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Abstract—Wireless interference management through continu-
ous power control has been extensively studied in the literature.
However, practical systems often adopt discrete power control
with a limited number of power levels and MCSs (Modulation
Coding Schemes). In general, discrete power control is NP-hard
due to its combinatorial nature. To tackle this challenge, we
propose an innovative approach of interference management:
ARM (Anonymous Rating Mechanism). Inspired by the suc-
cesses of the simple Anonymous Rating Mechanism in Internet
and E-commerce, we develop ARM as distributed near-optimal
algorithm for solving the discrete power control problem (i.e.,
the joint scheduling, power allocation, and modulation coding
adaption problem) under the physical interference model. We
show that ARM achieves a close-to-optimal network throughput
with a very low control overhead. We also characterize the
performance gap of ARM due to the loss of rating information,
and study the trade-off between such gap and the convergence
time of ARM. Through comprehensive simulations under various
network scenarios, we find that the optimality gap of ARM
is small and such a small gap can be achievable with only a
small number of power levels. Furthermore, the performance
degradation is marginal if only limited local network information
is available.

I. INTRODUCTION

Power control is a key tool in the management of wire-
less interference. Most of the existing results for wireless
interference management assume a continuous space of power
levels [1]. Under such continuous power control setting, ex-
isting work can be divided into two main categories. One
is concerned with achieving fixed Signal-to-Interference-plus-
Noise-Ratio (SINR) targets [2] [3]. In this way, the link
quality can be maintained at a desired target. A survey of
related results can be found in [1]. The other is the joint
SINR allocation and power control. Along this line, one more
assumption is made: the link rate is a continuous function
of the receiver SINR. A commonly used rate function is the
Shannon capacity formula rl = B log2(1 + SINRl), where
rl is the rate of a link l, and B is the bandwidth. Under
such settings, both centralized algorithms (e.g., [1] [4]) and
distributed approximation algorithms (e.g., [5] ) have been
proposed.

However, we have two important observations from the
practical systems.

First, the common assumption of continuous mapping from
link rate to SINR level in [1] [4] [5] implies that for each SINR
level, there is a MCS available to achieve the corresponding
capacity. This is not the case in practice, as there are only
a limited number of MCSs available in practical wireless

systems. For example, there are only four modulations in LTE:
BPSK, QPSK, 16QAM, and 64QAM, with several coding rates
[6]. Under the setting of limited MCSs, Zhou et al. in [7]
proposed a distributed algorithm to solve the continuous power
control problem. Such an algorithm induces high communica-
tion overheads, since it requires each link to obtain the global
information for iterative updates. Furthermore, it is difficult
to characterize the convergence time and impacts of various
design parameters.

Second, and more importantly, we observe that only a
limited number of power levels are used in practical systems
[6]. For example, current 3GPP LTE standard of networks
only supports discrete power control in the downlink via a
user-specific data-to-pilot-power offset parameter [6], where
a baseline of power and corresponding four fixed power
offset parameters are chosen for each link [6]. There are
two main advantages of discrete power control compared to
continuous power control. One is the simplified design of
the transmitter, and the other is the massive reduction of the
information exchange overhead within system, which further
simplifies the system design. In our simulation studies related
to discrete power control, we also observe that using a small
number of power levels is able to achieve a close-to-optimal
throughput (comparing with the continuous power control
benchmark) with light overhead of message exchanges, and
further increasing the number of power levels can only have
marginal improvements at the expense of a fast increasing
implementation complexity.

Existing work on discrete power control can also be divided
into two main categories. Most of them lie in the first
category, which is concerned with achieving fixed Signal-
to-Interference-plus-Noise-Ratio (SINR) targets by assuming
either discrete power levels [8] or discrete power update step
sizes [9]. A survey of these works can be found in [1]. The
second category is our main focus, which is concerned with
the joint optimization of link scheduling, power allocation,
and modulation-coding adaptation under the setting of discrete
power levels [10]–[12].

There are two main challenges of solving this joint opti-
mization problem. One is the computational complexity. This
discrete power control problem is a combinatorial optimization
problem and shown to be NP-hard [10] [11], hence is hard to
solve even in a centralized way. The other is the scalability
requirement for algorithms in large-scale wireless networks.
We need distributed or parallel implementations with low
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overhead of information exchanges.
Several works [10]–[12] attempted to address the above

challenges. Gjendemsjø et al. in [10] proposed a binary power
allocation (BPA) algorithm for maximizing the total through-
put, where each subchannel can either be silent or transmitting
at maximum power. This algorithm requires global information
to compute the transmit power and user assignment. Zhang
et al. in [11] proposed two distributed iterative algorithms
to maximize the weighted sum-rate in multi-cell networks
through discrete power allocation and coordinated scheduling.
Both algorithms converge to some solutions without perfor-
mance guarantees. Wang et al. in [12] applied an ant colony
optimization technique to solve a discrete power allocation
problem, obtaining a centralized solution without performance
guarantees. What is more, all these works [10]–[12] made an
impractical assumption of continuous mapping from link rate
to SINR level.

