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Abstract—In most stochastic geometry analyses of cellular
networks, a receiving user is selected randomly. Thus, the
network performance is equivalent to that obtained with the use
of a round-robin scheduler; in other words, channel-aware user
scheduling is not applied. The first objective of this study is to
clarify the type of channel-aware user scheduling that can be uti-
lized with stochastic geometry. In both Poisson bipolar networks
and Poisson cellular networks, the signal-to-interference power
ratio (SIR) distribution, average data rate, and scheduling gain of
a normalized SNR scheduler are derived. The scheduler selects
the user with the largest SNR normalized by the short-term
average SNR, and it is equivalent to the well-known proportional
fair scheduler when the data rate is proportional to the SNR.
The second objective is to discuss the achievable scheduling
gain with stochastic geometry when compared with round-robin
scheduling. The value of the scheduling gain is examined using
numerical integration results.

I. INTRODUCTION

Stochastic geometry has been applied to various kinds of
wireless networks including cellular networks for performance
analysis [1]–[4]. In our previous work [5], the complemen-
tary cumulative distribution function (ccdf) of the signal-to-
interference-plus-noise power ratio (SINR), P(SINR > θ),
average data rate, and scheduling gain in downlink Poisson
cellular networks with the normalized SNR scheduler were
derived. The purpose of the present paper is to provide
additional information and supplement to the previous work
[5].

The spatial distribution of SINR in Poisson cellular net-
works was first derived in [1], and has been analyzed in a wide
variety of scenarios [3], [4]. However, in terms of stochastic
geometry analyses of Poisson cellular networks, channel-aware
user scheduling has not been applied.

In a single-cell environment, the normalized SNR scheduler
and proportional fair (PF) scheduler [6] were analyzed in [7],
[8], respectively. In a multi-cell environment, the normalized
SNR scheduler were analyzed assuming that interference is
independent of time and the locations of users in [9] and
assuming hexagonal cell arrangements [10]. We note that these
studies [9], [10] evaluated average throughput of the network,
not the spatial distribution of SINR.

The contributions of the paper are:

• We derive the signal-to-interference power ratio (SIR)

ccdf1 in multiuser extended Poisson bipolar networks.
Further, we derive the SIR ccdf in Poisson cellular
networks using hypergeometric functions.

• We discuss the scheduling gain [11] in detail, which
is defined as the ratio of the average data rate of the
normalized SNR scheduler to that of the round-robin
scheduler.

This paper is organized as follows: In Section II, we review
previous results on user scheduling. In Sections III and IV,
the SIR distribution and average data rate of both multiuser
extended Poisson bipolar networks and Poisson cellular net-
works. Section V concludes the paper.

Notation: E[·] denotes the expectation operator, fX(·) the
probability density function (pdf) of a continuous random
variable X or the probability mass function (pmf) of a discrete
random variable X , FX(·) the cumulative distribution function
(cdf) of X , LX(·) the Laplace transform of the pdf of X ,
Γ(·) the gamma function, B(·, ·) the beta function, E1(·)
the exponential integral, and 2F1(·, ·; ·; ·) the hypergeometric
function.

II. USER SCHEDULING

A. System Model

We consider a situation where m users are associated with
a base station (BS). In each time slot, the BS transmits to one
user with unit power based on the following scheduler.

B. Round-Robin Scheduler

The round-robin scheduler selects one user in rotation
independent of the channel and interference. Thus, each user
receives a fraction 1/m of the time slots.

C. Normalized SNR Scheduler

We consider a situation where users experience quasi-static
Rayleigh fading, i.e., the channel gain is constant over a time
slot. The instantaneous SNR of the ith user at distance ri is
given as

SNRi := hir
−α
i /σ2, (1)

where hi represents the exponentially distributed fading gain
with unit mean, i.e., hi ∼ exp(1), α > 2 the path loss
exponent, and σ2 the noise power.

1The SIR ccdf is also referred to as the success probability or coverage
probability.



For any time slot, the BS is assumed to have knowledge of
the vector of the instantaneous SNR (SNRj)1≤j≤m according
to perfect channel estimation at the beginning of each time
slot, as described in [6], [7], [9], [12]. The scheduler selects
the user with the largest instantaneous SNR normalized by the
short-term average SNR. The short-term average SNR is the
average value of the instantaneous SNR over a period when
variation in the distance between the user and its associated
BS is negligible, as presented in [6], [7]. Here, we note that the
scheduler is not aware of the interference, but the performance
measure is the SIR.

