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Abstract—Content delivery in a multi-user cache-aided broad-
cast network is studied, where a server holding a database
of correlated contents communicates with the users over a
Gaussian broadcast channel (BC). The minimum transmission
power required to satisfy all possible demand combinations is
studied, when the users are equipped with caches of equal size. A
lower bound on the required transmit power is derived, assuming
uncoded cache placement, as a function of the cache capacity. A
centralized joint cache and channel coding scheme is proposed,
which not only utilizes the user’s local caches, but also exploits
the correlation among the contents in the database. This scheme
provides an upper bound on the minimum required transmit
power for a given cache capacity. Our results indicate that
exploiting the correlations among the contents in a cache-aided
Gaussian BC can provide significant energy savings.

I. INTRODUCTION

Thanks to the decreasing cost and increasing capacity of
memory available at mobile devices, proactive caching has
been considered as a low-cost and effective solution to today’s
exponentially growing mobile data traffic [1]–[3]. Proactively
storing popular contents in cache memories distributed across
the network during off-peak traffic periods can greatly reduce
both the network congestion and the latency during peak traffic
hours. Coded caching [2] further exploits the broadcasting
nature of wireless delivery and the contents available in users’
local cache memories to create multicasting opportunities,
even when the users request distinct files, which further boosts
the benefits of caching. The significant gains of coded caching
over traditional uncoded caching schemes have inspired nu-
merous studies, among which [4]–[15] are most related to this
paper.

Delivering correlated contents over an error-free shared
cache-aided link is considered in [4]–[9]. In [4], correlation
among an arbitrary number of files in a caching system is
exploited by identifying the most representative files, which
are then used as references for compressing the remaining
correlated files. A two-file system is studied in detail in [7],
where the files are initially compressed using Gray-Wyner
source coding, and an optimal caching scheme is derived for
the two-receiver network. This scheme is generalized to more
files in [6], which is shown to be optimal for large cache
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sizes. Arbitrary numbers of users and files are considered in
[5], where each file is modeled as a collection of subfiles,
each of which is shared by a different subset of files. In [9]
a caching scheme is proposed, which exploits correlation by
performing on-demand compression during delivery, resulting
in a scheme that is robust to dynamic changes in a correlated
library. Cache-aided content delivery is studied in [16] with
a source coding perspective, where users request different
quality lossy versions of the files in the library. More recently,
[11]–[15], and others have relaxed the assumption of a shared
error-free bit-pipe from the server to the users by replacing
it with noisy BCs in the traditional setting of uncorrelated
files. In [14] the authors consider a total memory budget, and
optimize the cache assignment with respect to the channel
capacity for degraded BCs. In [12] the benefits of caching
and coded delivery are studied from the perspective of energy-
efficiency in Gaussian BCs.

In this paper, we consider the degraded Gaussian BC model
studied in [12], but we assume that the files in the library
can be arbitrarily correlated as modeled in [5]. We evaluate
the performance in terms of the minimum transmission power
required to satisfy any demand combination, called the peak
power in [12] as it represents the power required to satisfy
the worst demand combination. We derive a lower bound on
the minimum required transmission power assuming uncoded
cache placement, and an upper bound that employs superposi-
tion coding and power allocation when delivering coded con-
tents over the BC. Through numerical simulations, we show
that the proposed correlation-aware joint caching and channel
coding scheme reduces the transmission power significantly
compared to schemes that are correlation-ignorant.

Notations: R is the set of all the real values, while R+

denotes the set of all the positive real values. The set of
integers {i, ..., j}, where i ≤ j, is denoted by [i : j], and for
q ∈ R+, the set [1 : dqe] is denoted shortly by [q]. For sets A
and B, we define A\B , {x : x ∈ A, x /∈ B}, and |A| denotes
the cardinality of A.

(
j
i

)
represents the binomial coefficient if

j ≥ i; otherwise,
(
j
i

)
= 0. For event E, 1{E} = 1 if E is

true; and 1{E} = 0, otherwise.