In this paper, however, we adopt a more practical setting
with a limited number of power levels and MCSs (Modulation
Coding Schemes). To address the discrete power control
problem with two main challenges under such a setting, we
propose a distributed algorithm with provable near-optimal
performance and light message exchange overhead. The key
component in our algorithm is the Anonymous Rating Mech-
anism (ARM), which is inspired by the Anonymous Rating
Mechanism widely used in today’s online rating system. Ex-
amples of anonymous rating mechanisms include the “Like” of
a post in Facebook (binary rating feedback), the voted score of
a movie in IMDb (score rating from zero to ten), and the rating
of a product in Amazon (one to five stars). They are simple
but informative for users to learn from others, find the good,
and avoid the bad. If we imagine that users can continuously
improve their choices based on others’ ratings, then it may lead
to a network-wide performance improvement. Motivated by
this, we propose the ARM framework for wireless interference
management. The key idea is to allows links to continuously
rate their changes of transmission rate caused by the change of
interference from their neighboring links. For example, a link
will provide a five-star rating if its transmission rate increases
significantly due to its surrounding interference decreasing, or
it will provide a one-star rating for a significant transmission
rate drop. Based on all the feedback ratings from its neighbors,
a link will smartly adapt its transmission power and MCS.

Our key results and contributions are summarized as fol-
lows:

• Problem Formulation: According to the best of our
knowledge, this paper is the first to study and formulate
the discrete power control problems (joint scheduling,
power allocation and modulation-coding adaptation) un-
der physical interference model with practical concerns
of a limited number of power levels and MCSs.

• Algorithm Design and Analysis: We propose an ARM-
based distributed algorithm to solve this problem with
provable near-optimal performance guarantees. We char-
acterize the key properties of the designed algorithm:
approximation gap, perturbation error bound, conver-

gence time, and trade-off between approximation gap and
convergence time.

• Robust Performance with Low Overhead: Our algorithm
allows distributed implementation with low message ex-
change overhead. Our algorithm is also robust to some
rating information loss. We provide a bound of the
induced optimality gap via perturbation analysis.

• Simulation: Extensive simulations based on practical sys-
tem settings show that the performance gap between
ARM and the optimal can be very low. Such a small
gap can be achieved with only a small number of power
levels, and the performance degradation is marginal if
only limited local network information is available.

The remainder of this paper is organized as follows. We
introduce the system model and problem formulation in Sec-
tion II. Then we discuss design and analysis of the algorithm in
Section III. Performance evaluation is conducted in Section IV.
We conclude this paper in Section V. Due to the page
limitation, all proofs can be found in our technical report

[13].

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a general wireless network consisting of a set
of interfering links L (i.e., each link is a pair of transmitter and
receiver) sharing the same frequency. The size of the link set L
is denoted as L. Such a model can cover both ad hoc networks
and broadband cellular networks (e.g., for the purpose of inter-
cell interference management).

We denote the transmission power of a link l ∈ L as pl,
the value of which can only be chosen from a discrete power
level set P = {P0, P1, P2, . . . , Pn}. For convenience, we set

P0
∆
= 0, and let Pn

∆
= Pmax denote the maximum transmission

power.
Given Pmax and the total number of power levels n + 1,

there are many choices of power level quantizations. Here we
consider two types of discrete power level sets: exponential

power level set and uniform power level set. Given the number
of power levels n + 1 ≥ 2, exponential power level set

is denoted as {0} ∪ { 2j

2n−1 , 0 ≤ j ≤ n − 1} and uniform

power level set is denoted as { j
n , 0 ≤ j ≤ n}. Here each

element in a power level set represents the ratio between
the corresponding power level and the maximum transmission
power. For example, the power level set {0, 1/4, 1/2, 1}means
that each link can select from four power levels: zero, a quarter,
a half, and a full power.

The transmission rate of each link l ∈ L is denoted as Rl =
f(SINRl), which is determined by the SINR at its receiver

SINRl
∆
=

hllpl
N0 +

∑

k ̸=l hlkpk
, (1)

where hlk denotes the channel gain from the link k’s trans-
mitter to link l’s receiver. According to different SINR levels,
links adjust the data rate by choosing different MCSs. When
the channel condition significantly improves, higher order
modulations will be chosen for higher data rates. Thus the
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data rate can be modeled as the following step function:

f(SINRl) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

0, if SINRl < γ0,

r1, if γ0 ≤ SINRl < γ1,
...

rm, if SINRl ≥ γm.

