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Abstract—Recently, spatial stochastic models based on deter-
minantal point processes (DPP) are studied as promising models
for analysis of cellular wireless networks. Indeed, the DPPs can
express the repulsive nature of the macro base station (BS)
configuration observed in a real cellular network and have
many desirable mathematical properties to analyze the network
performance. However, almost all the prior works on the DPP
based models assume the Rayleigh fading while the spatial models
based on Poisson point processes have been developed to allow
arbitrary distributions of fading/shadowing propagation effects.
In order for the DPP based model to be more promising, it is
essential to extend it to allow non-Rayleigh propagation effects.
In the present paper, we propose the downlink cellular network
model where the BSs are deployed according to the Ginibre
point process, which is one of the main examples of the DPPs,
over Nakagami-m fading. For the proposed model, we derive a
numerically computable form of the coverage probability and
reveal some properties of it numerically and theoretically.

I. INTRODUCTION

Spatial stochastic models for wireless communication net-
works have attracted much attention (see, e.g., [1]–[4]). This
is because the performance of a wireless network depends
on the spatial configuration of wireless nodes and spatial
point processes can capture the irregularity of the node con-
figuration in a real network. In the analysis of such spatial
models for wireless networks, the stationary Poisson point
processes (PPPs) have widely used to model the configuration
of wireless nodes. While such a PPP based model is tractable
to analyze, it is an idealized one and ignores the spatial
correlation among the wireless nodes.

Recently, spatial models based on determinantal point
processes (DPPs) are studied as promising models for analysis
of cellular wireless networks (see, e.g., [5]–[10]). Indeed, the
DPPs can express the repulsive nature among the macro base
stations (BSs) observed in a real cellular network and have
many desirable mathematical properties to analyze the network
performance (see, e.g., [11]–[13]). However, almost all the
prior works on the DPP based models assume the Rayleigh
fading while the PPP based models have been developed to
allow arbitrary distributions of fading/shadowing propagation
effects (see, e.g., [14]–[17]). There are only a few exceptions
as follows: Although [5] mainly assume the Rayleigh fading,
it states in Remark 2 that the fading from the interfering

BSs can be generalized to follow an arbitrary distribution
while retaining the Rayleigh fading from the serving BS.
Also, [6] investigates the tail asymptotics of the distribution
of interference using different fading distributions, though it
does not take into account the fading from the serving BS.

In order for the DPP based model to be more promising,
it is essential to extend it to allow non-Rayleigh propagation
effects from both the serving and interfering BSs. In the
present paper, we propose the downlink cellular network model
where the BSs are deployed according to the Ginibre point
process (GPP) over Nakagami-m fading (see [18]). The GPP
is one of the main examples of the DPPs and is suited to model
the macro BS configuration (see e.g., [5]). The Nakagami-
m fading includes the Rayleigh one as a special case of
m = 1 and makes the fading effects to follow the mth
Erlang distribution with unit mean. It is further important
to study the Erlang distributed propagation effects since it
could lead to an extension to the analysis of multi-input multi-
output heterogeneous cellular networks as in [19]–[21]. For the
proposed model, we derive a numerically computable form
of the coverage probability and reveal some properties of it
numerically and theoretically.

The paper is organized as follows: In the next section,
the network model which we consider is defined, where the
impact of the variability of fading effects on the signal-to-
interference ratio (SIR) is discussed using some stochastic
order. A brief description of the GPP is also provided. In
Section III, we first give the basic formula of the downlink
coverage probability when the BSs are deployed according
to a general stationary point process and then we derive a
numerically computable form of it when the BSs are deployed
according to the GPP. In Section IV, the asymptotic properties
of the downlink coverage probability in two extreme cases
m = 1 and m → ∞ are discussed. The results of some
numerical experiments are shown in Section V.