II. SYSTEM MODEL

Consider a wireless server that holds a database of N
correlated files, denoted by W = (W1, ...,WN ), which have



been jointly compressed into independent subfiles. File Wi,
i ∈ [N ], consists of 2N−1 independent subfiles, i.e.,

Wi = {WS : S ⊆ [N ], i ∈ S}, (1)

where WS denotes the subfile that is shared exclusively by
the files {Wi : i ∈ S}. The subfiles are arranged into N
sublibraries, L1, . . . , LN , such that L` contains all the subfiles
that are shared exclusively by a set of l files, i.e.,

L` = {WS : S ⊆ [N ], |S| = `}. (2)

Motivated by Gray-Wyner compression, we assume that all
the subfiles in a sublibrary have the same length, and subfile
WS ∈ L` is distributed uniformly over the set [2nR` ], where
R` is the rate of subfile WS in bits per channel use, and n
denotes the transmission blocklength, referring to n uses of
the BC. We define R , (R1, . . . , RN ). All the files are of the
same normalized rate of R bits per channel use, where

R =

N∑
`=1

(
N − 1

`− 1

)
R`. (3)

Each user is equipped with a cache of size nM bits, where
M is called the normalized cache capacity. Communication
takes place in two phases. During the first phase, referred to
as the placement phase, the user caches are filled by the server
without the knowledge of particular demands. This phase hap-
pens during a period of low traffic, which can be considered
noiseless. In this paper, we are restricted to uncoded cache
placement phase, i.e, users only caches uncoded messages.
We consider centralized caching; that is, the server has the
knowledge of the active users in advance, allowing the cache
placement to be conducted in a coordinated fashion. At the
beginning of the second phase, referred to as the delivery
phase, user k ∈ [K] requests file Wdk from the library, with dk
uniformly distributed over [N ]. Let d , (d1, ..., dK) denote
the demand vector. All the requests are satisfied through a
Gaussian BC, characterized by a time-invariant channel vector
h = (h1, . . . , hK) and additive white Gaussian noise, where
hk denotes the real channel gain between the server and user
k. The channel gains are fixed, and are known to all the parties.
Without loss of generality, we assume h21 ≤ h22 ≤ · · · ≤ h2K ,
such that the users are ordered from the weakest to the
strongest. The ith channel output, is given by

Yk,i = hkXi + σk,i, (4)

for channel gain hk, and noise σk,i ∼ N (0, 1) at user k in
the ith channel use, which is assumed to be independently and
identically distributed across time and users.

An (n,R,M, P ) code for this system consists of:
• K caching functions fk, k ∈ [K],

fk : [2nR]N ×RK → [2nM ], (5)

and user k’s cache content, denoted by Zk, is given by
Zk = fk(W,h). Let Z , (Z1, . . . , ZK)

• A delivery function g,

g : [2nR]N × [2nM ]K ×RK × [N ]K → R
n, (6)

which, for given cache contents Z, channel gains h, and
demand vector d, generates the channel input signal,
Xn(W,d) = g(W,Z,h,d), transmitted over the Gaus-
sian BC in n channel uses, with Xi(W,d) denoting the
ith channel input. The channel input vector is generated
such that its average power is not more than P , i.e.,

P (W,d) ,
n∑
i=1

X2
i (W,d) ≤ P, ∀d ∈ [N ]K . (7)

• K decoding functions φk, k[K],

φk : Rn × [2nM ]×RK × [N ]K → [2nR], (8)

where Ŵdk = φk(Y
n, Zk,h,d), is the reconstruction of

Wdk , and Y n is the channel output at user k.

Definition 1. A cache capacity-power pair (M,P ) is achiev-
able for the system described above, if there exists a sequence
of (n,R,M, P ) codes such that

lim
n→∞

P

{ ⋃
d∈[N ]K

K⋃
k=1

{
Ŵdk 6=Wdk

}}
= 0. (9)

For a given cache capacity M , our goal is to characterize
the minimum power P such that (M,P ) is achievable. The
corresponding memory-power function is defined as

P ∗(M) , inf{P : (M,P ) is achievable}. (10)

We conclude the section with the following proposition, which
is frequently referred to in the remainder of this paper.