(2)

In Table I, we show one example of the step function
coming from the practical system setting [14] . There are 11
available MCSs. For each MCS, Table II lists the correspond-
ing spectrum efficiency and required SINR level.

TABLE I
EXAMPLE OF MODULATION-CODING-SCHEMES(MCSS)

MCS Spectrum efficiency (bit/s/Hz) Required SINR (dB)
QPSK 1/2 1.0 6.3
QPSK 5/8 1.25 8.5
QPSK 3/4 1.5 11
QPSK 5/6 1.67 13.8

16QAM 1/2 2.0 11.8
64QAM 1/2 3.0 16
16QAM 3/4 3.0 17
64QAM 5/8 3.75 19.3
64QAM 2/3 4 20.5
64QAM 3/4 4.5 22
64QAM 5/6 5 24.5

We suppose that once each link decides a power level,
it also selects the “best MCS” for the current transmission,
which achieves the highest spectrum efficiency (i.e., the largest
transmission rate) that can be supported by its current SINR
level. This simplifies our description, i.e., we can simply
represent a joint power control and MCS adaptation decision
by specifying its power level selection.

Now we define the power configuration as the vector form

of the power level of each link, i.e., p
∆
= (p1, p2, . . . , pL).

Given a particular power configuration p, let pl(p) and Rlp

denote the power level and rate of link l respectively. For
each link l ∈ L, its transmission power can select a value
from power level set P , resulting to many different power
configurations. We denote P as the set of all possible power
configurations. Our objective is to choose some power config-
urations from set P to maximize the total transmission rate
of all links. We formulate it as a combinatorial optimization
problem, shown as follows:

max
p∈P

∑

l∈L

Rlp. (3)

Such a rate maximization problem is NP-hard [15], which
means that there is no efficient algorithm to solve it in a
centralized way. Next we will show how we can solve it near-
optimally in a distributed way. By adopting such a solution, it
is straightforward to see that we can also solve a more general
combinatorial optimization problem:

max
p∈P

∑

l∈L

Ul(Rlp). (4)

where Ul(·) is a general utility function associated with link l
and it can be of any form, not necessary concave.

III. ALGORITHM DESIGN AND ANALYSIS

We design a distributed approximation algorithm via the
distributed MCMC method [16]. There are two key steps
for such approach: first transform the original combinatorial
problem to an equivalent sampling problem with a given prob-
ability distribution, then sample (or approximately sample)
the given probability distribution by constructing a Markov
chain distributedly with the desirable distribution as its unique
stationary distribution.

We denote the set of optimal solutions for problem (3) as
P

o and denote the size of set Po as |Po|. Then we have:

P
o = argmax

p∈P

∑

l∈L

Rlp. (5)

We associate each power configuration p ∈ P with a
probability πp. Then solving problem (3) is equivalent to
sampling the space of power configurations P from the
following general Dirac distribution:

πd
p
=

{

1
|Po| , if p ∈ P

o,

0, otherwise.
(6)

However, the above general Dirac distribution is hard to
obtain since P

o is unknown to us. Therefore, we need to
sample the space of power configuration P with a new target
distribution, which is more tractable than the general Dirac
distribution, and more importantly, satisfies the following two
conditions:

• C1: it can be obtained without knowing the exact value
of Po.

• C2: power configurations in set P
o have the largest

probabilities.

It turns out that the following product-form distribution
parameterized by σ > 0 is a nice choice [16], [17]:

π∗
p =

exp
(

1
σ

∑

l∈L Rlp

)

∑

p′∈P
exp

(

1
σ

∑

l∈L Rlp′

) , ∀p ∈ P. (7)

As we will see later the advantages of this product-form
distribution (7) lie in: 1) it can be obtained by designing
a time-reversible Markov chain without knowing the value
of P

o, 2) Given a positive constant σ, we can see P
o =

argmaxp∈P π∗
p. Thus both conditions C1 and C2 are satisfied.

In other words, when we sample the power configuration
space P based on the distribution π∗

p in (7), we actually solve
the problem (3) approximately and obtain a close-to-optimal
value. In fact, as σ → 0, the product form degrades into the
general Dirac distribution. Intuitively, starting from any initial
power configuration, the system can find a path to optimal
power configurations of the set Po by “hopping” across the
Markov chain. When the designed Markov chain converges,
the system will stay in power configuration set P

o most of
the time. In this sense, we approximately solve the original
rate maximization problem.

