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Abstract—Consider a decentralized device-to-device (D2D) net-
work consisting of K different types of D2D pairs in which
the D2D pairs of each specific type form an independent
homogeneous Poisson point process (PPP) and the transmitter
(TX) of each D2D pair has a unique intended receiver (RX).
For this heterogeneous network model, we develop a model-free
tractable framework to analyze the coverage probability without
any specific model assumptions for channel fading, stochastic
transmit power and distance. First we device a novel approach
to finding the Laplace transform of the reciprocal of the SIR
which is used to characterize the model-free coverage probability
of the D2D pair of each type. Our main analytical findings show
that the model-free bounds of the coverage probability can be
obtained and they reduce to a closed-form result as long as the
received signal power has an Erlang distribution. These findings
are applied to expound when the randomness of the received
signal power benefits/jeopardizes the coverage probability and
how to use the distributed stochastic power control to improve
the coverage probability of each D2D pair.

I. INTRODUCTION

Consider a large-scale device-to-device (D2D) network in
which there are K different types of D2D pairs and the
D2D pairs of each specific type form an independent Poisson
point process (PPP) with a certain intensity (density). The
transmitter (TX) of each D2D pair has a unique intended
receiver (RX) away from it by some distance. Namely, such
a heterogeneous D2D network consisting of K-type D2D
pairs independently scattering on an infinitely large plane R2.
Usually, interference in such a network significantly dominates
the transmission performance that is effectively evaluated by
the metric of the signal-to-interference power ratio (SIR) at
RXs. By assuming all TXs in the network transmit narrow
band signals and share the same spectrum bandwidth, the SIR
of the RX in a type-k D2D pair, called type-k SIR, can be
written as

SIRk ,
Sk
Ik

=
PkHkR

−α
k

Ik
> θ, (1)

where k ∈ K , {1, 2, . . . ,K}, Ik denotes the interference
power from all interferers in the network, Sk , PkHkR

−α
k is

the received (desired) signal power, Pk is the transmit power,
Hk is the random channel gain, Rk is the (random) distance
in the type-k pair, α > 2 is the pathloss exponent, and θ is
the minimum required SIR for successfully decoding. Note
that Sk and Ik are both random variables whose distributions
depend upon channel gain, transmit power as well as pathloss

models between the type-k RX and TXs. The SIR pertaining
to several important transmitting performance metrics, such as
coverage probability, ergodic link capacity, network capacity,
etc. Understanding the statistical properties of the SIR not only
helps us realize how the received random signal powers affect
the distribution of the SIR, but also provides us with a crucial
clue indicating the interplays of the transmitting policies and
behaviors among many different D2D pairs.

Traditionally, the statistical properties of the SIR in a
Poisson-distributed wireless network are only analytically ac-
cessible in very few special cases. Some prior works have
already made a good progress on the analysis of the dis-
tribution of the SIR by presuming a specific channel gain
model (typically see [1]–[6]). In reference [1], for example,
the coverage/outage probability in a single-type Poisson ad
hoc network, which is essentially the contemporary cumulative
density function (CCDF) of the SIR, was firstly found in
closed-form by assuming independent Rayleigh fading chan-
nels since the Rayleigh fading channel model gives rise to the
tractable Laplace transform of the interference by means of
the probability generating function (PGF) of a homogeneous
PPP [3], [7], [8]. Although the closed-form Laplace transform
of the interference with general channel fading is found in
[3], it can only be applied to find the CCDF of the SIR with
the exponential-distributed received signal power. In [5], the
bounds on the temporally averaged coverage/outage probabil-
ity are studied specifically for Rayleigh fading channels only
due to the tractability in mathematical analysis.

In this work, our first main contribution is to develop the
novel analytical framework of tractably analyzing the “model-
free” cumulative density function (CDF) of the SIR defined in
(1) without assuming any specific channel gain, transmit power
and distance models. The main idea behind this framework is
to first find the explicitly result of the Laplace transform of
the reciprocal of SIRk with general random models of fading
channel gain, transmit power and distance. Then substituting
it into the exploited fundamental identity between the CDF
of SIRk and the Laplace transform of the reciprocal of SIRk.
The bounds on the CDF of SIRk and the type-k coverage
probability are characterized and we show that the closed-
form type-kcoverage probability exists if and only if received
signal power Sk has an Erlang distribution. Then we apply the
model-free result of the type-k coverage probability to show
how to design distributed stochastic power control so as to



increase the coverage probability of the TXs of each type by
exploiting the randomness of the received signal power.