II. NETWORK MODEL

A. Macro base station network

The downlink cellular network model which we consider
mainly follows the ones in [5], [22] and consists of homoge-
neous macro BSs. Let Φ denote a point process on R2 and
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let Xi, i ∈ N, denote the points of Φ, where the order of
X1, X2, . . . , is arbitrary. The point process Φ expresses the
configuration of the BSs and we refer to the BS located at Xi

as BS i. We assume that Φ is simple and locally finite a.s.
and also stationary. Each mobile user is associated with the
closest BS. Thus, due to the stationarity of the point process
and the homogeneity of the BSs, we can focus on a typical
user located at the origin o = (0, 0). For the simplicity, we
limit ourselves to the interference limited (noise-free) case
throughout the paper. It is known that, in the interference
limited case of the stationary single tier network model,
the downlink coverage probability does not depend on the
intensity of the point process, transmission power and path-
loss coefficient (see, e.g., [5], [22]), so that, we set these
values as π−1, 1 and 1, respectively, for convenience. The
path-loss function ℓ representing the attenuation of signals
with distance is then given by ℓ(r) = r−2 β , r > 0, for some
β > 1. We assume the Nakagami-m fading, so that the random
propagation effect from the BS i to the typical user, denoted
by Hi, follows the mth Erlang distribution with unit mean,
denoted by Hi ∼ Gam(m, 1/m), i ∈ N, where Hi, i ∈ N,
are mutually independent and also independent of the point
process Φ. The shadowing is ignored in our model.

In this setting, the downlink SIR of the typical user is given
by

SIRo =
HBo ℓ(∥XBo∥)

Io(Bo)
, (1)

where Bo denotes the index of the BS associated with the
typical user at the origin; that is, {Bo = i} = {∥Xi∥ ≤
∥Xj∥, j ∈ N}, and Io(i), i ∈ N, denotes the cumulative
interference received by the typical user from all the BSs
except BS i; that is,

Io(i) =
∑

j∈N\{i}

Hj ℓ(∥Xj∥). (2)

When we emphasize the m of the Nakagami-m fading, we put
the superscript (m) and write SIR(m)

o , I(m)
o (i) and so on.

Before assigning a specific point process to the BS con-
figuration Φ, we here discuss the variability of the SIR in
terms of the value of m of the Nakagami-m fading using
some stochastic order. For two random variablesX and Y with
finite expectations, we say that X is less than Y in the convex
order [resp. increasing convex order] and write X ≤cx Y
[resp. X ≤icx Y ] if Ef(X) ≤ Ef(Y ) for any convex [resp.
increasing and convex] function f such that the expectations
exist (see, e.g., [23]). It is well known that Gam(m, 1/m) is
decreasing in m in the convex order; that is, m1 < m2 implies
H(m1) ≥cx H(m2) for H(m) ∼ Gam(m, 1/m). However, we
have to care about the application of the convex or increasing
convex order to the SIR in (1) since it may not have the
finite expectation when the path-loss function is unbounded
at the origin. We thus consider the conditional SIR given the
common BS configuration Φ. The following lemma implies
that more variable fading effects lead to larger and more
variable conditional SIR given the common BS configuration.

Lemma 1: For each k = 1, 2, let {H(k)
i }i∈N denote a

sequence of mutually independent random variables represent-
ing the fading effects. Let also SIR

(k)
o , k = 1, 2, denote

the SIR of the typical user, given by (1), corresponding to

the fading effects {H(k)
i }i∈N with the common BS configu-

ration Φ = {Xi}i∈N. Then, H
(1)
i ≥cx H(2)

i , i ∈ N, implies
(SIR(1)

o | Φ) ≥icx (SIR(2)
o | Φ) given Φ.

Proof: By Strassen’s theorem (see, e.g., [23, Sec. 1.5]), we
can define {H(k)

i }i∈N, k = 1, 2, satisfying H(2)
i = E(H(1)

i |
H(2)

i ) a.s. for each i ∈ N. Thus, by (1) and Jensen’s inequality,

SIR
(2)
o =

∑

i∈N

E(H(1)
i | H(2)

i ) ℓ(∥Xi∥)
∑

j∈N\{i} E(H
(1)
j | H(2)

j ) ℓ(∥Xj∥)

× 1{∥Xi∥≤∥Xj∥, j∈N}

≤ E
(

SIR
(1)
o

∣

∣ {H(2)
i }i∈N,Φ

)

a.s.