Proposition 1. [17] In a K-user degraded Gaussian BC
with h21 ≤ h22 ≤ · · · ≤ h2K , K distinct messages with rates
ρ1, . . . , ρK , can be reliably transmitted to users 1, . . . ,K,
respectively, iff

ρk ≤ C

(
h2
kPk

1 + h2
k

K∑
j=k+1

Pj

)
, k = 1, . . . ,K, (11)

for some P1, ..., PK , which can be achieved by using superpo-
sition coding with Gaussian codewords of power P1, . . . , PK ,
where C(x) , 1

2 log2(1 + x). The minimum total transmit
power for reliable communication is thus given by

P =

K∑
k=1

Pk ≥
K∑
k=1

(
22ρk − 1

h2
k

) k−1∏
j=1

22ρj

h2
j

. (12)

III. MAIN RESULTS

This section provides a lower and an upper bounds on the
memory-power function, P ∗(M).

A. Lower Bound on P ∗(M)

The following lower bound is stated here without a proof,
which will be provided in a longer version of this paper.

Theorem 1. For the caching problem described in Section II
with uncoded cache placement phase, the optimal memory-
power function, P ∗(M), is lower bounded as

P ∗(M) ≥ PLB(M) ,
min{N,K}∑

k=1

(
22ρ̃k − 1

h2
k

) k−1∏
j=1

22ρ̃j

h2
j

, (13)



where

ρ̃k , max

{
N−k∑
`=0

(
N − k
`

)
R`+1 −M, 0

}
, ∀ k ∈ [K]. (14)

B. Upper Bound on P ∗(M)

Theorem 2. For the caching problem described in Sec-
tion II, the optimal memory-power function, P ∗(M), is upper
bounded as

P ∗(M) ≤ min
π=(π1,...,πN )

PUB(M,π),

s.t.

N∑
i=1

πi ≤ 1,

0 ≤ πi ≤ 1, i = 1, . . . , N,

where

PUB(M,π) ,
min{N,K}∑

k=1

(
22ρ̂k − 1

h2
k

) k−1∏
j=1

22ρ̂j , (15a)

ρ̂k ,
N∑
`=1

min{`,K}∑
r=max{`−N+K, 1}

(
N −K
`− r

)(
min{N,K} − 1

r − 1

)
γk,`,r

(15b)

γk,`,r ,{(
bt`c−t`+1
bt`c−t`

λ(bt`c)− λ(bt` + 1c)
)
R`, if k ∈ [min{N,K}

r
+ 1]

0, otherwise

λ(t) ,

(
K−k
btc

)(
K
btc

) (btc − t), (15c)

t` ,
Kπ`M(
N
`

)
R`

. (15d)

Proof. The proof can be derived by characterizing the transmit
power achieved by the coding scheme outlined in Section IV,
and will be provided in the longer version.

IV. CACHE-AIDED SUPERPOSITION CODING

The upper bound in Theorem 2 is achieved by a centralized
caching and delivery scheme, which optimizes the cache allo-
cation among different libraries and places uncoded messages
into users’ caches in a centralized manner. Superposition
coding is employed to losslessly deliver coded messages over
the Gaussian BC [17], where the coded messages are generated
taking into account the correlation among the requested files
as well as the channel gains. As in [5]–[7], the scheme
operates by treating the sublibraries independent of during the
placement and delivery phases to determine the cache content
and messages targeted at each user, which are then jointly
delivered over the BC. In the following, we first illustrate the
main idea through a simple example, and then provide the
general description of the coding scheme.

A. Motivating Example

Consider a system with K = 3 users having channel gains
h21 ≤ h22 ≤ h23, and a database of N = 3 files with sublibraries:
• L1 = {W {1},W {2},W {3}}, each with rate R1.
• L2 = {W {1,2},W {2,3},W {1,3}}, each with rate R2.
• L3 = {W {1,2,3}}, with rate R3.

Each user has a cache with capacity M = R1 +R2 +
1
3R3.