II. SYSTEM MODEL

We consider a decentralized interference-limited network on
the plane R2 in which there are K different types of D2D pairs
and the D2D pairs of each specific type form an independent,
homogeneous and marked Poisson point process (PPP). The
TX of each D2D pair has a unique intended RX and the set
Φk consisting of all the transmitters of the type-k D2D pairs
and their marks is expressed as

Φk ,{(Xk,i, Hk,i, Pk,i, Rk,i) : Xk,i ∈ R2, Pk,i, Hk,i ∈ R+,

Rk,i ∈ [1,∞), i ∈ N}, k ∈ K , {1, 2, . . . ,K}, (2)

where Xk,i denotes the TX of the type-k D2D pair i and
its location, Hk,i is the fading channel gain from Xk,i to
the at the origin where a typical RX of a type k D2D
pair is located, Pk,i is the transmit power of Xk,i, Rk,i is
the distance between Xk,i and its receiver. Throughout this
paper, all random variables (RVs) with different subscripts are
independent whereas the RVs of the same class with the same
subscript k are i.i.d. In addition, all channel gains Hk,i’s have
unit mean for all k ∈ K and i ∈ N+. Assume the intensity of
all TXs in Φk is λk.

Assume all TXs adopt the slotted Aloha protocol to access
the channel shared in the network. Consider the typical RX
of a type-k D2D pair located the origin and it receives the
interference given by1

Ik ,
∑

k,i:Xk,i∈Φ\Xk

Hk,iPk,i
‖Xk,i‖α

, (3)

where Φ ,
⋃K
k=1 Φk, ‖Xi − Xj‖ denotes the Euclidean

distance between TXs Xi and Xj , and α > 2 is the pathloss
exponent. Using this type-k interference Ik, the signal-to-
interference power ratio (SIR) at a type-k RX, called type-k
SIR as shown in (1), can be explicitly rewritten as follows

SIRk =
Sk
Ik

=
PkHkR

−α
k∑

k,i:Xk,i∈Φ\Xk Hk,iPk,i‖Xk,i‖−α
. (4)

Assuming the minimum SIR threshold for successful decoding
the received signals in all D2D pairs is θ, the type-k coverage
probability is defined as

pk(θ) , P [SIRk > θ] , (5)

i.e., it is the CCDF of a type-k SIR. Prior works on the
coverage/outage probability in Poisson wireless networks are
channel-model-dependent and the majority of the prior works
find the closed-form coverage probability by assuming ex-
ponentially distributed channel gains (i.e., channels undergo

1We call this receiver located at the origin “typical receiver” since our
following analysis will be based on the location of this typical RX and the
statistical results obtained at this receiver are the same as those at all other
RXs in the network based on the Slivnyak theorem [5], [7]. Note that all these
k homogeneous PPPs are simple in the network, i.e., no more than one node
in the network can occupy the same location.

Rayleigh fading), whereas the coverage probability for the
channel gains without an exponential distribution is generally
intractable. As a result, the prior results cannot thoroughly
reveal how the coverage probability is impacted as the random
models involved in the SIR are changed.

III. GENERALIZED ANALYTICAL FRAMEWORK FOR
TYPE-k COVERAGE PROBABILITY

In this section, our goal is to characterize the type-k model-
free coverage probability without presuming any specific ran-
dom models on channel gain, transmit power and distance, i.e.,
the received signal power Sk in (4) has an unknown general
distribution. We will first study some general results on the
distribution of SIRk and then use them to characterize some
general results on the type-k coverage probability.

A. The Generalized Distribution of SIRk
The Laplace transform of a nonnegative real-valued random

variable Z for any s ∈ R++ is defined as

LZ(s) , E
[
e−sZ

]
, s > 0. (6)

For arbitrary random power-law channel and transmit power
models, the reciprocal of SIRk is shown in the following
theorem.