Let f denote any increasing and convex function satisfying
E
(

f(SIR(1)
o ) | Φ

)

< ∞ and E
(

f(SIR(2)
o ) | Φ

)

> −∞ a.s.
Then, Jensen’s inequality implies

E
(

f(SIR(2)
o ) | Φ

)

≤ E
(

f
(

E
(

SIR
(1)
o

∣

∣ {H(2)
i }i∈N,Φ

))

| Φ
)

≤ E
(

f(SIR(1)
o ) | Φ

)

a.s.

B. The Ginibre point process

We here give a brief description of the GPP (see, e.g.,
[11]–[13] for details). The GPP is one of the DPPs on the
complex plane C defined as follows. Let Φ denote a simple
point process on C, and let ρn: Cn → R+, n ∈ N, denote
its nth joint intensities (correlation functions) with respect to
some Radon measure ν on C; that is, for any symmetric and
continuous function f on Cn with compact support,

E

(

∑

X1,...,Xn∈Φ
distinct

f(X1, X2, . . . , Xn)

)

=

∫ ∫

· · ·

∫

Cn

f(z1, z2, . . . , zn)

× ρn(z1, z2, . . . , zn) ν(dz1) ν(dz2) · · · ν(dzn). (3)

The point process Φ is said to be a DPP with kernel K: C2 →
C with respect to the reference measure ν if ρn in (3) is given
by

ρn(z1, z2, . . . , zn) = det(K(zi, zj))
n
i,j=1,

where det denotes the determinant. Furthermore, a DPP Φ is
said to be the GPP when the kernel is given byK(z, w) = ezw,
z, w ∈ C, with respect to the Gaussian measure ν(dz) =
π−1 e−|z|2 µ(dz), where w denotes the complex conjugate of
w ∈ C and µ denotes the Lebesgue measure on C. It is known
that the GPP is motion invariant (stationary and isotropic) and,
by the definition, its intensity is equal to π−1; that is, EΦ(C) =
π−1 µ(C) for C ∈ B(C). One of the useful properties of the
GPP is given by the following proposition.

Proposition 1 (Kostlan [24]): Let Xi, i ∈ N, denote the
points of the GPP. Then, the set {∥Xi∥2}i∈N has the same
distribution as {Yi}i∈N, where Yi, i ∈ N, are mutually
independent and each Yi follows the ith Erlang distribution
with unit-rate parameter, denoted by Yi ∼ Gam(i, 1), i ∈ N.
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III. DOWNLINK COVERAGE PROBABILITY

The downlink coverage probability is defined as the prob-
ability with which the SIR of the typical user achieves a target
threshold; that is, P(SIRo > θ) for θ > 0. In this section, we
first derive the basic formula concerning the downlink coverage
probability when the BSs are deployed according to a general
stationary point process, and then we provide its numerically
computable form when the BSs are deployed according to the
GPP.

A. General stationary base station deployments

Lemma 2: Consider the downlink cellular network model
such that the BSs have mutually independent Nakagami-m
fading channels and are deployed according to a stationary
point process Φ on R2. Then, the coverage probability for a
typical user satisfies

P(SIR(m)
o > θ)

=
m−1
∑

n=0

(−1)n

n!
E

[

dn

dxn

∏

j∈N\{Bo}

(

1 + θ
ℓ(∥Xj∥)

ℓ(∥XBo∥)
x
)−m

∣

∣

∣

∣

x=1

]

.

(4)

Proof: Throughout the proof, we fix the value of m and
drop off the superscripts (m). We have from (1) that

P(SIRo > θ) =
∑

i∈N

P(SIRo > θ, Bo = i)

=
∑

i∈N

P

(

Hi >
θ Io(i)

ℓ(∥Xi∥)
, ∥Xi∥ ≤ ∥Xj∥, j ∈ N

)

. (5)

For each i ∈ N, since Hi ∼ Gam(m, 1/m), conditioning on
Φ = {Xj}j∈N and {Hj}j∈N\{i} yields

P

(

Hi >
θ Io(i)

ℓ(∥Xi∥)

∣

∣

∣
Φ, {Hj}j∈N\{i}

)

=
m−1
∑

n=0

1

n!