◦ Placement Phase: Since content placement is carried out
independently across the sublibraries, for ease of exposition,
we assume that the cache capacity is divided into three
portions, such that the users allocate portions with normalized
capacities R1, R2, and 1

3R3 for caching files from sublibraries
L1, L2 and L3, respectively. We remark that the cache capacity
allocation in this example is not optimal, and the proposed
scheme further optimizes the allocation as described in more
detail in Subsection IV-B. We use the prefetching policy
proposed in [10], which divides the subfiles in sublibrary L`
into three non-overlapping packets of size 1

3nR` bits. Then,
user k caches

Zk =
{
W {1},{k},W {2},{k},W {3},{k},W {1,2},{k},

W {2,3},{k},W {1,3},{k},W {1,2,3},{k}

}
,

where WS,{k} denotes the kth packet of subfile WS cached
at user k ∈ [3].
◦ Delivery Phase: During the delivery phase, once the

demand vector is revealed, the server computes the mes-
sages intended for each user, independently from each sub-
library, and then delivers them over the BC via superposi-
tion coding. Consider demand vector d = (1, 2, 3). User
1, who is the weakest user, requires all parts of subfiles
{W {1},W {1,2},W {1,3},W {1,2,3}} that are missing from its
cache, in order to reconstruct W1. User 2 requires the four
subfiles corresponding to file W2, but having a better channel
compared to user 1, through successive cancellation, it can
also decode the messages targeted at user 1. Similarly, user 3
can decode both messages indented for the weaker users. User
messages from each sublibrary are determined as follows.
• Sublibrary L1: Based on the demand, all subfiles in
L1 are required by the users. User 1 needs to receive
W {1},{2} and W {1},{3}, whose targeted message, de-
noted by V 1

d (L1), is generated as follows:

V 1
d (L1) = {W {1},{2} ⊕W {2},{1},W {1},{3} ⊕W {3},{1}}.

(16)

Since user 2 is able to decode its required packet
W {2},{1} from message V 1

d (L1), it only needs W {2},{3},
which is recovered through the message

V 2
d (L1) =

{
W {2},{3} ⊕W {3},{2}

}
. (17)

User 3 can decode its missing packets from V 1
d (L1) and

V 2
d (L1), and therefore, V 3

d (L1) = ∅.
• Sublibrary L2: Each user requires two subfiles from
L2, which can be considered as two separate de-
mands. One possible partitioning could be S1 =
({1, 2}, {1, 2}, {1, 3}) and S2 = ({1, 3}, {2, 3}, {2, 3}),
where S1 corresponds to users 1, 2 and 3 requesting
subfiles W {1,2}, W {1,2} and W {1,3}, respectively. Then
V kd (L2) = {vk1 , vk2}, where vki is user k’s message
corresponding to demand Si. Then, for S1

v11 = {W {1,2},{2} ⊕W {1,2},{1},W {1,2},{3} ⊕W {1,3},{1}},
(18)

v21 =
{
W {1,3},{2} ⊕W {1,2},{3}

}
, (19)

v31 = ∅, (20)



and for S2

v12 = {W {1,3},{2} ⊕W {2,3},{1},W {1,3},{3} ⊕W {2,3},{1}},
(21)

v22 =
{
W {2,3},{2} ⊕W {2,3},{3}

}
, (22)

v32 = ∅. (23)

• Sublibrary L3: All users require W {1,2,3}, and therefore

V 1
d (L3) = {W {1,2,3},{2} ⊕W {1,2,3},{1},

W {1,2,3},{3} ⊕W {1,2,3},{1}}, (24)

V 2
d (L2) = V 3

d (L2) = ∅. (25)

The messages in (16), (18), (21) and (24) constitute all the
messages targeted at user 1, with total rate ρ1 = 2(R1+2R2+
R3). Messages (17), (20) and (22) are targeted at user 2 with
total rate ρ2 = R1 + 2R2, and finally, user 3 can successfully
recover its requested file from the messages intended for users
1 and 2, i.e., ρ3 = 0. Based on Proposition 1, the target rates
can be delivered to the users with superposition coding of
Gaussian codewords satisfying (11), with a minimum power
value given in (12).