Theorem 1. The Laplace transform of the reciprocal of SIRk
in (4) can be explicitly expressed as

LSIR−1
k

(s) =

∫ ∞
0

sLIk
(

1

tE[Sk]

)
fŜk(st)dt, (7)

where Ŝk , Sk/E[Sk] = PkHkR
−α
k /E[PkHkR

−α
k ] is called

the type-k received signal power with unit mean and LIk(·)
is given by

LIk(s) = exp

{
−πΓ

(
1− 2

α

)
s

2
α λ̃

}
, (8)

where λ̃ =
∑K
k=1 λ̃k, λ̃k , λkE

[
H

2
α

k

]
E
[
P

2
α

k

]
and Γ(a) =∫∞

0
ta−1e−tdt for a > 0 is the gamma function. Furthermore,

the CDF of SIRk can be shown as

FSIRk (θ) = 1− L−1

{∫ ∞
0

LIk
(

1

tE[Sk]

)
fŜk(st)dt

}(
1

θ

)
,

(9)

where θ ∈ R++, FZ(·) and fZ(·) denote the CDF and pdf
(probability density function) of RV Z, respectively.

Proof: See Appendix A.
Theorem 1 demonstrates the model-free expression of the

Laplace transform of SIR−1
k as well as the CDF of SIRk

without assuming any specific random channel gain, transmit
power and distance models. Although in general the expres-
sions in Theorem 1 cannot be completely found in closed-
form, they can be calculated by using the numerical inverse
Laplace transform. Nonetheless, as shown in the following
corollary, we still can characterize the low-complexity bounds
on FSIRk(θ) and the near closed-form of FSIRk(θ) for α = 4.



Corollary 1. The CDF of SIRk in (9) can be bounded as
shown in the following:

FSIRk(θ)


≤ min

{
1, πλ̃E

[
S
− 2
α

k

]
θ

2
α

}
≥ L−1

 πΓ(1− 2
α )λ̃

s1−
2
α

(
πΓ(1− 2

α )λ̃s
2
α+E

[
S

2
α
k

])
 (θ−1)

.

(10)

In particular, if α = 4, then FSIRk(θ) can be simply found as

FSIRk(θ) = E

[
erf

(
π

3
2 λ̃
√
θ

2
√
Sk

)]
(11)

in which erf(x) , 2√
π

∫ x
0
e−t

2

dt is the error function and

λ̃ =
∑K
j=1 λjE[

√
Pj ]E[

√
Hj ].

Proof: See Appendix B.
When λ̃E

[
S
− 2
α

k

]
� 1 (e.g., the mean of the interference-

to-signal power ratio is fairly small), FSIRk(θ) is accurately
approximated by the inverse Laplace transform of the Taylor’s
expansion of the 1− exp(·) term in (30) as

FSIRk(θ) ≈
bα/2c∑
n=1

(−1)n+1E
[
S
− 2n
α

k

]
Γ(1− 2n

α )

[
Γ

(
1− 2

α

)
πθ

2
α λ̃

]n
,

(12)

where bxc , max{y ∈ Z : y ≤ x}. Namely, we have
FSIRk(θ) ∈ Θ

(
λ̃E
[
S
− 2
α

k

])
for a given θ > 0 as λ̃E

[
S
− 2
α

k

]
approaches zero. In other words, FSIRk(θ) in (12) is very
accurate in this case and the bounds in (10) are very tight
since they coverage to each other eventually.

For the case of received signal power Sk having an Erlang
distribution, the closed-form result of FSIRk(θ) in Theorem 1
indeed exists, as shown in following corollary.

Corollary 2. If the type-k received signal power Ŝk with unit
mean is an Erlang RV (i.e., Ŝk ∼ Erlang(µ, µ) where µ ∈
N+), then we have

FSIRk (θ) = 1−

dµ−1

dvµ−1

[
vµ−1LIk

(
µ

vE[Sk]

)] ∣∣∣∣
v=θ−1

(µ− 1)!
. (13)

Proof: Since we assume Ŝk ∼ Erlang(µ, µ), FSIRk(θ) in
(9) can be written as

FSIRk(θ) = 1− L−1

µ
µsµ−1

∫∞
0
LIk

(
1

tE[Sk]

)
tµ−1

eµst dt

(µ− 1)!


(

1

θ

)

= 1−
L−1

{
sµ−1

∫∞
0

[
LIk

(
µ

vE[Sk]

)
vµ−1

]
e−svdv

}(
1
θ

)
(µ− 1)!