Now we show how to design a time-reversible power-
hopping Markov chain, with a state space being the set of all
feasible power configurations P and a stationary distribution
being the product-form distribution given by (7). Distributed
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MCMC is typically considered under continuous-time (or
asynchronous) setting as used in [16], [17], which is also our
target scenario. There are two degrees of freedom in designing
a time-reversible power-hopping Markov chain in a distributed
manner:

• The state space structure: the state space of the Markov
chain should be connected such that any two states
are reachable from each other. To enable distributed
implementations, we design the Markov chain state space
such that direct transitions between two states correspond
to one and only one link (out of L links) adjusting its
transmission power levels.

• Direct transition rates: for any two states p,p′ ∈ P

with direct transitions, the corresponding transition rates
between them should satisfy the detailed balance equation
for time-reversibility: πp · qp,p′ = πp′ · qp′,p, where
qp,p′ is the transition rate from state p to state p′.
To enable distributed implementations, transition rates
should involve only local network information.

With the above guideline, we design the Markov chain as
follows:

• Each power configuration p ∈ P is a state of the Markov
chain. There are direct transitions between two states
p,p′ ∈ P if and only if p and p′ differ in only one
link’s power level.

• For any two states p,p′ that have direct transitions, the
corresponding transition rates between them are set to be

qp,p′ =
C

exp
(

1
σ

(
∑

l∈L Rlp −
∑

l∈L Rlp′

))

+ 1
, (8)

qp′,p =
C

exp
(

1
σ

(
∑

l∈L Rlp′ −
∑

l∈L Rlp

))

+ 1
, (9)

where C is an arbitrary positive constant.

We choose the above transition rates because of the fol-
lowing consideration. Given any power configuration p, the
total data rate

∑

l∈L Rlp is very hard to obtain locally since
it is a global information. Thus we consider the difference
between

∑

l∈L Rlp and
∑

l∈L Rlp′ , which is easy to obtain
locally. For each link l ∈ L, we define the rate change
of link l as ∆Rl(p,p′) = Rlp − Rlp′ . Then we know
∑

l∈L Rlp −
∑

l∈L Rlp′ =
∑

l∈L ∆Rl(p,p′). Since direct
state transition from p to p′ corresponds to one and only one
link adjusting its transmission power level. For convenience,
we denote this link as l̄, which changes its power level from
pl̄(p) to pl̄(p

′). Such a change affects SINR for all links.
However, it will only change rates for some links due to the
stepwise mapping between SINR and transmission rates in (2).
We denote L̃ as the set of links with the rate changes because
of link l̄’s transmission power change, i.e., ∆Rl(p,p′) ̸=
0, ∀l ∈ L̃. Therefore, ∆Rl(p,p′) = 0, ∀l ∈ L \ L̃, and
∑

l∈L Rlp−
∑

l∈L Rlp′ =
∑

l∈L̃ ∆Rl(p,p′). According to (1)
and assuming the channel gain is dominated by the distance-
based path loss component, l̄’s neighboring links are more
likely to be affected than links far away from link l̄. Thus
links in the set L̃ are more likely to be the near neighbors of
link l̄, hence we regard set L̃ as a “semi-local” set of link l̄. In

this sense, the difference between
∑

l∈L Rlp and
∑

l∈L Rlp′ ,
i.e.,

∑

l∈L Rlp−
∑

l∈L Rlp′ , is a “semi-local” information and
can be obtained through distributed implementations.

We design the following ARM algorithm to implement the
designed power-hopping Markov chain. We emphasize that
the executions of ARM in different links are asynchronous.
In ARM, for each link l ∈ L, there are three phases after the
initialization of power level setting: transmitting phase, rating
phase and switching phase.

• Transmitting Phase: At the beginning of this phase, each
link l ∈ L starts a random counter-down timer with a
countdown time T (n). The value of T (n) is generated
by an exponential distribution with a mean 1

nC
, where

n + 1 is the number of discrete power levels and C is
a system parameter chosen according to different system
requirements. Within the countdown time T (n), link l
transmits at its current power level pl. In the meantime,
link l also observes whether there is a SINR change that
causes a non-zero change of link l’s transmission rate. If
link l observes the need for rate change, it immediately
terminates the transmitting phase, and begins the rating
phase. Otherwise, link l does not observe any rate change
during the time T (n), and it will begin the switching
phase when the count-down timer reaches to zero.

• Rating Phase: At the beginning of this phase, link l will
stop its current count-down timer and broadcast its rate
change information. A small number of bits is enough to
represent the rating information, because there are only
a limited choices of available data rates. Thus we have a
low communication complexity. Then link l will restart
the transmitting phase again.