B. Proposed Scheme

This section presents the description of the proposed central-
ized caching and delivery scheme that generalizes the example
in Subsection IV-A, and achieves the transmission power
stated in Theorem 2. Similarly to the schemes in [5]–[7], the
proposed scheme treats the sublibraries independently: 1) the
cache capacity is optimally divided among the N sublibraries,
and user caches are filled in a centralized fashion, 2) for
each demand realization, the server identifies the messages
that need to be delivered to each user, independently across
sublibraries, using a modified version of the scheme proposed
in [5], and 3) the server employs superposition coding to
reliably communicate coded messages over the Gaussian BC.

1) Placement Phase: As in [5]–[7], the contents placed
in each user’s cache are identified separately for the different
sublibraries, each with a different level of commonness. To
this end, a fraction of the available cache capacity is allocated
to each sublibrary. Let π = (π1, . . . , πN ) denote the cache
allocation vector, where π` ∈ [0, 1] denotes the fraction of M
allocated to sublibrary L`, with

∑N
`=1 π` = 1. We will later

optimize π to minimize the required total transmit power. For
a given π, placement for sublibrary L` is carried out using
the prefetching scheme proposed in [10] as follows. Let

t` ,
Kπ`M(
N
`

)
R`

, t` ∈ [0,K], (26)

which, differently from [10], is not necessarily an integer.
We address this by memory-sharing among the neighboring
integer points, tA` , bt`c and tB` , bt`c + 1, and divide
each subfile WS ∈ L` into two non-overlapping parts.
More specifically, WS = (W

A

S ,W
B

S ), where W
A

S is at rate
(tB` − t`)R`, while W

B

S is at rate (t`− tA` )R`. The prefetching
policy of [10] is implemented separately for {WA

S : S ∈ L`}

and {WB

S : S ∈ L`}. Each part W
A

S is split into
(
K
tAl

)
non-

overlapping equal-length packets, with size n(tB` −t`)/
(
K
tA`

)
R`

bits. These packets are assigned to sets A ⊆ [K] with size tA` .
We denote the packet assigned to A by W

A

S,A; therefore,

W
A
S = {WA

S,A : A ⊆ [K], |A| = tA` }. (27)

Similarly, each part W
B

S is split into
(
K
tBl

)
non-overlapping

equal-length packets, which are labeled as

W
B
S = {WB

S,B : B ⊆ [K], |B| = tB` }. (28)

Given this packetization, user k caches packets W
A

S,A if k ∈
A, and packets W

B

S,B if k ∈ B. With this placement strategy,
for each subfile in sublibrary L`,

(
K−1
tA` −1

)
distinct packets from

W
A

S , and
(
K−1
tB` −1

)
distinct packets from W

B

S , are placed in each
user’s cache, amounting to a total of nt`R`/K bits, which
satisfies the capacity constraint of nπ`M bits.

2) Delivery Phase: As explained in [5]–[7], delivering a
file from a correlated library, which has been compressed
into multiple subfiles, is a multiple-demand problem. For a
given demand vector d, user k requires

(
N−1
`−1
)

subfiles from
sublibrary L`, in order to successfully reconstruct file Wdk .
Since the sublibraries are treated independently, message V kd ,
targeted at user k, constitutes the messages computed from all
the sublibraries, i.e.,

V kd =

N⋃
`=1

V kd (L`), (29)

where V kd (L`) denotes the set of messages from sublibrary L`
targeted at user k. Messages V 1

d (L`), . . . , V
K
d (L`) are deter-

mined using Algorithm 1, which is based on [5, Algorithms
1, 2]. The main idea is to treat subfiles {WS : dk ∈ S}
that are not cached at user k, as different demands. The
algorithm operates by partitioning all the requested subfiles
from sublibrary L` into groups, such that each user requires
at most one subfile in each group; thus, resulting in a single-
demand problem.