(m θ Io(i)

ℓ(∥Xi∥)

)n
exp

(

−
m θ Io(i)

ℓ(∥Xi∥)

)

=
m−1
∑

n=0

(−1)n

n!

dn

dxn
exp

(

−
m θ Io(i)

ℓ(∥Xi∥)
x
)

∣

∣

∣

∣

x=1

. (6)

Here, let us take the conditional expectation given Φ. Since
exp

(

−m θ Io(i)x/ℓ(∥Xi∥)
)

is continuous in x and each Hj ∼
Gam(m, 1/m) has the finite moment of any order, we can
exchange the conditional expectation and derivative. Thus,
since Hj , j ∈ N, are mutually independent, applying (2) yields

E

( dn

dxn
exp

(

−
m θ Io(i)

ℓ(∥Xi∥)
x
)
∣

∣

∣
Φ
)

=
dn

dxn

∏

j∈N\{i}

E

(

exp
(

−
m θHj ℓ(∥Xj∥)

ℓ(∥Xi∥)
x
)
∣

∣

∣
Φ
)

=
dn

dxn

∏

j∈N\{i}

(

1 + θ
ℓ(∥Xj∥)

ℓ(∥Xi∥)
x
)−m

, (7)

where the Laplace transform LH(s) = (1 + s/m)−m of
Hj ∼ Gam(m, 1/m) is applied in the second equality. Finally,
applying (6) and (7) to (5), we obtain (4).

B. Ginibre base station deployments

We consider the GPP as the BS configuration Φ, where a
point z = x+ i y ∈ C is identified as (x, y) ∈ R2.

Theorem 1: Consider the downlink cellular network model
with path-loss function ℓ(r) = r−2β , r > 0, such that the
BSs have mutually independent Nakagami-m fading channels
and are deployed according to the GPP. Then, the coverage
probability for a typical user is given by

P(SIR(m)
o > θ)

=

∫ ∞

0
e−u M (m)(u)

m−1
∑

n=0

θn
n
∑

k=0

[ k
∑

h=1

(−1)h h!S(m)
k,h (u)

]

×
∑

(h1,h2,...,hn−k)∈Pn−k

n−k
∏

r=1

1

hr!

[r−1
∑

q=0

(−1)q q!T (m)
r,q+1(u)

]hr

du,

(8)

where
∑0

h=1 ah = a0, Pk =
{

(h1, h2, . . . , hk) ∈ (N∪{0})k |
∑k

r=1 r hr = k
}

, and

M (m)(u) =
∞
∏

i=0

J (m,0)
i (u), (9)

S(m)
k,h (u) =

∞
∑

i=0

ui

i!

(

J (m,0)
i (u)

)−h−1
V (m)
k,h,i(u), (10)

T (m)
k,h (u) =

∞
∑

i=0

(

J (m,0)
i (u)

)−h
V (m)
k,h,i(u), (11)

with

V (m)
k,h,i(u) =

∑

(r1,...,rk−h+1)∈Qk,h

k−h+1
∏

q=1

1

rq!

×
[(m+ q − 1

m− 1

)

J (m,q)
i (u)

]rq
, (12)

Qk,h =
{

(r1, r2, . . . , rk−h+1) ∈ (N ∪ {0})k−h+1 |
∑k−h+1

q=1 q rq = k,
∑k−h+1

q=1 rq = h
}

, and

J (m,q)
i (u) =

1

i!

∫ ∞

u

e−y yi (u/y)qβ
(

1 + θ (u/y)β
)m+q dy, q = 0, 1, 2, . . . .

