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Abstract—We study fundamental characteristics for the con-
nectivity of multi-hop D2D networks. Devices are randomly
distributed on street systems and are able to communicate with
each other whenever their separation is smaller than some
connectivity threshold. We model the street systems as Poisson-
Voronoi or Poisson-Delaunay tessellations with varying street
lengths. We interpret the existence of adequate D2D connectivity
as percolation of the underlying random graph. We derive
and compare approximations for the critical device-intensity for
percolation, the percolation probability and the graph distance.
Our results show that for urban areas, the Poisson Boolean
Model gives a very good approximation, while for rural areas,
the percolation probability stays far from 1 even far above the
percolation threshold.

I. INTRODUCTION

In recent years, network models featuring device-to-device
(D2D) communications have evolved into a vigorous research
field, covering topics as broad as security, interference, energy
consumption, radio communications and resource allocation,
[1], [2]. However, the problem of the connectivity of wire-
less multi-hop networks has received little attention beyond
highly simplified mathematical models. In particular, linking
connectivity problems to the geometry of the underlying street
system of the territory under consideration is new and an
important step towards a more realistic analysis of D2D
networks. As has been observed in [3], street systems can
heavily influence connectivity properties of the D2D network
since, for example, thresholds for percolation are sensitive to
the spatial positioning of the nodes.

For applications in telecommunications, Cox point pro-
cesses are commonly employed to model various kinds of
networks [4, Chapter 5], because Cox point processes model
devices distributed randomly on environments which are them-
selves given by a random process. A variety of tessellation
types have been proposed for this purpose including Poisson-
Voronoi tessellations (PVT), Poisson-Delaunay tessellations
(PDT), line tessellations, and even more involved models like
the nested tessellations in [5]. As a rough guideline, PDT
fits better to rural areas since it represents roads between
cities, whereas PVT is a useful model for different urban

environments. Authors in [6] present a detailed discussion
of these tessellations and statistical comparisons to real city
layouts. Indeed, these random tessellations capture the statis-
tical properties of real city layouts rather well using a small
parameter space.

Once the street system is given, devices are randomly
positioned on the streets, either to model nodes of a fixed
network, like distribution units, or mobile users positioned
along the streets. The simplest way to do that is to use a
linear Poisson point process confined to the random streets,
i.e., a Cox point processes.

In case of a fixed network, the distribution of distances
between nodes following the street system can be expressed
via Palm theory [7]. When deploying a hierarchical network,
this entails the distribution of attenuation for signals travelling
between customers and their access points. In particular,
estimates for the deployment costs of the network on a given
territory can then be derived [8]. In the case of mobile
networks, building the Gilbert graph ( i.e. drawing an edge
between any two devices with separation less than a given
connection radius) one obtains a simple model for devices
using D2D communications.

Such a network is only useful if a high proportion of users
are connected to each other, even if they are on opposite sides
of the city. In other words, the Gilbert graph should feature
a large connected component reaching all, or at least most,
of the city. Regarding a city as so large as an unbounded
plane we interpret the desired connectivity as percolation of
the random graph [9]. Then, studying the percolation of this
random graph, as depicted in Figure 1, one can obtain results
on the connectivity of the wireless D2D network.

Analytic results are only available in the limiting regime of
highly dense or very sparse street systems [12]. In this paper,
we give sufficiently precise numerical answers to the following
three main questions:

1) What is the minimum density of devices in order to
ensure long-distance communications?

2) What is the probability for a randomly selected device
to be in the large connected component of the network?



Fig. 1: The network model as a Gilbert graph: streets (thin
lines) are represented by a PVT; devices (dots) are positioned
uniformly at random on the streets; edges (thick lines) are
drawn whenever two devices are separated by less than a
connectivity threshold r > 0.

3) How many hops per unit of distance are necessary to
connect two devices in the same connected component?

The network model used for the simulations is described
in Section II. The simulation methods are described in Sec-
tion III. Results and discussion follow in Section IV.

II. NETWORK MODEL

Following [10], [11], we model a street system T as a
PVT or PDT based on a planar Poisson point process. Note
that, with reference to the conditions presented in [12], these
street systems are stabilising and asymptotically essentially
connected. In particular, we do not consider Poisson line
tessellations, which are not stabilising. We denote by γ =
E[ν1(T ∩ [−1/2, 1/2]2)] the length intensity of T where ν1
measures the one-dimensional total length of T in the unit
square [−1/2, 1/2]2. For a street system in a given city or part
of a city, it is possible to obtain the best fitting tessellation
process and the corresponding value of γ easily using the
statistical tools presented in [8].