The short-term average SNR is given by the conditional ex-
pectation of SNRi given ri. Because ri and hi are independent
and E[hi] = 1, we have

E[SNRi | ri] = r−α
i /σ2. (2)

With the use of (1) and (2), the instantaneous SNR normalized
by the short-term average SNR can be given as

SNRi

E[SNRi | ri]
= hi, (3)

i.e., the fading gain of user i. Here, we note that if the data
rate is proportional to the SNR, the normalized SNR scheduler
is equivalent to the PF scheduler [8].

User i is selected when

hi = max
j=1,...,m

hj . (4)

For the sake of notational simplicity, we define

h⋆
m := max

j=1,...,m
hj . (5)

Because (hj)1≤j≤m are statistically identical, we have

P(hi = h⋆
m) = 1/m, ∀i, (6)

i.e., each user receives a fraction 1/m of the time slots, as in
the case of round-robin scheduler.

We derive the cdf of the channel gain when the user i is
scheduled,

P(hi ≤ x |hi = h⋆
m) = P(h⋆

m ≤ x) = Fh⋆
m
(x). (7)

Because (hj)1≤j≤m are independent and identically dis-
tributed (i.i.d.) exponential random variables with unit mean,
the distribution of h⋆

m is the largest-order statistic [13] and
derived as in the case of the selection combiner output [14].

Fh⋆
m
(x) =

(
Fhj (x)

)m
=

(
1− e−x

)m
(a)
=

m∑
k=0

(
m

k

)
(−1)ke−kx, (8)

where (a) follows from the binomial theorem.
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Fig. 1: Realization of a multiuser extended Poisson bipolar
network for λ = 1/2, r = 1/2, and m = 2.

D. Scheduling Gain

To be compared with scheduling gains of Poisson networks,
we introduce a simple evaluation formula for scheduling gain
under Rayleigh fading channel [11], which is achieved when
the data rate is proportional to the SNR:

E[hi |hi = h⋆
m]

E[hi]
=

∫ ∞

0

(
1− Fh⋆

m
(x)

)
dx

=

m∑
k=1

(
m

k

)
(−1)k+1 1

k
=

m∑
k=1

1

k
. (9)

As to be presented in this paper, scheduling gains in Poisson
networks are also written in forms of an alternating binomial
sum as (9) but cannot be written as a sum without alternating
signs and binomial coefficients.

III. POISSON BIPOLAR NETWORKS

A. System Model and Previous Results

In a Poisson bipolar network [15, Def. 5.8], the transmitters
form a Poisson point process (PPP) Φ with intensity λ, and
all transmitters have a receiver at an identical distance r
with a random orientation. For the sake of consistency with
other sections in this paper, the transmitters and receivers
are referred to as BSs and users, respectively. We define
C := λπr2 Γ(1 + 2/α) Γ(1 − 2/α), with I denoting the
aggregated interference at the intended user.

The SIR ccdf is given as2

P(SIR > θ) = E
[
P(h > θrαI | I)

]
= E

[
1− Fh(θr

αI)
]

= E
[
e−θrαI

]
= LI(θr

α) = e−Cθ2/α

. (10)

We extend the Poisson bipolar network to accommodate
multiple users, i.e., all BSs have an identical number m of

2Strictly speaking, in this case, P should be written as P!t, which represents
the reduced Palm measure given that there is a BS at a prescribed location
and the SIR is measured at the intended user.



users at an identical distance r with random orientations,
as shown in Fig. 1. Each BS selects one user to transmit
according to the normalized SNR scheduler. The purpose of
this model is to provide a simpler model and expressions
when compared with the Poisson cellular networks presented
in Section IV.

B. SIR of Scheduled User

Proposition 1. The SIR ccdf when user i is scheduled is given
as

P
(
SIRi > θ

∣∣∣hi = max
j=1,...,m

hj

)
=

m∑
k=1

(
m

k

)
(−1)k+1e−C(kθ)2/α . (11)

We note that when m = 1, (11) is equivalent to the SIR
ccdf without channel-aware scheduling (10).