(13)

Remark 1: The numerical computation of (8)–(13) seems
complicated. Note, however, that the infinite product and
infinite sums in (9)–(11) are not nested. The computation is
thus scalable in the sense that these infinite product and infinite
sums can be computed simultaneously in one iteration scheme.
The case of m = 1 in Theorem 1, of course, coincides with
Theorem 1 in [5]. The cases of m = 2 and 3 are provided
after the proof.

Proof: As in the proof of Lemma 2, we drop off the
superscripts (m) and write, for example, J (q)

i for J (m,q)
i . By

Proposition 1, we can set {∥Xi∥}i∈N satisfying ∥Xi∥2 ∼
Yi ∼ Gam(i, 1) for each i ∈ N, where Yi, i ∈ N, are
mutually independent. Thus, applying the density functions of
Gam(i, 1), i ∈ N, and ℓ(r) = r−2β , r > 0 to (4) yields

P(SIRo > θ)
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=
m−1
∑

n=0

(−1)n

n!

∞
∑

i=1

E

[

dn

dxn

∏

j∈N\{i}

E

[(

1 + θ
(Yi

Yj

)β
x
)−m

× 1{Yj>Yi}

∣

∣

∣
Yi

]

∣

∣

∣

∣

x=1

]

=
m−1
∑

n=0

(−1)n

n!

∞
∑

i=0

1

i!

∫ ∞

0
e−u ui dn

dxn

∞
∏

j=0
j ̸=i

Cj(x;u)

∣

∣

∣

∣

x=1

du,

(14)

where

Cj(x;u) =
1

j!

∫ ∞

u

e−y yj
(

1 + θ (u/y)β x
)m dy.

Note here that Cj(1;u) = J (0)
j (u) in (13). The general Leibniz

rule (see, e.g., [25, Sec. 5.2]) leads to

dn

dxn

∞
∏

j=0
j ̸=i

Cj(x;u) =
dn

dxn

[

(

Ci(x;u)
)−1

∞
∏

j=0

Cj(x;u)
]

=
n
∑

k=0

(n

k

) dk

dxk

(

Ci(x;u)
)−1 dn−k

dxn−k

∞
∏

j=0

Cj(x;u). (15)

Consider the first derivative on the right-hand side above. It is
certainly

(

Ci(x;u)
)−1 when k = 0. For k = 1, 2, . . ., Faà di

Bruno’s formula (see, e.g., [26]) leads to

dk

dxk

(

Ci(x;u)
)−1

=
k

∑

h=1

(−1)h h!
(

Ci(x;u)
)−h−1

×Bk,h

(

C(1)
i (x;u), C(2)

i (x;u), . . . , C(k−h+1)
i (x;u)

)

, (16)

where Bk,h denotes the Bell polynomial;

Bk,h(x1, x2, . . . , xk−h+1)

= k!
∑

(r1,...,rk−h+1)∈Qk,h

k−h+1
∏

q=1

1

rq!

(xq

q!

)rq
,

and for q = 1, 2, . . .,

C(q)
i (x;u) = (−1)q θq

(m+ q − 1)!

(m− 1)!

×
1

i!

∫ ∞

u

e−y yi (u/y)qβ
(

1 + θ (u/y)β x
)m+q dy.

Note here that
1

q!
C(q)

i (1;u) = (−1)q θq
(m+ q − 1

m− 1

)

J (q)
i (u),

so that, noting that
∑k−h+1

q=1 q rq = k and applying (12), we
have

Bk,h

(

C(1)
i (1;u), C(2)

i (1;u), . . . , C(k−h+1)
i (1;u)

)

= (−1)k θk k!Vk,h,i(u).

Hence, applying this to (16), multiplying ui/i! and summing
over i = 0, 1, . . . (see (14)), we have

∞
∑

i=0

ui

i!

dk

dxk

(

Ci(x;u)
)−1

∣

∣

∣

∣

x=1

= (−1)k θk k!
k

∑

h=1

(−1)h h!Sk,h(u). (17)

On the other hand, we apply Faà di Bruno’s formula twice
to the second derivative on the right-hand side of (15); first to
∏

Cj(x;u) = exp
(
∑

logCj(x;u)
)

and then to logCj(x;u).
We then have

dn−k

dxn−k

∞
∏

j=0

Cj(x;u) = (n− k)!
∞
∏

j=0

Cj(x;u)

×
∑

(h1,h2,...,hn−k)∈Pn−k

n−k
∏

r=1

1

hr!