,

and using the identity L
{ dµ

dtµ g(t)
}

(s) = sµ
∫∞

0
g(t)e−stdt to

simplify FSIR(θ) in above yields the result in (13).
For any particular value of µ, the explicit closed-form ex-
pression of FSIRk(θ) can be easily found by carrying out the

µth-order derivative in (13). For instance, in the special case
of µ = 1, i.e., Ŝk ∼ exp(1, 1) is an exponential RV with unit
mean and variance2, FSIRk(θ) in (13) reduce to

FSIRk(θ) = 1− e−πΓ(1− 2
α )λ̃(θ/E[Sk])

2
α
, (14)

and this obviously shows that SIRk has a Weibull distribution
with parameters 2

α and E[Sk]/(πΓ(1− 2
α )λ̃)

α
2 .

Another case that FSIRk(θ) in Theorem 1 can be found in
a simpler form is when Sk does not possess any randomness,
as shown in the following corollary.

Corollary 3. If the received signal power of a type-k RX is
not a random variable, i.e., Sk in (4) is deterministic, the CDF
of SIRk in (9) reduces to

FSIRk(θ) = 1− L−1

{
1

s
LIk

(
s

Sk

)}(
θ−1
)
. (15)

Proof: Notice that FSIRk(θ) in (9) can be rewritten as
follows

FSIRk (θ) = 1− L−1

{∫ ∞
0

1

s
LIk

(
s

uE[Sk]

)
fŜk(u)du

}(
θ−1
)

= 1− L−1

{
ESk

[
1

s
LIk

(
s

Sk

)]}(
θ−1
)
.

Thus, if Sk is a constant, we readily obtain (15).
Although the inverse Laplace transforms in (15) in general

still cannot be explicitly calculated, they can be evaluated by
the numerical inverse Laplace transform for any particular
value of θ. For πλ̃/S

2
α

k � 1, the closed-form approximation
of FSIRk(θ) also can be inferred from (12) as

FSIRk(θ) ≈
bα/2c∑
n=1

(−1)n+1

Γ(1− 2n
α )

[
Γ

(
1− 2

α

)
πλ̃

(
θ

Sk

) 2
α

]n
.

(16)

Furthermore, for the special case of α = 4, (15) has a closed-
form expression directly obtained from (11) as

FSIRk(θ) = erf

(
π

3
2 λ̃

2

√
θ

Sk

)
, (17)

where λ̃ =
∑K
j=1 λjE

[√
Hj

]
E
[√

Pj
]
and Sk = PkHkR

−4
k

is a constant.

B. General Results on the type-k coverage probability

In general, the type-k model-free coverage probability pk(θ)
cannot be derived in an explicit closed form based on (9) if Sk
does not have an Erlang distribution. Nonetheless, the bounds
on pk(θ) can be characterized as shown in the following
corollary.

2This could happen in the case that the transmit power and distance are
constant and the communication channel undergoes Rayleigh fading so that
its gain distribution is ∼ exp(1).



Corollary 4. The type-k coverage probability in (5) can be
bounded as follows

pk(θ)


≥
(

1− πλ̃E
[
S
− 2
α

k

]
θ

2
α

)+

≤ L−1

 E
[
S

2
α
k

]
s

(
πΓ(1− 2

α )λ̃s
2
α+E

[
S

2
α
k

])
 (θ−1)

. (18)

If α = 4, pk(θ) has a nearly closed-form expression given by

pk(θ) = E

[
erfc

(
π

3
2 λ̃

2

√
θ

Sk

)]
, (19)

where λ̃ =
∑K
j=1 λjE[

√
Pj ]E[

√
Hj ] and Sk = PkHkR

−4
k .

Proof: The proof is omitted since it is similar to the proof
of Corollary 1.
In addition, using the error function’s Maclaurin series (19)
can be further written as

pk(θ) =1− 2√
π

∞∑
n=0

(−1)n

n!(2n+ 1)

(
π

3
2 λ̃
√
θ

2

)2n+1

E

[
1

S
n+ 1

2

k

]
(20)

≥erfc

(
π

3
2 λ̃
√
θ

2
E
[

1√
Sk

])
, (21)

where the lower bound in (21) is obtained by applying Jensen’s
inequality to the erfc function with a positive argument that is
convex. Although the result in (19) is derived by considering
the special case of α = 4, it is still very important since it
is applicable to any random channel gain, transmit power and
distance models and able to directly provide some insight into
how the randomness of the received signal power affects the
coverage probability. Note that pk(θ) in (20) reduces to (21)
if Sk is constant.