For any realisation T of the street system, devices are dis-
tributed according to a one-dimensional Poisson point process
X with intensity measure λν1(T ∩du) where λ > 0 is a scalar
parameter. In other words, the number of devices in an area A
is a Poisson random variable with parameter λν1(T ∩A) and
each device is placed independently and uniformly in T∩A. In
short, X is a Cox point process with random intensity measure
λν1(T ∩ du).

As in [3], we assume the communication radius between
devices to be constant, so that we can construct the communi-
cation graph as a Gilbert graph with radius r > 0. According
to [12], Th. 2.4 and Th. 2.6, this graph percolates and the
percolation threshold is non trivial. The answer to the first
question presented in the introduction then amounts to finding
the critical percolation threshold λc of this Gilbert graph.

Answering the second question amounts to tracing the
percolation function λ 7→ θ(λ, r, γ) where

θ(λ, r, γ) = P(o ∞)

is the Palm probability, that a randomly selected user is
connected to infinity in the Gilbert graph.

Finally, in view of sub-additivity of the number of hops
and the corresponding results on the Poisson Boolean model
(PBM), see [13], it is reasonable to assume the existence of a
deterministic stretch factor µ(λ, r, γ) > 1/r given by

lim
Xi,Xj ∞
|Xi−Xj |→∞

S(Xi, Xj)

|Xi −Xj |
= µ(λ, r, γ).

Here, S(x, y) denotes the smallest number of hops from x to
y and we assume λ > λc. Therefore, the answer to the third
question will consist in tracing the curves λ 7→ µ(λ, r, γ) for
given r and γ.

The model presented here exhibits a scaling invariance:
Changing γ to aγ is equivalent to zooming to a larger
or smaller window for the original γ value, thus changing
λ to aλ and r to r/a. Consequently, we considered only
two dimensionless parameters, namely λ/γ and rγ, for the
simulations, and will switch back to three parameters when
necessary in order to present the results in physical terms.

While the inclusion of a statistically realistic model for the
city layout is a major step forward, three important simplifying
assumptions are still required:

1) The transmission power of devices is a global constant.
2) Signal shadowing and fading effects due to the urban

landscape are neglected.
3) Interference between devices is not taken into account.

III. METHODOLOGY

In order to answer the three key questions raised in
Section I, we rely on Monte Carlo estimates of three key
quantities: the critical percolation threshold, the percolation
probability and the stretch factor. First, the critical percolation
threshold is needed to decide whether long-range multi-hop
communication is possible at all. Second, the percolation prob-
ability describes the proportion of devices in an unbounded
connected component : this gives the probability for a given
device to be able to communicate on a long-range scale. Third,
the stretch factor determines how many hops are needed to
cover a given large distance.

A. Critical percolation thresholds

The first problem we encounter with simulations is to
estimate infinite connected components in finite windows. To
tackle this problem, we realize the tessellations on a torus.
Thereby the left side and the right side of the window as
well as the up and bottom sides could adjust perfectly; see
Figure 2. In order to do that, we simply generate a Poisson
point process in the finite window, and then copy the points
from a large band on the left of the window to the right, and
correspondingly from the bottom to the top of the window.



Fig. 2: Tracing on a torus : after plotting a planar Poisson
process in a 5km × 5km window, the points on the left are
copied to the right and the points at the bottom are copied to
the top. The corresponding PDT is traced and the dotted line
in red thus delimits a 5km × 5km window representing the
torus. The devices (red dots) could then be placed uniformly
at random on the edges of the graph inside the window, and
the devices in a band on the left or at the bottom are copied
to the right and top.

Fig. 3: Proportion of simulations where we find an infinite
component as a function of λ. Each point represents an
estimate for a given λ. The blue line represents the logistic
regression curve.

In order to avoid boundary effects, we then generate devices
uniformly at random on the streets in a sub-window in the
center of the extended window, and copy the devices from the
left and bottom sides of the window to the right and up sides.
Infinite connected components then correspond to components
that cross the window, either from left to right or from top to
bottom, joining a user to its copy.