[

1

r!

∞
∑

j=0

dr

dxr
logCj(x;u)

]hr

,

(18)

and

dr

dxr
logCj(x;u) =

r
∑

q=1

(−1)q−1 (q − 1)!
(

Cj(x;u)
)−q

×Br,q

(

C(1)
j (x;u), C(2)

j (x;u), . . . , C(r−q+1)
j (x;u)

)

. (19)

Here, taking x = 1 reduces to

Br,q

(

C(1)
j (1;u), C(2)

j (1;u), . . . , C(s−r+1)
j (1;u)

)

= (−1)r r! θr Vr,q,j(u),

so that, applying this to (19) and (18) with
∑n−k

r=1 r hr = n−k,
we have

dn−k

dxn−k

∞
∏

j=0

Cj(x;u)

∣

∣

∣

∣

x=1

= (−1)n−k θn−k (n− k)!M(u)

×
∑

(h1,h2,...,hn−k)∈Pn−k

n−k
∏

r=1

1

hr!

[r−1
∑

q=0

(−1)q q!Tr,q+1(u)

]hr

.

(20)

Finally, we obtain (8) from (14), (15), (17) and (20).

Example 1: We here give the examples of Theorem 1 for
m = 2 and 3. When m = 2, it reduces to

P(SIR(2)
o > θ) =

∫ ∞

0
e−u M (2)(u)

×
(

S(2)
0,0(u) + θ (S(2)

0,0(u)T
(2)
1,1 (u)− S(2)

1,1(u))
)

du,

where

S(2)
0,0(u) =

∞
∑

i=0

ui

i! J (2,0)
i (u)

,

S(2)
1,1(u) = 2

∞
∑

i=0

ui J (2,1)
i (u)

i!
(

J (2,0)
i (u)

)2 ,

T (2)
1,1 (u) = 2

∞
∑

i=0

J (2,1)
i (u)

J (2,0)
i (u)

.

Also, when m = 3, it reduces to

P(SIR(3)
o > θ) =

∫ ∞

0
e−u M (3)(u)

×

[

S(3)
0,0(u) + θ

(

S(3)
0,0(u)T

(3)
1,1 (u)− S(3)

1,1(u)
)
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+ θ2
(

S(3)
0,0(u)

(

(

T (3)
1,1 (u)

)2

2
+ T (3)

2,1 (u)− T (3)
2,2 (u)

)

− S(3)
1,1(u)T

(3)
1,1 (u)− S(3)

2,1(u) + 2S(3)
2,2(u)

)]

du,

where

S(3)
0,0(u) =

∞
∑

i=0

ui

i! J (3,0)
i (u)

,

S(3)
1,1(u) = 3

∞
∑

i=0

ui J (3,1)
i (u)

i!
(

J (3,0)
i (u)

)2 ,

S(3)
2,1(u) = 6

∞
∑

i=0

ui J (3,2)
i (u)

i!
(

J (3,0)
i (u)

)2 ,

S(3)
2,2(u) =

9

2

∞
∑

i=0

ui
(

J (3,1)
i (u)

)2

i!
(

J (3,0)
i (u)

)3 ,

T (3)
1,1 (u) = 3

∞
∑

i=0

J (3,1)
i (u)

J (3,0)
i (u)

,

T (3)
2,1 (u) = 6

∞
∑

i=0

J (3,2)
i (u)

J (3,0)
i (u)

,

T (3)
2,2 (u) =

9

2

∞
∑

i=0

(

J (3,1)
i (u)

)2

(

J (3,0)
i (u)

)2 .

The computation results of these examples are found in
Section V.