For sublibrary L`, V 1
d (L`), . . . , V

K
d (L`), are generated as

follows:
i) Grouping the requested subfiles:

Let D , {d1, ..., dK} denote the set of distinct files
requested in demand vector d. The subfiles that need to
be delivered to at least ` users, are given by:

{WS :WS ∈ L`,S ⊆ D}. (30)

Since each user can request multiple subfiles from (30),
they are grouped into multiple (possibly overlapping)
sets with minimum cardinality, such that each group
represents the demand set of a single-demand network
with K users. The grouping process tries to minimize the
number of distinct demands within each corresponding
single-demand network. For sublibrary L`, where each
subfile is required by ` distinct demands, there are at
most d|D|/`e + 1 subfiles in each group. Note that, the
subfiles in (30) are not the only contents that need to



be delivered from sublibrary L`. Based on the demand
vector, any subfile WS whose index S includes at least
one of the indices in D, i.e., S∩D 6= ∅, is required for the
lossless reconstruction of the corresponding requested file
in D. All such subfiles need to be identified, and grouped
in a similar fashion. The subfiles in (30) correspond to
|S ∩ D| = `. For r = 1, . . . , `, we define the requested
subfiles Wr, as

Wr , {WS : |S| = `, |S ∩ D| = r}. (31)

Then, each setWr is grouped using the function GROUP
in Algorithm 1, which assigns a demand vector S =
(S1, . . . ,SK) to each group, resulting in a single-demand
network with K users, where user k requests subfile
WSk .

ii) Delivering the demands corresponding to each group:
The groups that have been formed above are treated
independently in the delivery phase. More specifically, for
a group with corresponding demand vector S, function
SINGLE-DEMAND in Algorithm 1 identifies the mes-
sages V 1, . . . , V K that need to be transmitted so that
all the users recover their requested subfiles in S. These
messages are computed using the scheme in [10], applied
to a degraded BC. The channel is taken into account
by selecting the weakest users with distinct demands as
leaders, i.e., the demand of a leader is not requested by
any of the weaker users, {k : Sk /∈ {S1, ...,Sk−1}},
and then greedily broadcasting XORed messages that
benefit at least one leader. Note that choosing the weakest
user, among users requiring the same subfile WS , as the
leader, allows all the stronger users to decode the subfile
through superposition coding and successive cancellation
decoding. As mentioned previously, the proposed scheme
uses memory-sharing to cache and deliver the subfiles
in L`, for the two parts W

A

S and W
B

S ; and therefore,
function SINGLE-DEMAND is executed for both parts.

Algorithm 1 Generate messages {V 1
d (L`), . . . , V

K
d (L`)}

1: V kd (L`)← ∅, ∀k ∈ {1, . . . ,K}
2: for r ∈ {1, . . . , `} do
3: Wr = {WS : |S| = `, |S ∩ D| = r}
4: S1, . . . ,Sg ← Group (Wr , D, `, r)
5: for i ∈ {1, . . . , g} do
6: V 1

A, . . . , V
K
A ← Single-Demand (A, Si, tA` )

7: V 1
B , . . . , V

K
B ← Single-Demand (B, Si, tB` )

8: V kd (L`)← V kd (L`) ∪ {V kA , V kB}, ∀k ∈ {1, . . . ,K}
9: end for

10: end for

Message V kd (L`) targeted at user k is the union of all the
messages for sublibrary L` computed for each group identified
from the subfile sets {W1, . . . ,W`}.The overall message for
user k, V kd , is thus obtained by (29). For a given demand vector
d, messages V 1

d , . . . , V
K
d can be reliably transmitted to users

1, . . . ,K, using a K-level Gaussian superposition codebook
[17]. The kth-level codebook consists of 2nρk codewords,

where ρk is the total rate of the messages in V kd . The total
required transmit power is given by (11) in Proposition 1.