• Switching Phase: At the beginning of this phase, link
l transmits at a randomly chosen new power level
pl(p′). Then it will collect the rate change information
from all other links (as those links will be triggered
to enter the rating phase). Next, it will set its current
transmission power level to be pl(p′) with probability
sp,p′ = 1

exp( 1
σ (

∑
l′ ̸=l ∆Rl′ (p,p

′)))+1
, or it will switch its

current transmission power level to be back to pl with
probability 1− sp,p′ . Then link l will restart transmitting
phase again.

We summarize the algorithm by a form of flowchart in
Figure 1.

Remarks: ARM does not require synchronization or ex-
plicit coordination, and the only communication overhead is
the simple rate change information, which makes it suitable
for parallel and distributed implementation in wireless ad hoc
networks. To implement ARM in LTE system, we can adopt
methods similar to those proposed in [18]. One is the over-the-
air method, using the existing CQI (channel quality indicator)
channel in LTE with extra rate change information. The other
is the backhaul method, using the existing low-bit-rate X2
channel in LTE to exchange rate change information among
transmitters and basestations. Since the changes of rates have
very limited values due to limited power levels and MCSs, the
overall signaling overhead is low.
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Initialization: randomly choose pl

Generate a count down timer T(n),
and begin counting down

Transmit at pl, and measure its own 
rate change ΔRl(p,p’)  

During T(n), if ΔRl(p,p’) ≠ 0 

Stop and clear the timer,
Broadcast rating info ΔRl(p,p’) 

Switch to transmit at a randomly 
chosen different pl’

Collect the rating info from other 
links

Stay at pl’ with sp,p’, otherwise jump 
back to pl

Yes

No

Initialization

Transmitting 
Phase 

Switching Phase 

Rating Phase 

Fig. 1. Flowchart of ARM

We can show the following result:

Proposition 1. The ARM algorithm realizes a time-reversible

Markov chain with the desired stationary distribution in (7).

We can understand ARM in an intuitive way. In this
algorithm, “good states” (i.e., having a high total data rate)
or “bad states” (i.e., having a low total data rate) are voted
through links’ rating information. With the carefully designed
transition rates, ARM makes the system prefer to jumping into
“good states” more often, but also risk to try “bad states” so
as to avoid being trapped in a local optimal state (where the
risk is parameterized by the approximation factor σ). As a
result, the system stays in “good states” most of the time, and
eventually stays in the “best states” most of the time.

Next we study two issues related to the practical implemen-
tation of ARM: Robustness and Convergence Time.

A. Robustness of ARM

In practice, one link may obtain inaccurate values of rating
information (i.e., ∆Rl(p,p′)) from other links. The inaccuracy
comes from two sources of perturbation:

• Transmission errors or losses: erroneous wireless trans-
missions of rating information between links lead to
inaccurate rating messages.

• Local estimation: to further reduce the complexity of
ARM and facilitate the distributed implementation, each
link may collect the rating information only from neigh-
boring links. Such a local estimation leads to inaccurate
total rating information.

Consequently, with perturbations, the new perturbed
Markov chain may not converge to the desired stationary
distribution π∗

p
(7), resulting in another stationary distribution

and a performance gap. To characterize such gap, we adopt
the quantization error model proposed in [19]. In this model,
for each state p ∈ P with total data rate

∑

l∈L Rlp, we
assume that its corresponding perturbation error belongs to
the bounded set [−∆p,∆p], where ∆p is the error bound. We
also assume that ∆p is upper bounded, i.e., ∆p ≤ ∆max for

any p ∈ P , and the perturbed
∑

l∈L Rlp takes only one of
the following 2np + 1 discrete values:

{

∑

l∈L

Rlp +
j

np
∆p, j ∈ {−np, . . . , np}

}

,

where np is a positive constant. Furthermore, with probability
γj,p, the perturbed

∑

l∈LRlp takes the value
∑

l∈L Rlp +
j
np

∆p, ∀j ∈ {−np, . . . , np}. Here γj,p is symmetric, i.e.,

γj,p = γ−j,p and
∑np

j=−np
γj,p = 1.