IV. ASYMPTOTIC ANALYSIS OF EXTREME CASES

The form of the downlink coverage probability obtained
in Theorem 1 seems complicated and it is hard to derive
any qualitative property from it. Thus, in this section, we
investigate the asymptotic property as θ → ∞ for two extreme
cases; that is, m = 1 and m → ∞ of the Nakagami-m fading.
The case of m = 1 reduces to the Rayleigh fading and the
asymptotic property is obtained in [5] as follows.

Proposition 2 (Theorem 2 in [5]): The downlink coverage
probability for m = 1 (Rayleigh fading) satisfies

lim
θ→∞

θ1/β P(SIR(1)
o > θ) =

∫ ∞

0

∞
∏

j=2

E

[(

1 +
( v

Yj

)β)−1]

dv,

(21)
where Yj ∼ Gam(j, 1), j = 1, 2, . . ., are mutually indepen-
dent.

Since Gam(m, 1/m) converges weakly to the Dirac mea-
sure δ1 with mass at the unity as m → ∞, considering the
case of m → ∞ corresponds to ignoring the fading effects. In
this case, we first show that the downlink coverage probability
has the same asymptotic decay rate as the case of m = 1 and
then derive the relation among the two asymptotic constants.

Theorem 2: In the extreme case of m → ∞, the downlink
coverage probability satisfies

lim
θ→∞

θ1/β P(SIR(∞)
o > θ) = E

[(

∞
∑

j=2

1

Yj
β

)−1/β]

, (22)

where Yj ∼ Gam(j, 1), j = 1, 2, . . ., are mutually indepen-
dent.
Furthermore, let c(1) and c(∞) denote the right-hand sides

of (21) and (22), respectively. Then, these asymptotic constants
satisfy

c(1) ≥ Γ
(

1 +
1

β

)

c(∞), (23)

where Γ denotes Euler’s gamma function.
Proof: Applying Hi = 1 and ∥Xi∥2 ∼ Yi for i ∈ N, and

also ℓ(r) = r−2 β in (1) and (2), we have

P(SIR(∞)
o > θ) =

∞
∑

i=1

P(SIR(∞)
o > θ, Bo = i)

=
∞
∑

i=1

P

(

θ
∑

j∈N\{i}

(Yi

Yj

)β
< 1, Yj ≥ Yi, j ∈ N

)

. (24)

First, we consider the summand for i = 1 on the right-hand
side of (24). Applying the density function of Y1 ∼ Exp(1)
yields

P

(

θ
∞
∑

j=2

(Y1

Yj

)β
< 1, Yj ≥ Y1, j ∈ N

)

=

∫ ∞

0
e−u

P

((

∞
∑

j=2

1

Yj
β

)−1
> θ uβ ,

Yj ≥ u, j = 2, 3, . . .
)

du

= θ−1/β

∫ ∞

0
e−θ−1/β v

P

((

∞
∑

j=2

1

Yj
β

)−1/β
> v,

Yj ≥ θ−1/β v, j = 2, 3, . . .
)

dv,

where the last equality follows from the substitution of v =
θ1/β u. Therefore, since e−θ−1/β v ↑ 1 and 1{Yj≥θ−1/β v} ↑ 1
a.s. as θ → ∞, the monotone convergence theorem implies

lim
θ→∞

θ1/β P
(

θ
∞
∑

j=2

(Y1

Yj

)β
< 1, Yj ≥ Y1, j ∈ N

)

=

∫ ∞

0
P

((

∞
∑

j=2

1

Yj
β

)−1/β
> v

)

dv,

and we obtain the right-hand side of (22).
It remains to show that the summation over i = 2, 3, . . . on

the right-hand side of (24) is o(θ−1/β) as θ → ∞. For i ≥ 2,
applying the density function of Yi ∼ Gam(i, 1) yields

P

(

θ
∑

j∈N\{i}

(Yi

Yj

)β
< 1, Yj ≥ Yi, j ∈ N

)

≤

∫ ∞

0

e−u ui−1

(i− 1)!
P

((

∑

j∈N\{i}

1

Yj
β

)−1
> θ uβ

)

du

= E

(

∫ (θZi)
−1/β

0

e−u ui−1

(i− 1)!
du

)