In order to have a more tractable result of pk(θ) in prac-
tically applicable contexts with a general pathloss exponent,
we consider normalized received signal power Ŝk as a Gamma
random variable with mean 1 and variance 1/mk, i.e., Ŝk ∼
Gamma(mk, 1/mk), for mk ∈ N+. Such a received signal
power model is somewhat general because it characterizes
the different randomness levels3 of Sk. According to the
results in Corollary 2 and fŜk(x) =

m
mk
k xmk−1

emkxΓ(mk) , pk(θ) without
interference cancellation based on (13) for a positive integer
mk can be readily obtained by

pk(θ) =

dmk−1

dvmk−1

[
vmk−1LIk

(
mk

vE[Sk]

)] ∣∣∣∣
v=θ−1

(mk − 1)!
, (22)

whose closed-form expression can be explicitly calculated
once mk is designated. For the special case of Ŝk ∼ exp(1)

3For constant transmit power Pk and distance Rk , Ŝk ∼
Gamma(mk, 1/mk) means the communication channel of the type-k
RX suffers Nakagami-mk fading and Hk ∼ Gamma(mk, 1/mk)

and Rayleigh fading interference channels, pk(θ) in (22)
reduces to

pk(θ) = exp

−2π2θ
2
α

∑K
j=1 λjE

[
P

2
α
j

]
α sin(2π/α)(E[Sk])

2
α

 , (23)

which reduces to the seminal result firstly shown in [1] for
K = 1, constant transmit power and distance. The coverage
probability in (22) reveals a very important fact that the
closed-form model-free coverage probability exists as long
as the received signal power has an Erlang distribution.
This overthrows the traditional impression that the coverage
probability only has a closed-form result for constant transmit
power, distance and Rayleigh fading channels.

IV. APPLICATION OF TYPE-k MODEL-FREE COVERAGE:
DISTRIBUTED STOCHASTIC POWER CONTROL

In this section, we apply the analytical results obtained
on the type-k model-free coverage probability to theoretically
clarifying an important question, that is, how to do distributed
stochastic power control in order to improve the coverage
probability. Namely, we would like to investigate how to
improve the coverage probability by designing distributed
stochastic power control schemes that change the distribution
of the received signal power. According to the explicit results
of the coverage probability in Section III-B, the key to
maximizing the coverage probability of the type-k D2D pairs
is how to minimize the term λ̃/(E[Sk])

2
α by optimally devising

distributed power control schemes. Since each TX only has
its local information available, we specifically propose the
distributed stochastic power control scheme for a type-k D2D
pair as follows

Pk =
P k
(
HkR

−α
k

)γk
E [Hγk

k ]E
[
R−αγkk

] , (24)

where P k is the mean of transmit power Pk, γk is the power
control exponent needed to be designed. When there is no
power control (i.e., constant transmit power is used), Pk = P k
(i.e., γk = 0). This power control scheme is motivated by
the fractional power control in [9] based on the fact that the
randomness of the received signal power could improve the
coverage probability [10]. We can change γk to adjust the
randomness of Sk to improve the coverage probability in dif-
ferent network contexts. Therefore, the fundamental problem
needed to be firstly studied is how the distributed stochastic
power control in (24) changes/benefits the type-k coverage
probability. The coverage probability with stochastic power
control was essentially intractable in prior works, whereas it
becomes much more tractable if using the coverage probability
found in Section III-B. The following theorem shows pk(θ)
with the proposed distributed stochastic power control.

Theorem 2. Suppose all the type-k TXs adopt the stochastic
power control given in (24). Let Sk = P kHkR

−α
k here be the

received signal power without stochastic power control and
the CCDF of Sk has the property E[F cSk(Z)] ≤ F cSk(E[Z])



for a nonnegative RV Z. For γk > −1, the bounds on pk(θ)
with stochastic power control are shown as

ppck (θ)


≤ F cSk

(
Γ(1+ α

2(1+γk)
)(θE[S

γk
k ])

1
1+γk

[πΓ(1− 2
α )λ̃pc]

α
2(1+γk)

)
≥
(

1− πλ̃pc (E [Sγkk ])
2
α E

[
S
− 2(1+γk)

α

k

]
θ

2
α

)+
,

(25)

where superscript “pc” means “power control” and λ̃pc is

λ̃pc =

K∑
j=1

λjP
2
α

j E
[
H

2
α
j

] E
[
H

2γj
α
j

]
(E[H

γj
j ])

2
α

E
[
R
−2γj
j

]
(E[R

−αγj
j ])

2
α

, (26)

which is smaller than λ̃ =
∑K
j=1 λjP

2
α

j E
[
H

2
α
j

]
. Furthermore,

if α = 4, then ppck (θ) has the following simple identity

ppck (θ) = E

[
erfc

(
π

3
2 λ̃pc

2

√
θE[Sγkk ]

Sγk+1
k

)]
, (27)

where λ̃pc is given in (26) with α = 4 and Sk = P kHkR
−4
k .