Let φmax denote the aggregate rates of all links under the
optimal power configuration, i.e., φmax =

∑

l∈L Rlp, ∀p ∈
P

o; let φa denote the expected aggregate rates of all links
with the power-hopping Markov chain, i.e., φa =

∑

p∈P
π∗
p ·

(
∑

l∈L Rlp) ; and let φe denote the expected aggregate rates
of all links with the perturbed power-hopping Markov chain,
i.e., φe =

∑

p∈P
πe
p
· (
∑

l∈LRlp), where πe
p

is the stationary
distribution of the perturbed Markov chain. By perturbation
analysis developed in [19], we have the following result:

Theorem 1. (a) The stationary distribution of the perturbed

power-hopping Markov chain is

πe
p =

βp · exp
(

1
σ

∑

l∈L Rlp

)

∑

p′∈P
βp′ · exp

(

1
σ

∑

l∈L Rlp′

) , ∀p ∈ P (10)

where βp =
∑np

j=−np
γj,p · exp

(

1
σ
· j∆p

np

)

, ∀p ∈ P .

(b) Bounds on optimality gap for both power-hopping Markov

chain and its perturbed counterpart are:

0 ≤ φmax − φa ≤ L · σ · log(n+ 1)− σ · log |Po|, (11)

0 ≤ φmax − φe ≤ L · σ · log(n+ 1)− σ · log |Po|+∆max.
(12)

Remarks:

• The upper bounds on the optimality gap for both the
power-hopping Markov chain in (11) and its perturbed
counterpart in (12) increase linearly with the number of
links L and approximation factor σ, increase log-linearly
with the number of discrete power levels n + 1, and
decrease log-linearly with the number of optimal power
configurations |Po|.

• The upper bound on the optimality gap of perturbed
Markov chain in (12) is quite general, as it only increases
linearly with the maximum perturbation error ∆max and
it is independent of the number of quantized error levels
{np} and the distribution of quantized errors {γj,p}.

B. Convergence Time of ARM

Now we study the mixing time (convergence time) of the
designed Markov chain. First, we introduce the definition
of total variation distance [20] between any two probability
distributions π and π′ over state space P as follows:

||π − π′||TV !
1

2

∑

p∈P

|πp − π′
p|. (13)

Now let πt(p) denote the probability distribution of all
states in P at time t, given that the initial state is p and
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the system evolves according to ARM. Then the mixing time
of the designed Markov chain [20] is defined as follows:

tmix(ϵ) ! inf

{

t ≥ 0 : max
p∈P

||πt(p)− π∗||TV ≤ ϵ

}

, (14)

where π∗ is the stationary distribution shown in (7).
We denote a threshold value σth = L·rm

ln(1+ 1+1/n
L−1

)
. We also use

∼ to represent the relationship of the same order of magnitude.
Then we have the following results on the upper bound of the
convergence time (mixing time):

Theorem 2. If σ > σth, the upper bound of mixing

time is tmix(ϵ) ∼ O
(

exp( 1σ ) · ln
L
ϵ

)

. Otherwise when 0 <
σ ≤ σth, the upper bound of mixing time is tmix(ϵ) ∼
Ω
(

exp
(

L
σ + ln ln 1

ϵ

))

.

The proof adopts spectral analysis method [20] to obtain
both a lower bound and an upper bound of tmix for general
values of σ. It also adopts path coupling method [20] to obtain
a tight upper bound of tmix for some values of σ.

When σ is a given parameter, we consider the scaling of
the optimality gap and mixing time with the network size L.
We observe the following trade-off between the optimality gap
(Theorem 1) and its mixing time (Theorem 2):

• As σ → 0, the optimality gap approaches zero while the
upper bound of its mixing time scales with Ω(exp(L))
and approaches infinity (slow-mixing).

• As σ → ∞, the optimality gap approaches infinity while
the bound of its mixing time scales with O(ln(L)) and
remains limited (fast-mixing).

This resembles the phase transition phenomenon in statistics
physics. Since σth = L·rm

ln(1+ 1+1/n
L−1

)
, with small values of L and

n, σth can be very large, which means that we can only have
the slow mixing results even when σ is large (but still smaller
than the threshold σth). This is the theoretical result from the
worst-case analysis. However, in practice, even small values of
σ can lead to fast mixing. In fact, simulations in next section
show that ARM converges very fast for small values of σ.

IV. PERFORMANCE EVALUATION

1) Simulation Setting: We focus on a downlink transmis-
sion scenario in a wireless network of seven hexagon cells,
shown in Figure 2, where small cells (i.e., the gray cells in
Figure 2) are densely deployed to cover an area. The border
effect is taken care by the wrap-around technique1 [14]

The main system parameters of simulations are summarized
in Table II based on the current standardizations of practical
cellular system [6]. There are 11 popular MCSs available for
each cell in our simulation, and the spectrum efficiency of each
MCS and its required SINR level have been listed in previously
Table I. We also consider both the exponential power level set
and the uniform power level set, where the maximum number
of power level sets is five and a full power is 20 dBm.