1: function GROUP ( W , D, `, r)
2: Output: Group demands S1, . . . ,Sg

3: F ← D, F ← ∅, S ← ∅, g = 0
4: while W 6= ∅ do
5: while F 6= ∅ do
6: if |F| ≥ r then
7: if F = ∅ then
8: Randomly pick WS ∈ W such that S∩D ⊆ F
9: W ←W/WS , F ← F \ S

10: for dk ∈ S ∩ D do
11: Sk ← S
12: end for
13: else
14: for dk ∈ F do
15: Sk ← S
16: end for
17: F ← F \ F , S ← ∅, F ← ∅,
18: end if
19: else
20: Randomly pick WS ∈ W such that F ⊆ S
21: for dk ∈ F do
22: Sk ← S
23: end for
24: F ← ∅, S ← S, F ← S \ F
25: end if
26: end while
27: g = g + 1
28: Sg = (S1, . . . ,SK)
29: end while
30: end function

1: function SINGLE-DEMAND (C, S, t)
2: Input: S = (S1, . . . ,SK), C ≡ {WC

S,C}
3: Output: Coded messages V 1, . . . , V K

4: K ← {k : Sk /∈ {S1, ...,Sk−1}}
5: for k ∈ {1, . . . ,K} do
6: for U ⊆ [k + 1 : K] : |U| = t,

∑
j∈K

1{j ∈ U ∪ {k}} ≥ 1 do

7: V k ← V k
⋃( ⊕

j∈U∪{k}
W

C
Sj ,U∪{k}\{j}

)
8: end for
9: end for

10: end function

V. NUMERICAL RESULTS

We evaluate the performance of the scheme proposed in
Subsection IV-B, referred to as the correlation-aware scheme,
by comparing its memory-power trade-off with the lower
bound presented in Theorem 1, as well as with the trade-
off achieved by the scheme proposed in [12], which does
not exploit the correlation among the files, referred to as
the correlation-ignorant scheme. We consider a setting with
N = 5 files, K = 5 users, file rate R = 1, and cache
capacity M = 0.5. The channel gains are modeled as
1/h2k = 2 − 0.2(k − 1), for k = 1, ..., 5. We denote by α`
the file-length fraction that belongs to sublibrary L`, i.e.,

α` =

(
N − 1

`− 1

)
R`
R
,

N∑
`=1

α` = 1.



Fig. 1: Transmission power vs. common subfile fraction α5,
when the files are composed of private and common-to-all
subfiles.

Fig. 2: Transmission power vs. common subfile fraction α2,
when the files are composed of private and common-to-two
subfiles.

Fig. 1 displays p∗(M), minimum required transmit power
for memory M , for a database with files composed of one
private subfile, which is exclusive to that file, and a common-
to-all subfile, which is shared among all files, i.e., α1+α5 = 1,
α2 = α3 = α4 = 0. In Fig. 2, p∗(M) is shown when the
files, in addition to private subfiles, have pairwise correla-
tions through common-to-two subfiles, that is α1 + α2 = 1,
α3 = α4 = α5 = 0. We plot the minimum transmit power
as a function of the common parts of the files for both
scenarios, i.e., with respect to α5 and α2. respectively. In both
settings, the transmission power achieved by the correlation-
aware scheme decreases remarkably, as the portion of common
subfiles increases, while the performance of the correlation-
ignorant scheme does not improve. It is observed that the
transmission power drops at a higher rate in Fig. 1 compared
to Fig. 2 for increasing ratio of common subfiles, in both
the correlation-aware scheme and lower bound. This is due
to the reduction in the amount of content that is sent over
the Gaussian BC, as a result of exploiting the higher level

of correlation. It is also observed that the gap between the
transmit power upper and lower bounds is smaller in Fig. 1
compared to Fig. 2.

VI. CONCLUSIONS

We have investigated caching and delivery of correlated
contents over a cache-aided Gaussian BC. Correlation among
files is captured by the component subfiles shared among
different subsets of files. We have first presented a lower
bound on the minimum transmission power which guarantees
the reliable delivery of all possible demand combinations. A
correlation- aware joint cache and channel coding scheme,
based on superposition coding, is proposed, and the corre-
sponding upper bound is compared numerically with the lower
bound. Our numerical results show that significant energy
gains can be obtained by exploiting the correlation among the
files.
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