Figure 3 shows the estimate of the proportion of simulations
p where we find an infinite component as a function of λ. The
sigmoid shape of this function suggest a logistic distribution
model. The logistic model log(p/(1− p)) = aλ+ b seems to

Fig. 4: Tracing curves λ 7→ p(λ) for window sizes varying
between 5km× 5km and 30km× 30km: the curves intersect
near p = 0.6.

perfectly fit the curve. Finding a and b by linear regression, it
is then possible to obtain the value of λ for a given p. Figure 4
presents the logistic curves for varying window sizes. First, we
observe that as the simulation windows grow, the curves tend
to the theoretical function of the percolation probability (in
the limit when the window’s size goes to infinity, the p(λ)
function is 0 for λ < λc and 1 for λ > λc). Second, we
observe that all the curves cross in a limited region around
p = 0.6, thus, we approximate λc via

λc ≈ (log(0.6/0.4)− b)/a.

B. Percolation probabilities

In order to calculate the percolation probabilities we use the
following algorithm. First, for a realisation t of the random
tessellation, we start by selecting the origin o uniformly from
the street system. Then, we add points sequentially on the
street system, again following the uniform distribution. For
each new point, we use the union-find algorithm, see [14], in
order to update the connected components of the Gilbert graph.
We stop adding points as soon as the connected component
containing the origin crosses the window from a point to
its copy. For each tessellation tk, k = 1, . . . , n we run the
simulation of point placements M times and for the ith such
simulation we denote by Nk,i the number of points needed to
exhibit the window crossing.

Let {o ∂W} denote the event that zero is contained in a
connected component which crosses the window W . Further,



let J denote the number of points of the process X of devices
in the simulation window and let

θt =
∑
j>0

P(o ∂W |J = j, T = t)P(J = j|T = t)

so that the expected value of θT (with respect to the tessellation
process T ) is a finite-volume estimator of θ.

For given a realisation of the street system T = t the number
of devices is Poisson distributed with mean λν1(t) and hence

P(J = j|T = t) = exp(−λν1(t))
λjν1(t)

j

j!
.

Moreover, since each tessellation realisation is assigned equal
weight and since the property of percolation is stable with
respect to the addition of further devices, a natural estimator
for θ is

θ̂(λ) =
1

n

∑
k≤n

1

M

∑
i≤M

∑
j≥Nk,i

e−λν1(tk)
λjν1(tk)

j

j!
. (1)

The sum
∑
j≥Nk,i

e−λν1(tk) λ
jν1(tk)

j

j! equals
P (J ≥ Nk,i | T = tk) and is therefore simply one minus
the cumulative distribution function for a Poisson random
variable with known mean and thus readily available from
computational libraries. Note that each simulation will give a
value for Nk,i, and then values of θ̂ for different λ can be
computed from (1) without extra simulations.

C. Stretch factor

Since we must have an infinite connected component, we
consider only values λ > λc. In order to compute the stretch
factor for each λ value, we first determine the chemical
distance, i.e., the minimal number of hops between two devices
for all pairs in a given simulation via the Floyd-Warshall
algorithm [15]. Then, we compute the Euclidean distance
between each pair of points. Since µ is a limit for large
distance only pairs with distance more than 4km in a window
of side length 5km are taken into account for the estimation.

IV. RESULTS

We now present the results of the Monte Carlo experi-
ments described in the previous sections. Simulations were
performed in the statistical computing environment R [16].
Unless stated differently, the street system length intensity is
fixed to γ = 20km−1 which corresponds to dense urban areas.

A. Estimation of the percolation threshold

The observation window for the simulations is fixed to
30km× 30km unless stated otherwise. For certain parameter
combinations the window size had to be reduced due to
computational constraints.

Table I shows the various critical values found for λ/γ,
allowing to compute λc for various values of γ for PDT
and PVT models, to be compared to the standard Poisson
Boolean Model (PBM). The simulations for rγ = 1.5 were
performed on a 15km × 15km window, those for rγ = 0.5

TABLE I: Percolation threshold λc/γ as function of rγ.