1The wrap-around is commonly used in practical system simulation, where
the simulated network is visualized as a torus with edges warping around to
the opposite edges, so that each cell has a complete set of interfering cells. The
white cells in Figure 2 denote the wrap-around mappings of the considered
network.

Fig. 2. Seven-cell Network with Corresponding Wrap Around: the gray cells
are the network we considered, and the white cells denote the wrap-around
mappings.

TABLE II
SYSTEM PARAMETERS

Number of small cells 9
Maximum transmission power of each cell 20dBm

Radius of each cell 20m
Noise power spectrum density -174dB/Hz

Bandwidth 10M
Pathloss 20 log10(d) + 38.46 dB

In the current system, a cell usually has multiple channels
to support multiple users, and the cell local scheduler (e.g., the
proportional fairness scheduler used in most cellular system)
will schedule at most one user for each channel to avoid the
interference within the same cell. To simplify the simulation,
we only simulate the one channel case here. The multiple
channel case can be viewed as simple duplicates of single
channel case (under an ideal channel allocation algorithm).
Thus in each experiment of the simulation, we randomly put
one user (i.e., mobile devices) in each cell, which represents
the link chosen by each cell’s local scheduler. Each cell runs
ARM independently to determine the transmission power and
MCS of each base station. We run ARM with different values
of approximation factor σ and different power level sets, and
compare its performances with the optimal solutions generated
by exhaustive search.

2) One Typical Experiment: We show results of one typical
experiment as an example. In this experiment, the power level
set is [0, 12 , 1] and approximate factor σ = 0.05. Figure 3
shows the user positions in this experiment. Figure 4 shows
the average spectrum efficiency of each cell as time elapses.
For the time setting in all simulations, the mean time 1/C is
set as 1 unit time. We purposely set the number of transitions
very large for each experiment, e.g., 105 to guarantee the
convergence. However, in most of experiments, we find that
ARM actually converges very fast as the one shown in Fig-
ure 4, where the network performance (i.e., 10.9871 bit/s/Hz)
by 5000 iterations is close to optimal (i.e., 11 bit/s/Hz by Ex-
haustive Search). After 105 units of time, ARM’s performance
reaches 10.9982 bit/s/Hz, with a performance gap less than
0.02%. Note that this performance gap is also closely related
to the approximation factor σ, which we will discuss in next
subsection.

3) Impacts of Approximation Factor σ: For the experiment
described in previous Section IV-2, Table III records the
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sum spectrum efficiency and performance gap of ARM under
different values of σ. Here ES denotes performances obtained
by exhaustive search, and ARM’s performances are obtained
after 105 transitions. This result is consistent with Theorem 1,

TABLE III
PERFORMANCE IN ONE TYPICAL EXPERIMENT

σ 1 0.5 0.2 0.1 0.05 ES
Spectrum Efficiency 8.9155 9.8764 10.7623 10.9929 10.9982 11

Performance Gap 19% 10% 2.1% 0.06% 0.02% 0

in the sense that smaller values of σ usually lead to higher
spectrum efficiencies and lower performance gap. Then we
run 1000 experiments and records the average sum spectrum
efficiencies of exhaustive search (ES) and ARM (after 105

transitions), respectively. Results are shown in Table IV.

TABLE IV
AVERAGE PERFORMANCE OF 1000 EXPERIMENTS

σ 1 0.5 0.2 0.1 0.05
ES 10.3755

ARM 8.2202 9.2148 10.1230 10.3118 10.3567
Performance Gap 23% 12% 2.7% 0.7% 0.2%

4) Impacts of Power Levels: Continuous power levels can
be regarded as the extreme case of discrete power level,
where the number of power levels is infinite. Given a fixed
power range (e.g., minimum and maximum), more power
levels will provide more flexibility to power control and thus
may improve the performance. On the other hand, more power
levels will lead to a higher computation complexity.

To study the impact of number of power levels, we run
1000 experiments with both exponential power level sets and
uniform power level sets, where the maximum number of
power levels is 5. For each experiment, we run ARM with
σ = 0.05, and 105 transitions.

First in Table V, we show performances with the exponential
power level sets. The sum spectrum efficiency by exhaustive

search with enumeration and by ARM are compared. The “ES
Improvement” in the third row computes the ES performance
difference between the current n and the previous n−1 power
levels, where n = 3, 4, 5. Similarly, we also calculate “ARM
Improvement” in the fifth row. The last row records the ab-
solute performance gap between ES and ARM. Performances
for the uniform power level sets are shown in Table VI. Note
that for two and three power levels, uniform power level sets
coincide with the exponential power level sets.