Proof. P
(
SIRi > θ

∣∣∣hi = max
j=1,...,m

hj

)
= E

[
P(hi > θrαI | I, hi = h⋆

m)
]

= E
[
P(h⋆

m > θrαI | I)
]
= E

[
1− Fh⋆

m
(θrαI)

]
= E

[
1−

m∑
k=0

(
m

k

)
(−1)ke−kθrαI

]

=

m∑
k=1

(
m

k

)
(−1)k+1 E

[
e−kθrαI

]
(a)
=

m∑
k=1

(
m

k

)
(−1)k+1e−C(kθ)2/α ,

where (a) is obtained by replacing the θ in (10) by kθ. We
note that because the cdf of the channel gain of the scheduled
user (8) is expressed in the form of a sum of exponential
functions, it is possible to obtain term-wise expectation and
apply the same derivation as in (10).

Hereafter, for the sake of notational simplification, let the
SIR of the scheduled user among m users be denoted by
SIR⋆

m, e.g., P(SIR⋆
m > θ) = P(SIRi > θ |hi = h⋆

m).
Fig. 2 shows the SIR ccdf (11). Along with the number

of associated users of each BS, m, the SIR increases due to
multiuser diversity gain.

C. Average Data Rate and Scheduling Gain

Proposition 2. The average data rate can be expressed as

E
[
ln(1 + SIRi)

∣∣hi = h⋆
m

]
= E

[
ln(1 + SIR⋆

m)
]

=

∫ ∞

0

P(SIR⋆
m > θ)

1 + θ
dθ

=

m∑
k=1

(
m

k

)
(−1)k+1

∫ ∞

0

e−C(kθ)2/α

1 + θ
dθ. (12)
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Fig. 2: SIR ccdf in multiuser extended Poisson bipolar net-
works for α = 4.
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Fig. 3: Scheduling gain in multiuser extended Poisson bipolar
networks for α = 4.

Remark 1. For the convenience of numerical evaluation, (12)
can be rewritten when α = 4,

E
[
ln(1 + SIR⋆

m)
]

= 2

m∑
k=1

(
m

k

)
(−1)k+1 Re

(
ejC

√
k E1(jC

√
k)
)
, (13)

where C = λπ2r2/2.
Fig. 3 illustrates the scheduling gain E

[
ln(1 +

SIR⋆
m)

]/
E
[
ln(1 + SIR)

]
, wherein it is confirmed that

the scheduling gain increases with increase in the number of
users m.

IV. POISSON CELLULAR NETWORKS

In the previous section, we considered Poisson-distributed
BSs with an identical number of users at identical distances.
We now consider Poisson cellular networks [1], where the
distance from the associated BS and the number of associated
users per BS are treated as random variables.
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Fig. 4: Realization of a Poisson cellular network.

A. System Model and Previous Results
As shown in Fig. 4, the locations of the BSs and users are

assumed to form two independent PPPs Φb with intensity λb

and Φu with intensity λu, respectively, as in [2], [16]. Each
user is associated with the nearest BS [2], i.e., the cell of
each BS comprises a Voronoi tessellation. The typical user is
assumed to be located at origin o, and with the location of
the associated BS being denoted by bo := argminx∈Φb

∥x∥.
Let R denote the distance between the typical user o and the
associated BS bo, i.e., R := ∥bo∥. According to [1], [15], the
pdf of R can be written as

fR(r) = 2λbπre
−λbπr

2

. (14)

From Slivnyak’s theorem [15], the locations of the other
users follow the reduced Palm distribution with Φu. Let the
number of users in cell bo except for the typical user o be
denoted by N . We note here that N is a random variable
whereas m in Section III is a constant. According to [16,
Lemma 1], the pmf of N is given by

fN (n) =
(λu/cλb)

n

cB(n+ 1, c) (λu/cλb + 1)n+c+1
, c = 3.5. (15)

For the sake of simplicity, we consider a scenario where
all BSs continuously transmit signals independently of the
number of associated users, i.e., interference is generated from
all the other BSs. The scenario where BSs with no user to serve
do not transmit any signals has been discussed in [5].

Let the interference at the typical user o from BSs Φb\{bo}
be denoted by Ir. According to [1, Theorem 2], the SIR ccdf
is given as3

P(SIR > θ) = E
[
P(SIR > θ |R = r)

]
=

∫ ∞

0

LIr (θr
α | r) fR(r) dr

=
1

1 + 2θ
α−2 2F1(1, 1− 2/α; 2− 2/α;−θ)

, (16)

3Strictly speaking, P should be written as Po, which represents the Palm
measure given that there is a user at o and the SIR is measured at the user.