λc/γ
rγ PVT PDT PBM
0.3 11.9 12.4 15.95
0.5 5.58 5.83 5.74
1.5 0.75 0.79 0.638
2.5 0.24 0.26 0.229
3.5 0.12 0.13 0.117
4.5 0.071 0.075 0.0709
5.5 0.048 0.049 0.0474
6.5 0.034 0.035 0.034
7.5 0.025 0.026 0.0255
8.5 0.0199 0.0202 0.01995
9.5 0.0159 0.0159 0.0159

and those for rγ = 0.3 on a 10km×10km window. Note that
a comparison with the critical intensity for the PBM leads to
the approximation

λcγ
−1 ≈ 4.51π−1(rγ)−2,

see [17, Table 2].
For a standard city centre, γ ≈ 20km−1, so that if

r = 0.475km, we have that λc = 0.32 devices/km, which
means that the density of devices per square kilometre needs
only to be greater then λcγ = 6.4 devices/km2, while if
r = 0.075km, it should be greater than 300 devices/km2.
For a rural area, γ ≈ 1km−1, if r = 0.3km, the number of
devices per kilometre of streets must be greater than 12 to
have percolation.

We can see here that the results are very near to the PBM
for high values of rγ, which means that in the limit of dense
streets with a reasonable interaction radius, the street system
does not play a role and the Cox point process is near to a
planar Poisson point process, in accordance with [12], Th. 2.9.
On the other hand, when the street system becomes sparse, for
low values of rγ, the PBM is not a good approximation. An
inhomogeneous Bernoulli bond percolation model can be used
for approximations, for details see [12]. In the case of PVT, the
critical Bernoulli parameter can be approximated by bc = 0.5,
resulting in the approximation

λc/γ exp(−rλc) = − log(bc).

This gives λc/γ ≈ 12 devices which is very close to the value
found for rγ = 0.3 in the simulations.

The simulations also show that the transition from the
approximation by the PBM to the approximation by the in-
homogeneous Bernoulli bond percolation is very steep, which
means that almost all values of rγ can be covered by one
of the two approximations presented. This also gives us the
domain of validity for each approximation.

B. Estimation of the percolation probability

The simulation method for the percolation probability θ
follows the algorithm described in Section III-B. Again, the
tessellation is traced and the devices placed on a torus. For
each value of rγ, the estimates are based on N = 10
realisations of the random tessellation and M = 30 realisations



Fig. 5: Percolation probability as a function of intensity for
varying communication radii.

Fig. 6: Stretch factor for PVT as a function of intensity for
varying communication radii.

of randomly placed devices on each of these tessellations.
The results are presented in Figure 5. The θ curve gives
the probability for a randomly selected user to belong to the
infinite connected component. The curves have been calculated
for various values of rγ. Thus, for big interaction radii, both
PDT and PVT model are very close to the standard PBM,
while for smaller radii, the percolation probability is always
smaller for PDT than for PVT.

The curves show the significant difference appearing be-
tween PDT and PVT models when rγ becomes small. In the
PDT model, the percolation probability θ increases much more
slowly. In particular, even far above the percolation threshold,
some devices are not connected to the network.

C. Estimation of the stretch factor

Here, the window is 5km×5km and again the tessellations
and devices are traced on a torus. In order to estimate the
stretch factor µ, the values of λ are taken above the critical
value, and only devices in the infinite connected component
are taken into account. For each value of λ, 100 simulations
are performed. Figures 6 and 7 illustrate the results with
γ = 20km−1 and varying r. For instance in PVT with
r = 0.375km and λ = 1.5 devices/km, if two devices in
the infinite connected component are at distance 2km, then
approximately 7 hops are required. Additionally, note that the
stretch factor is bigger for PDT than for PVT.

V. CONCLUSION

The results obtained in this paper are a first step towards
analysing connectivity in multi-hop wireless networks. For

Fig. 7: Stretch factor for PDT as a function of intensity for
varying communication radii.

rural areas, where shadowing and interferences have little im-
pact, the model already covers a large proportion of pertinent
features. It reveals that the inhomogeneous Bernoulli bond
percolation model gives a much better approximation for these
type of areas than the PBM. Even more, it shows that in rural
areas, for PDT models, the percolation probability will stay far
from 1. Although realistic models for urban areas will need to
take into account the propagation effects caused by the urban
landscape, the proposed model already gives strong hints on
methods for addressing the basic problem of connectivity.

Dealing with shadowing in urban areas now seems to be a
reasonable next step. One idea that we are currently exploring
is to introduce a reduced connection radius for points that
do not belong to the same street segment. Moreover, other
street system models, like Manhattan grids, or embedded
tessellations could also be studied in order to represent a larger
class of real world street systems.
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