Proof: Please refer to the proof of Theorem 7 in [10].
According to Theorem 2, the distributed stochastic power

control scheme with nonzero γk can reduce the interference
since λ̃pc < λ̃. This also implies that the “randomness” of
transmit power always results in less interference no matter
if the power depends on the channel gain and/or pathloss.
Nonetheless, this does not mean the stochastic power control
always benefits the coverage probability since it may not
enhance the received signal power without using a proper value
of γk. To make stochastic power control benefit the type-k
coverage probability, this condition ppck (θ) > pk(θ) must hold,
which poses the constraint on the values of γk that are able
to improve the type-k coverage probability. Unfortunately, the
explicitly constraints on γk’s for all k ∈ K are only tractably
found for some special cases.

V. NUMERICAL RESULTS

In this subsection, a few numerical results are provided
to validate the success probabilities derived in the previous
subsections. We consider the heterogeneous wireless ad hoc
network consisting of three disparate types of TXs and the
simulation parameters for this heterogeneous network are
listed in Table I. In Section III-B, we have shown that the ran-
domness of the received signal power significantly influences
the coverage probability, which can be further demonstrated in
Fig. 1 for the coverage probabilities without and with channel
randomness due to Rayleigh fading. As shown in Fig. 1,
we observe an important phenomenon, that is, channel ran-
domness due to fading does not always weaken the coverage
probability under different TX intensities. In a dense network,
channel randomness is usually able to improve the coverage
probability since it weakens the interference channels much
more than the communication channel. Also, we can exactly
find the intensity region in which Rayleigh fading benefits the

TABLE I
NETWORK PARAMETERS FOR SIMULATION

Parameter \ TX Type k Type 1 Type 2 Type 3
Transmit Power Pk (W) 1 0.5 0.05
Intensity λk (TXs/m2) λ1 5λ1 10λ1
Pathloss Exponent α 4

Transmit Distance Rk (m) 10
Channel Gain Hk,i ∼ exp(1, 1)

SIR Threshold θ 1
Power control exponent γk γ

1 2 3 4 5
x 10
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Simulated p1, Rayleigh Fading
Theoretical p1, Rayleigh Fading
Simulated p2, Rayleigh Fading
Theoretical p2, Rayleigh Fading
Simulated p3, Rayleigh Fading
Theoretical p3, Rayleigh Fading
Simulated p1, No fading
Theoretical p1, No fading
Simulated p2, No fading
Theoretical p2, No fading
Simulated p3, No fading
Theoretical p3, No Fading

Fig. 1. Simulation results of the coverage probabilities with and without
Rayleigh fading.

coverage probability. For example, in the simulation setting
here we have Λ̃2 = 2.662×103λ1, p2(θ) = exp(−

√
πΛ̃2) for

Rayleigh fading and p2(θ) = erfc
(

Λ̃2

)
for no fading.

In Fig. 2, we show the success probabilities when the
stochastic power control schemes with γ = −0.5 and γ =
0.5 in (24) are adopted. In Fig 2(a) for γ = −0.5, we
observe that stochastic power control (slightly) outperforms
no power control in the low intensity region (roughly when
λ1 < 0.0001), whereas in Fig 2(b) for γ = 0.5 stochastic
power control outperforms no power control in the high
intensity region (roughly when λ1 > 0.0001). This validates
our previous discussion that the power control exponent γ
should change based on different TX intensities in order to
make stochastic power control work better than no power
control, and exploiting more randomness of the received signal
power in a dense network (i.e., using a larger power control
exponent) achieves a larger coverage probability. In addition,
the correctness of ppck (θ) in (27) is validated in Fig. 2 since it is
used to provide the theoretical results of ppck in the figure that
perfectly coincide with their corresponding simulated results.