LIr (θr
α | r)

= exp

[
−2λbπr

2θ

α− 2
2F1

(
1, 1− 2

α
; 2− 2

α
;−θ

)]
. (17)

When α = 4, P(SIR > θ) = 1
1+

√
θ arctan

√
θ

and P(SIR >

θ | r) = LIr (θr
α | r) = exp(−λbπr

2
√
θ arctan

√
θ). Here-

after, we consider expressions corresponding to α = 4 for
notational simplicity. It is noteworthy that expressions for
α ̸= 4 can be obtained by using (16) and (17).

According to [17] and [1, Theorem 3], the average data rate
defined as E

[
ln(1 + SIR)

]
is given by

E
[
ln(1 + SIR)

]
=

∫ ∞

0

P(SIR > θ)

1 + θ
dθ

≈ 1.489 nat/s/Hz. (18)

B. SIR of Scheduled User

Lemma 1 ([5, Lemma 1]). Given that the typical user o with
fading gain ho is scheduled, the ccdf of SIR conditioning on
R = r and N = n, P(SIR > θ | r, n, ho = maxj=o,1,...,n hj),
is given by the sum of the Laplace transforms of the pdf of
interference.

Proof. P
(
SIR > θ

∣∣∣ r, n, ho = max
j=o,1,...,n

hj

)
= P(ho > θrαIr | r, n, ho = h⋆

n+1)

= P(h⋆
n+1 > θrαIr | r, n)

= E
[
P(h⋆

n+1 > θrαIr | r, n, Ir)
∣∣ r, n]

= E
[
1− Fh⋆

n+1
(θrαIr)

∣∣ r, n]
= E

[
1−

n+1∑
k=0

(
n+ 1

k

)
(−1)ke−kθrαIr

∣∣∣∣∣ r, n
]

= 1−
n+1∑
k=0

(
n+ 1

k

)
(−1)k E

[
e−kθrαIr

∣∣ r, k]
=

n+1∑
k=1

(
n+ 1

k

)
(−1)k+1 LIr (kθr

α | r, k).

Hereafter, for the sake of notational simplification, we
denote SIR as SIR⋆ when the typical user is scheduled,
e.g., P(SIR > θ | r, n, ho = maxj=o,1,...,n hj) = P(SIR⋆ >
θ | r, n).
Proposition 3 ([5, Prop. 1]). Given that the typical user o is
scheduled, the SIR ccdf can be approximated by

P(SIR⋆ > θ) ≈
∞∑

n=0

(λu/cλb)
n

cB(n+ 1, c)(λu/cλb + 1)n+c+1

×
n+1∑
k=1

(
n+1
k

)
(−1)k+1

1 +
√
kθ arctan

√
kθ

. (19)

That is, the distribution of SIR⋆ depends only on θ and
λu/λb, while the distribution of SIR (16) depends only on θ
but not on λb.
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Proof. P(SIR⋆ > θ) = E
[
P(SIR⋆ > θ | r, n)

]
(a)
≈

∞∑
n=0

∫ ∞

0

P(SIR⋆ > θ | r, n) fR(r) fN (n) dr

=

∞∑
n=0

fN (n)

n+1∑
k=1

(
n+ 1

k

)
(−1)k+1

×
∫ ∞

0

LIr (kθr
α | r, k) fR(r) dr

(b)
=

∞∑
n=0

fN (n)

n+1∑
k=1

(
n+1
k

)
(−1)k+1

1 +
√
kθ arctan

√
kθ

,

where the joint probability density and mass function of
R and N is approximated by the product of its marginals
fR(r) and fN (n)4 though R and N are inherently dependent
on each other, (a) follows from the approximation. We
subsequently confirm the accuracy of the approximation by
numerical evaluation. Further, (b) is obtained by means of
the same derivation as (16).

Remark 2. For numerical evaluation, it is convenient if there
is no infinite sum in (19), which is due to the expectation
with respect to the pmf fN (n). To avoid the calculation of
this infinite sum, for integer points of λu/λb, we roughly
approximate fN (n) as

f̃N (n) =

{
1, n = λu/λb;

0, n ̸= λu/λb.
(20)

We note that when λu/λb is an integer, both λu/λb − 1 and
λu/λb represent the modes of N . Here, we use the latter mode
λu/λb and set f̃N (λu/λb) = 1. Using f̃N (n), the SIR ccdf is
further approximated to

P(SIR⋆ > θ) ≈
λu/λb+1∑

k=1

(
λu/λb+1

k

)
(−1)k+1

1 +
√
kθ arctan

√
kθ

. (21)

Fig. 5 shows numerical results of the SIR ccdf (19) and its
approximation for integer points of λu/λb (21) as obtained

4It is equivalent that N is approximated to be independent of R.
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Fig. 6: Scheduling gain in Poisson cellular networks for α = 4.

via numerical integration, and Monte Carlo simulation results.
Since their characteristics are almost identical, we can con-
clude that the approximations made thus far are sufficient for
evaluation.