, (25)

where Zi =
∑

j∈N\{i}(1/Yj
β). Therefore, since e−u ≤ 1,

E

(

∫ (θZi)
−1/β

0

e−u ui−1

(i− 1)!
du

)

≤
θ−i/β

i!
E(Zi

−i/β). (26)
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Here, noting that i ̸= 1 and Y1 ∼ Exp(1),

E(Zi
−i/β) = E

[(

∑

j∈N\{i}

1

Yj
β

)−i/β
]

≤ E
(

Y1
i
)

= i!. (27)

Hence, applying (26) and (27) to (25), we obtain

θ1/β
∞
∑

i=2

P

(

θ
∑

j∈N\{i}

(Yi

Yj

)β
< 1, Yj ≥ Yi, j ∈ N

)

≤ θ1/β
∞
∑

i=2

θ−i/β =
1

θ1/β − 1
→ 0 as θ → ∞,

which completes the proof of the first part in Theorem 2.

For the second part of the theorem, since Yj , j ∈ N, are
mutually independent, the right-hand side of (21) reduces to

c(1) =

∫ ∞

0
E

(

exp

{

−
∞
∑

j=2

log
(

1 +
( v

Yj

)β)
})

dv

≥

∫ ∞

0
E
(

e−vβ Z1
)

dv,

where Z1 =
∑∞

j=2(1/Yj
β) and the inequality follows from

log(1 + x) ≤ x. Thus, substituting t = vβ Z1,
∫ ∞

0
E
(

e−vβ Z1
)

dv =
1

β

∫ ∞

0
e−t t1/β−1 dtE

(

Z1
−1/β

)

= Γ
(

1 +
1

β

)

c(∞).

Note in (23) that Γ(1 + 1/β) ↑ 1 as β → 1 and β → ∞,
and it takes the minimum value of the gamma function on the
positive domain Γ(γmin) = 0.8856031944 · · · at 1 + 1/β =
γmin = 1.4616321449 · · · ; that is, the coefficient on the right-
hand side of (23) is somewhat close to 1.

V. NUMERICAL EXPERIMENTS

The results of some numerical experiments are presented.
The first experiment is the comparison between the GPP
and PPP based models. In Figure 1, the downlink coverage
probability over Nakagami-2 fading is plotted for both the
GPP and PPP based models, where two cases β = 1.25 and
β = 2.0 (that is, ℓ(r) = r−2.5 and ℓ(r) = r−4) are computed.
For comparison, the corresponding results over the Rayleigh
fading, which are obtained in [5], are also displayed there. As
in the Rayleigh fading case, the downlink coverage probability
for the GPP based model dominates that for the PPP based
model in the Nakagami-m fading case. Furthermore, for both
the GPP and PPP based models, the coverage probability seems
asymptotically invariant in the value of m. This observation is,
however, doubtful from the results of Lemma 1 and Theorem 2.
Thus, this is further investigated in the next experiment.

In the second experiment, we compare the downlink cov-
erage probability in terms of m of the Nakagami-m fading.
The coverage probability for m = 1, 2 and 3 is plotted in
Figure 2. The asymptotic results obtained in Proposition 2
and Theorem 2 are also drawn in the same figure, where the
asymptotic constant c(∞) for the case of m → ∞ is estimated
from 100 independent samples of

(
∑∞

j=2 1/Yj
β
)−1/β in (22).
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Fig. 1. Comparison of downlink coverage probability between the GPP and
PPP based models for β = 1.25 (top) and β = 2.0 (bottom).

From the figure, indeed the downlink coverage probability
seems increasing in m = 1, 2 and 3. However, as m → ∞,
the asymptotic tail of the coverage probability is smaller than
the others particularly for the value of β close to 1. This
observation agrees with the results of Lemma 2 and Theorem 2.
Anyway, a further investigation would be required concerning
the impact of the value of m of the Nakagami-m fading.
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