1

{

αuRu + λu(P̂u − Pu)
}

S.t 0 ≤ Q
(m)
u ≤ Q̂

(m)
u ∀u, ∀m

An,mB
(n)
l

Kc
∑

u=1

|H
(n)
pl,cu |

2 Q
(m)
u ≤ Ǐ

(n)
l ∀l, ∀(m,n).































(11)

where λ = [λ1, ..., λKc
]
T

are the Lagrangian parameters. The

problem (11) can be rewritten as

min
λ≥0

[

g(λ) +
∑

u λuP̂u

]

, (12)

where the sub-problem g(λ) is defined by

g(λ) = max
Q

(m)
u

Kc
∑

u=1

(

αu

M
∑

m=1

R
(m)
u − λu

M
∑

m=1

TmQ
(m)
u

)

S.t 0 ≤ Q
(m)
u ≤ Q̂

(m)
u ∀u (13)

An,mB
(n)
l

Kc
∑

u=1

|H(n)
pl,cu

|2 Q(m)
u ≤ Ǐ

(n)
l ∀l, ∀n,

which can be decomposed into sum of sub-problems over

the each cluster of sub-carriers:

g(λ) =

M
∑

m=1

g(m)(λ), (14)

where the sub-problem g(m)(λ) is defined by

g(m)(λ) = max
Q

(m)
u

Kc
∑

u=1

(

αuR
(m)
u − λuTmQ

(m)
u

)

(15)

S.t 0 ≤ Q
(m)
u ≤ Q̂

(m)
u ∀u

An,mB
(n)
l

Kc
∑

u=1

|H
(n)
pl,cu |

2 Q
(m)
u ≤ Ǐ

(n)
l

∀l, ∀n.

Each of the sub-problems g(m)(λ) is a non-convex opti-

mization problem in Kc variables. These sub-problems can be

solved optimally by exhaustive search over the discrete set of

feasible power values. Clearly, this approach is not convenient

for large users due to the exponential number of possible

combinations. An alternative approach is to iterate over the

users and optimize at each iteration the power for one user

given the other users powers. This procedure has been shown

to converge to a near-optimal solution of the multidimensional

search [8], [9] with reduction of the computational cost from

an exponential of the number of users pKc to only p × Kc

where p is the number of power levels per user. The set

of feasible powers is obtained by restricting the set of all

affordable power levels (i.e., the powers corresponding to

discrete bit-loading) for all users to only those satisfying the

maximum power per cluster and the interference constraints

to the primary users.

For the Lagrangian parameters {λ}, an adaptive step-size

search algorithm will be applied to determine their optimal

values. Overall, the algorithm will consist of two main loops.

In the outer loop a search over the feasible Lagrangian param-

eters using e.g. a sub-gradient decent method is performed. In

an inner loop for each set of Lagrangian parameters, the power

allocation per sub-carrier is optimized for each user.

The interesting part of this approach is that we show that

the problem can be solved by transforming it into M separate

sub-problems over each cluster of sub-carriers. The clustering

allows reducing the complexity by a factor equal to the number

of sub-carriers per cluster N
M

thanks to the decoupling be-

tween the clusters. This decoupling allows writing the overall

problem into a sum of elementary sub-problems that can be

optimized separately.. The performance loss will depend on

the spectral characteristics of the channels and the choice of

the interpolation matrix A and especially on the number of

sub-carriers per cluster N
M

.

Interference Constraint per Cluster: We note that the

interference constraints remain per sub-carrier due to the

different interference channels for each user|H
(n)
pl,cu |

2. These

constraints do not cause a harmful increase of the algorithm

complexity since we are using them to only check if a set
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of power levels per cluster

(

{

Q
(m)
u

}

1≤u≤Kc

)

is feasible or

not. Thus, we will have for a given possible power level of

the cluster, Kp · Tm constraints to check (number of primary

users multiplied by number of sub-carriers in the cluster m).

If at least one of these Kp ·Tm constraints is not fulfilled, the

power level is discarded from the search space. Ideally, these

Kp · Tm constraints per cluster could be transformed into Kp

constraints having the following format

B
(m)
l

Kc
∑

u=1

|H̃(m)
pl,cu

|2 Q(m)
u ≤ Ĩ

(m)
l ∀ l, ∀m, (16)

where Ĩ
(m)
l and H̃

(m)
pl,cu are respectively the equivalent inter-

ference threshold of the l-th primary user over the cluster m
and the equivalent channel gain from the u-th cognitive user

towards the l-th primary user over the cluster m. Although,

the exact expressions of Ĩ
(m)
l and H̃

(m)
pl,cudo not exist due

to the multipath between cognitive users towards primary

users, modified constraints can be used. For example, we

allow the interference to exceed the interference level for a

given sub-carrier but the average interference over the cluster

should not exceed the average threshold levels of the same

cluster. Mathematically speaking, this requirement result in the

following expressions of the equivalent thresholds and channel

gains as



































Ĩ
(m)
l = 1

Tm

N
∑

n=1

An,m 6=0

Ǐ
(n)
l ∀ l, ∀m

|H̃
(m)
pl,cu |

2 = 1
Tm

N
∑

n=1

An,m 6=0

An,m|H
(n)
pl,cu |

2 ∀u, ∀l, ∀m.