TABLE V
PERFORMANCE COMPARISON FOR EXPONENTIAL POWER LEVEL SETS

Number of Power Levels 2 3 4 5
ES (bit/s/Hz) 9.9337 10.3755 10.4713 10.4808

ES Improvement (bit/s/Hz) – 0.4418 0.0958 0.0095
ARM (bit/s/Hz) 9.9241 10.3567 10.4555 10.4593

ARM Improvement (bit/s/Hz) – 0.4326 0.0988 0.0038
Performance Gap 0.0096 0.0188 0.0158 0.0215

TABLE VI
PERFORMANCE COMPARISON FOR UNIFORM POWER LEVEL SETS

Number of Power Levels 2 3 4 5
ES (bit/s/Hz) 9.9337 10.3755 10.5683 10.6263

ES Improvement (bit/s/Hz) – 0.4418 0.1928 0.0580
ARM (bit/s/Hz) 9.9241 10.3567 10.5418 10.5897

ARM Improvement (bit/s/Hz) – 0.4326 0.1851 0.0479
Performance Gap 0.0096 0.0188 0.0265 0.0366

In both Table V and VI, We find that the more power levels,
the better performance. However the marginal improvement of
performance due to an additional power level quickly dimin-
ishes. Moreover, we observe that the performance gap between
ES and ARM is slightly increasing with the increasing number
of power levels. It is because that we use the same stopping
time for all experiments, but more power levels actually need
more time to converge to the stationary result of ARM.
Intuitively, more power levels leads to larger state spaces and
longer time to converge, and thus higher complexity.

The above results imply that a small number of fixed power
levels can achieve close-to-optimal performance with a low
complexity. For example, four power levels should be good
enough. Even having two power levels can already achieve
over 93% of the performance that can be achieved by five
power levels.

In addition, we also observe that for the same number of
power levels, the uniform power level set has better perfor-
mances than the exponential power level set.

5) Robustness of ARM: As we discussed in SectionIII-A,
ARM is robust to the inaccuracy of rating information. To
validate this result, we consider a more complex cellular
network (i.e., 61 cells in total) shown in Figure 5. We run
ARM with σ = 0.05 and different uniform power level sets.

As shown in Figure 5, we consider two scenarios. In one
scenario, each cell only receives the rating information from
its immediate neighboring cells, i.e., the first-hop cells. In the
other scenario, each cell only receives the rating information
from both the first-hop and the second-hop cells. Any rating
information from other cells will be ignored. The performance
is shown in Table VII.
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Fig. 5. 61-cell network

TABLE VII
IMPACT OF INFORMATION LOSS: PERFORMANCE OF 1000 EXPERIMENTS

ARM ARM w./ 1-hop LR ARM w./ 2-hop LR
2 power levels 64.9571 61.7144 64.8478

Performance Ratio 100 % 95.01% 99.83%

3 power levels 68.0084 60.7702 65.6973
Performance Ratio 100 % 89.13% 96.52%

4 power levels 69.1290 60.2273 65.5371
Performance Ratio 100% 87.12% 94.80%

5 power levels 70.7057 59.7104 65.3180
Performance Ratio 100 % 85.21% 93.21%

We can see that in the worst-case scenario, ARM with
only one-hop local rating information can still maintain more
than 85% of the original performance without information
loss. When two-hop local rating information is considered,
the worse-case performance increases to over 93% of the
original performance. The intuition is that the interference
decreases with distance, hence the immediate neighboring
cells’ feedbacks are the most important ones, while the feed-
backs from remote cells are less important. This property
guarantees ARM’s robustness, and will be useful for reducing
communication complexity of ARM when implementing it in
practical systems.

We also find that the less number of power levels, the better
the performance of ARM with local rating. Intuitively, the
larger number of power levels, the more sensitive the mapping
from SINR to rate , and consequently the more perturbations
due to the loss of the rating information. Comparatively, a
smaller number of power levels is less insensitive to the
information loss, e.g., for two power levels, one-hop local
rating already maintains 95% of the original performance.

V. CONCLUSIONS

In this paper we propose ARM, a novel distributed algo-
rithm to solve the discrete power control problem under the
physical interference model and the practical setting of limited
numbers of power levels and modulation-coding schemes.
By both mathematical analysis and extensive simulations, we
show that ARM can achieve close-to-optimal performances.
Moreover, this algorithm is simple and robust, and thus shows
great potentials for interference management in practical wire-
less systems. There are several interesting directions for the
future work, including the design of optimal power level set,
the characterization of the impact of information loss for

general network topology, and the extension of ARM for time-
variant networking environment.
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