VI. CONCLUSIONS

In prior works, the distribution of the SIR in a pair-
wise decentralized network was analyzed by presuming some
specific random models. Such a model-dependent distribution
is unable to provide some insight into how the statistical
properties of the SIR are impacted once the random models
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Fig. 2. Simulation results of the coverage probabilities with and without the
stochastic power control: (a) ppck (θ) with γ = −0.5 and pk(θ) = ppck (θ)
with γ = 0, (b) ppck (θ) with γ = −0.5 and pk(θ) = ppck (θ) with γ = 0.

involved in the SIR change. Accordingly, in this paper we in-
troduce a Laplace-transform-based framework of analyzing the
distribution of the model-free SIR without using any specific
models on he channel gain, transmit power and distance in a
network consisting of K different types of D2D pairs. This
model-free framework successfully helps us find the general
bounds and nearly closed-form result of the type-k coverage
probability. We apply the general results of the type-k coverage
probability in clarifying the main question regarding how to
do distributed stochastic power control in oder to improve
the coverage probability. Numerical results validate that the
derived coverage probabilities without and with Rayleigh
fading channel and the derived coverage probabilities without
and with the proposed stochastic power control are all correct.

APPENDIX

A. Proof of Theorem 1
According to (4) and (8), the Laplace transform of the

reciprocal of SIRk in (4) can be expressed as

LSIR−1
k

(s) = ESk
[
LIk

(
s/E[Sk]

Sk/E[Sk]

)]
=

∫ ∞
0

fŜk(x)dx

eπΓ(1− 2
α )λ̃( ŝx )

2
α

= s

∫ ∞
0

fŜk(ts)dt

eπΓ(1− 2
α )λ̃(tE[Sk])−

2
α

, (28)

where ŝ , s/E[Sk]. By the definition of LSIR−1
k

(s), we have

LSIR−1
k

(s) =

∫ ∞
0

fSIR−1
k

(t)e−stdt =

∫ ∞
0

dFSIR−1
k

(t)

dt
e−stdt

=

∫ ∞
0

sFSIR−1
k

(t)e−stdt =

∫ ∞
0

sfŜk(ts)dt

eπΓ(1− 2
α )λ̃(tE[Sk])−

2
α

,

which indicates∫ ∞
0

FSIR−1
k

(t)e−stdt =

∫ ∞
0

e−πΓ(1− 2
α )λ̃(tE[Sk])−

2
α
fŜk(ts)dt

(29)

and then taking the inverse Laplace transform of the both sides
of (29) yields FSIR−1

k
(t) = 1− FSIRk

(
t−1
)
, which is

FSIR−1
k

(t) = L−1

{∫ ∞
0

LIk
(

1

tE[Sk]

)
fŜk(ts)dt

}
(t)

and then setting the argument of FSIRk

(
t−1
)

as t−1 = θ results
in (9).

B. Proof of Corollary 1
The CDF of SIRk in (9) can be rewritten as

FSIRk(θ) = L−1

{
E
[

1

s

(
1− e−πΓ(1− 2

α )λ̃(s/Sk)
2
α

)]}(
1

θ

)
= E

[
L−1

{
1

s

(
1− e−πΓ(1− 2

α )λ̃(s/Sk)
2
α

)}
(θ−1)

]
. (30)

Using the inequality x
1+x ≤ 1− e−x ≤ x for x > 0, the upper

bound on the result in (30) is

FSIRk(θ) ≤ E

[
L−1

{
πΓ(1− 2

α )λ̃

s1− 2
αS

2
α

k

}(
1

θ

)]
= πλ̃E

[
S
− 2
α

k

]
θ

2
α

and

FSIRk(θ) ≥ L−1

E

 πΓ(1− 2
α )λ̃

s1− 2
α

(
πΓ(1− 2

α )λ̃s
2
α + S

2
α

k

)


(
1

θ

)

≥ L−1

 πΓ(1− 2
α )λ̃

s1− 2
α

(
πΓ(1− 2

α )λ̃s
2
α + E

[
S

2
α

k

])
 (θ−1),

where the second inequality holds due to the convexity of
1/(a+x) for a, x > 0. Therefore, the upper and lower bounds
in (10) is acquired. For α = 4, the inverse Laplace transform
in (30) can be found in closed-form so that we have

FSIRk(θ) = E

[
erf

(
π

3
2 λ̃
√
θ

2
√
Sk

)]
. (31)

Hence, the result in (11) is obtained.
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