In Fig. 5, for the SIR ccdf of the round-robin scheduler, we
use (16). When compared with the round-robin scheduler, the
normalized SNR scheduler affords a higher ccdf due to the
multiuser diversity effect.

C. Average Data Rate and Scheduling Gain
Proposition 4 ([5, Prop. 2]). The average data rate of normal-
ized SNR scheduling can be written as

E
[
ln(1 + SIR⋆)

]
=

∫ ∞

0

P(SIR⋆ > θ)

1 + θ
dθ

=

∞∑
n=0

fN (n)

n+1∑
k=1

(
n+ 1

k

)
(−1)k+1

×
∫ ∞

0

1

(1 + θ)(1 +
√
kθ arctan

√
kθ)

dθ. (22)

The solid line in Fig. 65 indicates the scheduling gain,
E
[
ln(1 + SIR⋆)

]
/E

[
ln(1 + SIR)

]
, where E

[
ln(1+SIR)

]
was

given in (18).
To further examine the validity of Remark 2 for integer

points of λu/λb, we evaluate the approximated average data
rate, which can be expressed as below with the use of (21),

E
[
ln(1 + SIR⋆)

]
≈

λu/λb+1∑
k=1

(
λu/λb + 1

k

)
(−1)k+1

×
∫ ∞

0

1

(1 + θ)(1 +
√
kθ arctan

√
kθ)

dθ. (23)

The approximated scheduling gain (23) is also shown in
Fig. 6, and we observe that the approximation (20) is sufficient
for estimation of the scheduling gain.

5The difference in the values shown in this figure and in Fig. 3 in [5] is
due to low accuracy when evaluating Fig. 3 in [5].
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Scheduling gain when the data rate is proportional to SNR
(9) is also shown in Fig. 6. We can see that the scheduling
gain in Poisson cellular networks is relatively small compared
with that obtained with (9). To understand the reason for the
absolute value of the scheduling gain being relatively small,
we evaluate the scheduling gain given r and n using

G(r, n) =
E
[
ln(1 + SIR⋆

n+1)
∣∣ r, n]

E
[
ln(1 + SIR)

∣∣ r] , (24)

E
[
ln(1 + SIR⋆

n+1)
∣∣ r, n]

=

∫ ∞

0

P(SIR⋆
n+1 > θ | r, n)
1 + θ

dθ

=

n+1∑
k=1

(
n+ 1

k

)
(−1)k+1

∫ ∞

0

LIr (kθr
α | r, k)

1 + θ
dθ

=

n+1∑
k=1

(
n+ 1

k

)
(−1)k+1

×
∫ ∞

0

exp(−λbπr
2
√
kθ arctan

√
kθ)

1 + θ
dθ. (25)

From Fig. 7, it is obvious that G(r, n) increases with
increase in the number of users n due to multiuser diversity
gain. Further, we can see that as r increases, the scheduling
gain G(r, n) asymptotically approaches the value of (9). It is
reasonable because the greater is the distance r, the lower is
the SNR, and, thus, logarithmic rate ln(1 + SIR) ≃ SIR as
SIR → 0, which was assumed to derive (9).

Fig. 7 also depicts the pdf of distance, fR(r). As can be
observed from the figure, the mode of the distance is around
0.4, where the scheduling gain is not very large compared
to (9). Because the scheduling gain shown in Fig. 6 is
obtained averaging with respect to fR(r), the scheduling gain
in Poisson cellular networks is relatively small compared with
that obtained with (9).

V. CONCLUSION

We derived the SIR ccdf, the average data rate, and the
scheduling gain of the normalized SNR scheduler in both
multiuser extended Poisson bipolar networks and Poisson
cellular networks. In particular, the scheduling gain achieved
in Poisson cellular networks was examined and it was clarified
that the simplified formula under Rayleigh fading channel
overestimates the scheduling gain in Poisson cellular networks.
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