(17)

Another example is to consider a worst-case interference

threshold and interference gains per cluster enforcing the

interference constraint for all sub-carriers are shown to be

respectively



















Ĩ
(m)
l = min

1≤n≤N

An,m 6=0

{

Ǐ
(n)
l

}

∀l, ∀m

|H̃
(m)
pl,cu |

2 = max
1≤n≤N

An,m 6=0

{

An,m|H
(n)
pl,cu |

2
}

∀u, ∀l, ∀m.
(18)

V. NUMERICAL SIMULATIONS

For the numerical evaluation, we consider the primary and

secondary users to be uniformly distributed in a cellular cell of

radius one Km. The channel gains, distributed as multivariate

Rayleigh fading channels, are generated from multivariate

complex Gaussian distribution with a covariance matrix as in

[10]. The covariance between two sub-carriers is exponentially

decaying as a function of the distance between the sub-carriers

while the average power is proportional to the path-loss with

a path-loss exponent η = 4. The budget power is set to

20 dBm per user while the maximum power per sub-carrier

is −2.3 dBm. We consider single primary user (Kp = 1). We

assume the primary user present in ν = 50% of the sub-

carriers. The interference threshold is computed such that the

primary bit-loading in presence of cognitive users does not

decrease by more than a degradation factor ǫ compared to its

original bit loading in absence of cognitive user’s interference.

We run the simulations for a frequency band of N = 512 sub-

carriers with different number of clusters M and represent the

results in function of the clustering factor ρ = M
N

. We use the

binary interpolation model (An,m = 0 or 1) and equal number

of sub-carriers per cluster.

In Fig. 1, we plot the achievable rate regions of two users

while varying the number of clusters. We first note that the

reduced dimension almost has no effect on the achievable rate

even with ρ = 1% as compared to no clustering (ρ = 100%).

This proves the efficiency of the reduced dimension approach

since it allows to achieve a near-optimal performance with

a much lower computational complexity that is proportional

to the clustering factor as shown in section IV-B. The figure

also shows the rate improvement for the cognitive users using

the proposed hybrid scheme compared to the interweave or

underlay modes due to the more opportunistic use of the

available spectrum.

In Fig. 2, we draw the rate regions for different interference

threshold levels by varying the factor ǫ which indicates the

allowed reduction of the bit loading in each sub-carrier. We

note that a factor ǫ = 50% allows the secondary users

to achieve almost their maximal performance (like without

interference constraint). As the interference constraint become

more strict (i.e., when ǫ decreases as in the ǫ = 1% curve)

the performance loss of the reduced dimension with respect to

the full optimization increases which can be explained by the

more strict constraint especially that this constraint should be

respected for all sub-carriers in the cluster (if at least one sub-

carrier has a strong interference channel towards one of the

primary users, then all sub-carriers in the same cluster should

back-off to comply with the interference threshold).

In Fig. 3, we compare the performance when using an

interference constraint per sub-carrier to the simplified in-

terferences per cluster: the average interference (17) and the

worst case interference (18). The received interference at the

primary users are plotted in Fig. 4. The average interference

constraint allows to achieve better rates but it violates the

interference constraint for some carriers even-though the av-

erage interference in the cluster is the same. The worst case

interference achieves approximately the same performance as

the per carrier interference for this topology. With a higher

number of users (primary and secondary), this interference is

expected to give worse interference but for this case there is

no effect due to the limited diversity of the channels.

VI. CONCLUSION

In this paper, we proposed a reduced dimension resource

allocation for cognitive radio by transforming the problem

from an optimization over the sub-carriers to clusters of sub-

carriers. We proved that this approach allows the reduction
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of the optimal resource allocation algorithm complexity by

a factor equivalent to the number of sub-carriers per cluster

while achieving close performance with comparison to that

resulting from the optimization on all sub-carriers at least

for the evaluated scenario. Obviously the performance gap

between the proposed resource allocation and optimal solution

will depend on the spectral properties of the channels and the

different noises. Further researches are also under investigation

to optimize the way sub-carriers are clustered in order to

achieve highest performance with lower complexity.
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